1
|
Kumawat RL, Jena MK, Mittal S, Pathak B. Advancement of Next-Generation DNA Sequencing through Ionic Blockade and Transverse Tunneling Current Methods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401112. [PMID: 38716623 DOI: 10.1002/smll.202401112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Indexed: 10/04/2024]
Abstract
DNA sequencing is transforming the field of medical diagnostics and personalized medicine development by providing a pool of genetic information. Recent advancements have propelled solid-state material-based sequencing into the forefront as a promising next-generation sequencing (NGS) technology, offering amplification-free, cost-effective, and high-throughput DNA analysis. Consequently, a comprehensive framework for diverse sequencing methodologies and a cross-sectional understanding with meticulous documentation of the latest advancements is of timely need. This review explores a broad spectrum of progress and accomplishments in the field of DNA sequencing, focusing mainly on electrical detection methods. The review delves deep into both the theoretical and experimental demonstrations of the ionic blockade and transverse tunneling current methods across a broad range of device architectures, nanopore, nanogap, nanochannel, and hybrid/heterostructures. Additionally, various aspects of each architecture are explored along with their strengths and weaknesses, scrutinizing their potential applications for ultrafast DNA sequencing. Finally, an overview of existing challenges and future directions is provided to expedite the emergence of high-precision and ultrafast DNA sequencing with ionic and transverse current approaches.
Collapse
Affiliation(s)
- Rameshwar L Kumawat
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Sneha Mittal
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
2
|
Mittal S, Jena MK, Pathak B. Machine learning empowered next generation DNA sequencing: perspective and prospectus. Chem Sci 2024; 15:12169-12188. [PMID: 39118630 PMCID: PMC11304540 DOI: 10.1039/d4sc01714e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024] Open
Abstract
The pursuit of ultra-rapid, cost-effective, and accurate DNA sequencing is a highly sought after aspect of personalized medicine development. With recent advancements, mainstream machine learning (ML) algorithms hold immense promise for high throughput DNA sequencing at the single nucleotide level. While ML has revolutionized multiple domains of nanoscience and nanotechnology, its implementation in DNA sequencing is still in its preliminary stages. ML-aided DNA sequencing is especially appealing, as ML has the potential to decipher complex patterns and extract knowledge from complex datasets. Herein, we present a holistic framework of ML-aided next-generation DNA sequencing with domain knowledge to set directions toward the development of artificially intelligent DNA sequencers. This perspective focuses on the current state-of-the-art ML-aided DNA sequencing, exploring the opportunities as well as the future challenges in this field. In addition, we provide our personal viewpoints on the critical issues that require attention in the context of ML-aided DNA sequencing.
Collapse
Affiliation(s)
- Sneha Mittal
- Department of Chemistry, Indian Institute of Technology (IIT) Indore Indore Madhya Pradesh 453552 India
| | - Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology (IIT) Indore Indore Madhya Pradesh 453552 India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore Indore Madhya Pradesh 453552 India
| |
Collapse
|
3
|
Gao Y, Wang Y. Interplay of graphene-DNA interactions: Unveiling sensing potential of graphene materials. APPLIED PHYSICS REVIEWS 2024; 11:011306. [PMID: 38784221 PMCID: PMC11115426 DOI: 10.1063/5.0171364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Graphene-based materials and DNA probes/nanostructures have emerged as building blocks for constructing powerful biosensors. Graphene-based materials possess exceptional properties, including two-dimensional atomically flat basal planes for biomolecule binding. DNA probes serve as excellent selective probes, exhibiting specific recognition capabilities toward diverse target analytes. Meanwhile, DNA nanostructures function as placement scaffolds, enabling the precise organization of molecular species at nanoscale and the positioning of complex biomolecular assays. The interplay of DNA probes/nanostructures and graphene-based materials has fostered the creation of intricate hybrid materials with user-defined architectures. This advancement has resulted in significant progress in developing novel biosensors for detecting DNA, RNA, small molecules, and proteins, as well as for DNA sequencing. Consequently, a profound understanding of the interactions between DNA and graphene-based materials is key to developing these biological devices. In this review, we systematically discussed the current comprehension of the interaction between DNA probes and graphene-based materials, and elucidated the latest advancements in DNA probe-graphene-based biosensors. Additionally, we concisely summarized recent research endeavors involving the deposition of DNA nanostructures on graphene-based materials and explored imminent biosensing applications by seamlessly integrating DNA nanostructures with graphene-based materials. Finally, we delineated the primary challenges and provided prospective insights into this rapidly developing field. We envision that this review will aid researchers in understanding the interactions between DNA and graphene-based materials, gaining deeper insight into the biosensing mechanisms of DNA-graphene-based biosensors, and designing novel biosensors for desired applications.
Collapse
Affiliation(s)
- Yanjing Gao
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
4
|
Stuber A, Schlotter T, Hengsteler J, Nakatsuka N. Solid-State Nanopores for Biomolecular Analysis and Detection. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:283-316. [PMID: 38273209 DOI: 10.1007/10_2023_240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Advances in nanopore technology and data processing have rendered DNA sequencing highly accessible, unlocking a new realm of biotechnological opportunities. Commercially available nanopores for DNA sequencing are of biological origin and have certain disadvantages such as having specific environmental requirements to retain functionality. Solid-state nanopores have received increased attention as modular systems with controllable characteristics that enable deployment in non-physiological milieu. Thus, we focus our review on summarizing recent innovations in the field of solid-state nanopores to envision the future of this technology for biomolecular analysis and detection. We begin by introducing the physical aspects of nanopore measurements ranging from interfacial interactions at pore and electrode surfaces to mass transport of analytes and data analysis of recorded signals. Then, developments in nanopore fabrication and post-processing techniques with the pros and cons of different methodologies are examined. Subsequently, progress to facilitate DNA sequencing using solid-state nanopores is described to assess how this platform is evolving to tackle the more complex challenge of protein sequencing. Beyond sequencing, we highlight the recent developments in biosensing of nucleic acids, proteins, and sugars and conclude with an outlook on the frontiers of nanopore technologies.
