1
|
Mekeda IS, Balakhonov RY, Shirinian VZ. Switching the regioselectivity of acid-catalyzed reactions of arylnaphtho[2,1- b]furans via a [1,2]-aryl shift. Org Biomol Chem 2024; 22:7715-7724. [PMID: 39225492 DOI: 10.1039/d4ob01223b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The [1,2]-aryl shift reaction was used to synthesize naphtho[2,1-b]furans as promising fluorescent scaffolds for organic electronics. The target compounds are furan analogues of phenanthrene formally accessed by isosteric replacement of the CHCH moiety with an oxygen atom. The straightforward and robust approach involving a [1,2]-aryl shift as a key step provides easy access to a wide range of naphtho[2,1-b]furans with the possibility of late-stage functionalization. Efficient switching of the regioselectivity of acid-catalyzed reactions of arylnaphtho[2,1-b]furans via a [1,2]-aryl shift has been demonstrated. A one-pot protocol involving sequential intramolecular condensation/[1,2]-aryl shift/intermolecular oxidative aromatic coupling to provide access to binaphtho[2,1-b]furan analogues of BINOL was developed. The advantage of these compounds lies in the strong variation in chemical properties and spectral performance depending on the nature and position of the aryl substituent, which facilitates the synthesis of compounds with desired spectral characteristics and opens up prospects for their further use in electronics, biotechnologies and organic synthesis.
Collapse
Affiliation(s)
- I S Mekeda
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninskyprosp., 119991 Moscow, Russian Federation.
| | - R Yu Balakhonov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninskyprosp., 119991 Moscow, Russian Federation.
| | - V Z Shirinian
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninskyprosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
2
|
Lu H, Ye H, You L. Photoswitchable Cascades for Allosteric and Bidirectional Control over Covalent Bonds and Assemblies. J Am Chem Soc 2024. [PMID: 38620077 DOI: 10.1021/jacs.4c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Studies of complex systems and emerging properties to mimic biosystems are at the forefront of chemical research. Dynamic multistep cascades, especially those exhibiting allosteric regulation, are challenging. Herein, we demonstrate a versatile platform of photoswitchable covalent cascades toward remote and bidirectional control of reversible covalent bonds and ensuing assemblies. The relay of a photochromic switch, keto-enol equilibrium, and ring-chain equilibrium allows light-mediated reversible allosteric structural changes. The accompanying distinct reactivity further enables photoswitchable dynamic covalent bonding and release of substrates bidirectionally through alternating two wavelengths of light, essentially realizing light-mediated signaling cycles. The downfall of energy by covalent bond formation/scission upon photochemical reactions offers the driving force for the controlled direction of the cascade. To show the molecular diversity, photoswitchable on-demand assembly/disassembly of covalent polymers, including structurally reconfigurable polymers, was realized. This work achieves photoswitchable allosteric regulation of covalent architectures within dynamic multistep cascades, which has rarely been reported before. The results resemble allosteric control within biological signaling networks and should set the stage for many endeavors, such as dynamic assemblies, molecular motors, responsive polymers, and intelligent materials.
Collapse
Affiliation(s)
- Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
3
|
Zhao P, Xin BS, Ye L, Ma ZT, Yao GD, Shi R, He XH, Lin B, Huang XX, Song SJ. Structurally diverse rearranged sesquiterpenoids, including a pair of rare tautomers, from the aerial parts of Daphne penicillata. PHYTOCHEMISTRY 2024; 218:113950. [PMID: 38101591 DOI: 10.1016/j.phytochem.2023.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Eight structurally diverse rearranged sesquiterpenoids, including seven undescribed sesquiterpenoids (1a/1b and 3-8) were obtained from the aerial parts of Daphne penicillata. 1a/1b, 3, 5 and 6 possess rare rearranged guaiane skeletons and 4 represents the first example of rearranged carotene sesquiterpenoids. Their structures and absolute configurations were determined by extensive spectroscopic analyses, NMR and ECD calculations. Interestingly, 1a and 1b were a pair of magical interconverting epimers that may interconvert by retro-aldol condensation. The mechanism of interconversion has been demonstrated indirectly by 9-OH derivatization of 1a/1b and a hypothetical biogenetic pathway was proposed. All compounds were evaluated for anti-inflammatory and cytotoxic activities. Among them, 1a/1b and 2 exhibited potential inhibitory activities on the production of NO against LPS-induced BV2 microglial cells.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Ben-Song Xin
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Li Ye
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Zhen-Tao Ma
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Rui Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Foresty Research Center of Kunming, Horticulture and Landscape Architecture, Southwest Forestry University, Yunnan Kunming, 650224, China
| | - Xia-Hong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Foresty Research Center of Kunming, Horticulture and Landscape Architecture, Southwest Forestry University, Yunnan Kunming, 650224, China
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China; Basic Science Research Center Base (Pharmaceutical Science), Shandong Province, Yantai University, Yantai, 264005, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
4
|
You L. Dual reactivity based dynamic covalent chemistry: mechanisms and applications. Chem Commun (Camb) 2023; 59:12943-12958. [PMID: 37772969 DOI: 10.1039/d3cc04022d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Dynamic covalent chemistry (DCC) focuses on the reversible formation, breakage, and exchange of covalent bonds and assemblies, setting a bridge between irreversible organic synthesis and supramolecular chemistry and finding wide utility. In order to enhance structural and functional diversity and complexity, different types of dynamic covalent reactions (DCRs) are placed in one vessel, encompassing orthogonal DCC without crosstalk and communicating DCC with a shared reactive functional group. As a means of adding tautomers, widespread in chemistry, to interconnected DCRs and combining the features of orthogonal and communicating DCRs, a concept of dual reactivity based DCC and underlying structural and mechanistic insights are summarized. The manipulation of the distinct reactivity of structurally diverse ring-chain tautomers allows selective activation and switching of reaction pathways and corresponding DCRs (C-N, C-O, and C-S) and assemblies. The coupling with photoswitches further enables light-mediated formation and scission of multiple types of reversible covalent bonds. To showcase the capability of dual reactivity based DCC, the versatile applications in dynamic polymers and luminescent materials are presented, paving the way for future functionalization studies.
Collapse
Affiliation(s)
- Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
5
|
Lvov AG, Koffi Kouame E, Khusniyarov MM. Light-Induced Dyotropic Rearrangement of Diarylethenes: Scope, Mechanism, and Prospects. Chemistry 2023; 29:e202301480. [PMID: 37477021 DOI: 10.1002/chem.202301480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Irreversible two-photon photorearrangement of 1,2-diarylethenes is a unique process providing access to complex 2a1 ,5a-dihydro-5,6-dithiaacenaphthylene (DDA) heterocyclic core. This reaction was serendipitously discovered during studies on photoswitchable diarylethenes and was initially considered as a highly undesired process. However, in recent years, it has been recognized as an efficient photochemical reaction, interesting by itself and as a promising synthetic method for the synthesis of challenging molecules. Herein, we discuss the state-of-the-art in studies on this notable process.
Collapse
Affiliation(s)
- Andrey G Lvov
- Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk, 664074, Russia
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk, 664033, Russia
| | - Eric Koffi Kouame
- Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk, 664074, Russia
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk, 664033, Russia
| | - Marat M Khusniyarov
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058, Erlangen, Germany
| |
Collapse
|
6
|
Bolotova IA, Ustyuzhanin AO, Sergeeva ES, Faizdrakhmanova AA, Hai Y, Stepanov AV, Ushakov IA, Lyssenko KA, You L, Lvov AG. 2,3-Diarylmaleate salts as a versatile class of diarylethenes with a full spectrum of photoactivity in water. Chem Sci 2023; 14:9553-9559. [PMID: 37712048 PMCID: PMC10498723 DOI: 10.1039/d3sc02165c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
There is incessant interest in the transfer of common chemical processes from organic solvents to water, which is vital for the development of bioinspired and green chemical technologies. Diarylethenes feature a rich photochemistry, including both irreversible and reversible reactions that are in demand in organic synthesis, materials chemistry, and photopharmacology. Herein, we introduce the first versatile class of diarylethenes, namely, potassium 2,3-diarylmaleates (DAMs), that show excellent solubility in water. DAMs obtained from highly available precursors feature a full spectrum of photoactivity in water and undergo irreversible reactions (oxidative cyclization or rearrangement) or reversible photocyclization (switching), depending on their structure. This finding paves a way towards wider application of diarylethenes in photopharmacology and bioinspired technologies that require aqueous media for photochemical reactions.
Collapse
Affiliation(s)
- Iumzhana A Bolotova
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
- Irkutsk National Research Technical University 83, Lermontov St. Irkutsk 664074 Russia
| | - Alexander O Ustyuzhanin
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
- Irkutsk National Research Technical University 83, Lermontov St. Irkutsk 664074 Russia
| | - Ekaterina S Sergeeva
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
- Irkutsk National Research Technical University 83, Lermontov St. Irkutsk 664074 Russia
| | - Anna A Faizdrakhmanova
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
- Irkutsk National Research Technical University 83, Lermontov St. Irkutsk 664074 Russia
| | - Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Andrey V Stepanov
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
- Irkutsk National Research Technical University 83, Lermontov St. Irkutsk 664074 Russia
| | - Igor A Ushakov
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
| | | | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Andrey G Lvov
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
- Irkutsk National Research Technical University 83, Lermontov St. Irkutsk 664074 Russia
| |
Collapse
|
7
|
Zakharov AV, Timofeeva SM, Yadykov AV, Krayushkin MM, Shirinian VZ. Skeletal photoinduced rearrangement of diarylethenes: ethene bridge effects. Org Biomol Chem 2023; 21:2015-2023. [PMID: 36790344 DOI: 10.1039/d2ob02315f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
A skeletal photorearrangement involving UV-induced 6π-electrocyclization of diarylethenes with various ethene bridges has been studied. It has been found that deprotonation is the predominant step among the three possible alternative reaction pathways (radical abstraction, deprotonation, or sigmatropic shift) following 6π-electrocyclization, and incorporation of an electronegative carbonyl group into the geminal position to the phenyl residue results in a reduction in the reaction time and an increase in the yield of the desired product. The significant increase in the reaction time in less polar solvents (toluene, TCM) also indicates a large contribution of the deprotonation step to the skeletal photorearrangement of diarylethenes. Performing the reaction in toluene in the presence of tertiary amines leads to a reduction in the reaction time and an increase in the yield of the desired product. The best results were achieved when the reaction was carried out in toluene in the presence of DIPEA. The experimental results are in good agreement with the DFT calculations.
Collapse
Affiliation(s)
- A V Zakharov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation.
| | - S M Timofeeva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation.
| | - A V Yadykov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation.
| | - M M Krayushkin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation.
| | - V Z Shirinian
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
8
|
Heo JW, Chen J, Kim MS, Kim JW, Zhang Z, Jeong H, Kim YS. Eco-friendly and facile preparation of chitosan-based biofilms of novel acetoacetylated lignin for antioxidant and UV-shielding properties. Int J Biol Macromol 2023; 225:1384-1393. [PMID: 36435473 DOI: 10.1016/j.ijbiomac.2022.11.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
The development of eco-friendly, sustainable, biodegradable, and biocompatible green biopolymer composites is becoming increasingly important. In this study, acetoacetylated lignin (ATL) was obtained via an eco-friendly, facile one-step synthesis reaction, and chitosan (CS)-containing ATL films (CSL) were prepared. The chemical structural analysis of ATL confirmed that the acetoacetyl groups were successfully grafted onto kraft lignin (KL). ATL with adequate acetoacetyl groups exhibited enhanced molecular weight and antioxidant and ultraviolet (UV)-shielding properties. In particular, ATL, with a half maximal inhibitory concentration (IC50) of 23.8 μg·mL-1, exhibited superior antioxidant activity than butylated hydroxytoluene (38.3 μg·mL-1) and KL (50.0 μg·mL-1). When ATL was incorporated into the CS solution to prepare biofilms, the antioxidant activity, UV-shielding property, water resistance, and thermal stability of the CSL greatly improved. Notably, the UV-A and UV-B shielding properties of the 2 % CSL were 130 % and 78 % higher than those of the pure CS film, respectively. Therefore, ATL designed with lignin-derived multifunctional properties has potential applications as an antioxidant and UV-shielding bio-additive and shows significant prospects in food packaging and biomedical applications.
Collapse
Affiliation(s)
- Ji Won Heo
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jiansong Chen
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Min Soo Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ji Woo Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Zhili Zhang
- Changgang Institute of Paper Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hanseob Jeong
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Yong Sik Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
9
|
Lu H, Ye H, Zhang M, Wang L, You L. Photoswitchable Keto–Enol Tautomerism Driven by Light-Induced Change in Antiaromaticity. Org Lett 2022; 24:8639-8644. [DOI: 10.1021/acs.orglett.2c03441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Meilan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou 35007, China
| | - Lifeng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou 35007, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
10
|
Yadykov AV, Eremchenko AE, Milosavljevic A, Frontier AJ, Shirinian VZ. Divergent Reactivity of Triaryldivinyl Ketones: Competing 4π and Putative 6π Electrocyclization Pathways. J Org Chem 2022; 87:13643-13652. [PMID: 36220664 DOI: 10.1021/acs.joc.2c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work describes an acid-promoted cyclization of triaryldivinyl ketones containing a thiophene moiety in the α-position. Two cyclization pathways are accessible: one a 4π-Nazarov cyclization and the other we propose to proceed through a 6π electrocyclic mechanism. The relative proportion of products from these divergent pathways is affected by reaction conditions and steric bulk in the substrate. We present experimental and computational evidence that when using HCl in dioxane, the 4π-conrotatory electrocyclization is more favorable, whereas GaCl3 in methylene chloride shifts the chemoselectivity toward a putative 6π-disrotatory electrocyclization. DFT calculations suggest that a complex interplay between kinetic and thermodynamic factors is implicated in the chemodivergent behavior.
Collapse
Affiliation(s)
- Anton V Yadykov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Artem E Eremchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.,D. I. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russian Federation
| | - Aleksa Milosavljevic
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14611, United States
| | - Alison J Frontier
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14611, United States
| | - Valerii Z Shirinian
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
11
|
Yan HW, Zhao LH, Zhang X, Yang YN, Yuan X, Zhang PC. Photoinduced Irreversible Intramolecular Proton Transfer of Arnebinones B, D, and E: The Case of Photoenolization at the p-Benzoquinone-CH 2/CH-π System. JOURNAL OF NATURAL PRODUCTS 2021; 84:2981-2989. [PMID: 34784203 DOI: 10.1021/acs.jnatprod.1c00830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Arnebinones B, E, and D (1-3) have been found to be sensitive to light, generating complex and diverse proton transfer products when triggered by light. A unique two-step irreversible intramolecular proton transfer of 1 produced five scalemic mixtures, of which four possessed intriguing dual planar chirality. The unprecedented orientation epimerization equilibrium of the intra-annular double bond was first observed and researched in the homologous meroterpenoids by HPLC monitoring and DFT calculations. A "p-benzoquinone-CH2/CH-π" moiety in the structure was the common key feature for the occurrence of this type of photoenolization reaction. The product transformation processes and universality of this photoinduced irreversible proton transfer reaction were analyzed together with the cytotoxic activities of arnebinones B, D, and E, and their photoreaction products.
Collapse
Affiliation(s)
- Hai-Wei Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ling-Hao Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ya-Nan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiang Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
12
|
Accardo JV, McClure ER, Mosquera MA, Kalow JA. Using Visible Light to Tune Boronic Acid–Ester Equilibria. J Am Chem Soc 2020; 142:19969-19979. [DOI: 10.1021/jacs.0c08551] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Joseph V. Accardo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emily R. McClure
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Martín A. Mosquera
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julia A. Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Hou IC, Berger F, Narita A, Müllen K, Hecht S. Proton-Gated Ring-Closure of a Negative Photochromic Azulene-Based Diarylethene. Angew Chem Int Ed Engl 2020; 59:18532-18536. [PMID: 33439528 PMCID: PMC7589205 DOI: 10.1002/anie.202007989] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 01/14/2023]
Abstract
Proton-responsive photochromic molecules are attractive for their ability to react on non-invasive rapid optical stimuli and the importance of protonation/deprotonation processes in various fields. Conventionally, their acidic/basic sites are on hetero-atoms, which are orthogonal to the photo-active π-center. Here, we incorporate azulene, an acid-sensitive pure hydrocarbon, into the skeleton of a diarylethene-type photoswitch. The latter exhibits a novel proton-gated negative photochromic ring-closure and its optical response upon protonation in both open and closed forms is much more pronounced than those of diarylethene photoswitches with hetero-atom based acidic/basic moieties. The unique behavior of the new photoswitch can be attributed to direct protonation on its π-system, supported by 1H NMR and theoretical calculations. Our results demonstrate the great potential of integrating non-alternant hydrocarbons into photochromic systems for the development of multi-responsive molecular switches.
Collapse
Affiliation(s)
- Ian Cheng‐Yi Hou
- Synthetic ChemistryMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department ChemieJohannes Gutenberg-University MainzDuesbergweg 10–1455128MainzGermany
| | - Fabian Berger
- Department of Chemistry & IRIS AdlershofHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Akimitsu Narita
- Synthetic ChemistryMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919-1 Tancha, Onna-sonKunigamiOkinawa904-0495Japan
| | - Klaus Müllen
- Synthetic ChemistryMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department ChemieJohannes Gutenberg-University MainzDuesbergweg 10–1455128MainzGermany
| | - Stefan Hecht
- Department of Chemistry & IRIS AdlershofHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
14
|
Hou IC, Berger F, Narita A, Müllen K, Hecht S. Protonenvermittelter Ringschluss eines negativ photochromen, Azulen‐basierten Diarylethens. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ian Cheng‐Yi Hou
- Synthesechemie Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
- Department Chemie Johannes Gutenberg-University Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Fabian Berger
- Department of Chemistry & IRIS Adlershof Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Akimitsu Narita
- Synthesechemie Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
- Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son Kunigami Okinawa 904-0495 Japan
| | - Klaus Müllen
- Synthesechemie Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
- Department Chemie Johannes Gutenberg-University Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Stefan Hecht
- Department of Chemistry & IRIS Adlershof Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
- DWI – Leibniz Institut für Interaktive Materialien Forckenbeckstr. 50 52074 Aachen Deutschland
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| |
Collapse
|