Collapse
Affiliation(s)
- Annina Stuber
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Tilman Schlotter
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Julian Hengsteler
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
5
|
Huang C, Li Z, Zhu X, Ma X, Li N, Fan J. Two Detection Modes of Nanoslit Sensing Based on Planar Heterostructure of Graphene/Hexagonal Boron Nitride. ACS NANO 2023; 17:3301-3312. [PMID: 36638059 DOI: 10.1021/acsnano.2c05002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Solid-state nanopore sequencing is now confronted with problems of stochastic pore clogging and too fast speed during the DNA permeation through a nanopore, although this technique is revolutionary with long readability and high efficiency. These two problems are related to controlling molecular transportation during sequencing. To control the DNA motion and identify the four bases, we propose nanoslit sensing based on the planar heterostructure of two-dimensional graphene and hexagonal boron nitride. Molecular dynamics simulations are performed on investigating the motion of DNA molecules on the heterostructure with a nanoslit sensor. Results show that the DNA molecules are confined within the hexagonal boron nitride (HBN) domain of the heterostructure. And the confinement effects of the heterostructure can be optimized by tailoring the stripe length. Besides, there are two ways of DNA permeation through nanoslits: the DNA can cross or translocate the nanoslit under applied voltages along the y and z directions. The two detection modes are named cross-slit and trans-slit, respectively. In both modes, the ionic current drops can be observed when the nanoslit is occupied by the DNA. And the ionic currents and dwell times can be simultaneously detected to identify the four different DNA bases. This study can shed light on the sensing mechanism based on the nanoslit sensor of a planar heterostructure and provide theoretical guidance on designing devices controlling molecular transportation during nanopore sequencing.
Collapse
Affiliation(s)
- Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Xiaohong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Na Li
- School of Chemistry and Materials Science, Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Shanxi Normal University, Taiyuan030000, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
6
|
Tan X, Lv C, Chen H. Advances of nanopore-based sensing techniques for contaminants evaluation of food and agricultural products. Crit Rev Food Sci Nutr 2022; 63:10866-10879. [PMID: 35687354 DOI: 10.1080/10408398.2022.2085238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food safety assurance systems are becoming more stringent in response to the growing food safety problems. Rapid, sensitive, and reliable detection technology is a prerequisite for the establishment of food safety assurance systems. Nanopore technology has been taken as one of the emerging technology capable of dealing with the detection of harmful contaminants as efficiently as possible due to the advantage of label-free, high-throughput, amplification-free, and rapid detection features. Start with the history of nanopore techniques, this review introduced the underlying knowledge of detection mechanism of nanopore-based sensing techniques. Meanwhile, sensing interfaces for the construction of nanopore sensors are comprehensively summarized. Moreover, this review covers the current advances of nanopore techniques in the application of food safety screening. Currently, the establishment of nanopore sensing devices is mainly based on the blocking current phenomenon. Sensing interfaces including biological nanopores, solid-state nanopores, DNA origami, and de novo designed nanopores can be used in the manufacture of sensing devices. Food harmful substances, including heavy metals, veterinary drugs, pesticide residues, food toxins, and other harmful substances can be quickly determined by nanopore-based sensors. Moreover, the combination of nanopore techniques with advanced materials has become one of the most effective methods to improve sensing properties.
Collapse
Affiliation(s)
- Xiaoyi Tan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hai Chen
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Meng L, Huang J, He Z, Zhou R. Single nucleobase identification for transversally-confined ssDNA using longitudinal ionic currents. NANOSCALE 2022; 14:6922-6929. [PMID: 35452063 DOI: 10.1039/d1nr07116e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-fidelity DNA sequencing using solid-state nanopores remains a big challenge, partly due to difficulties related to efficient molecular capture and subsequent control of the dwell time. To help address these issues, here we propose a sequencing platform consisting of stacked two-dimensional materials with tailored structures containing a funnel-shaped step defect and a nanopore drilled inside the nanochannel. Our all-atom molecular dynamics (MD) simulations showed that, assisted by the step defect, single-stranded DNA (ssDNA) can be transported to the nanopore in a deterministic way by pulsed transversal electric fields. Furthermore, different types of DNA bases can reside in the pore for a sufficiently long time which can be successfully differentiated by longitudinal ionic currents. By using the decoupled driving forces for ssDNA transport and ionic current measurements, this approach holds potential for high-fidelity DNA sequencing.
Collapse
Affiliation(s)
- Lijun Meng
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, and Department of Physics, Zhejiang University, Hangzhou 310027, China.
| | - Jianxiang Huang
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, and Department of Physics, Zhejiang University, Hangzhou 310027, China.
| | - Zhi He
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, and Department of Physics, Zhejiang University, Hangzhou 310027, China.
| | - Ruhong Zhou
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, and Department of Physics, Zhejiang University, Hangzhou 310027, China.
- Department of Chemistry, Colombia University, New York, NY 10027, USA
| |
Collapse
|
8
|
Han Z, Li M, Li L, Jiao F, Wei Z, Geng D, Hu W. When graphene meets white graphene - recent advances in the construction of graphene and h-BN heterostructures. NANOSCALE 2021; 13:13174-13194. [PMID: 34477725 DOI: 10.1039/d1nr03733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
2D heterostructures have very recently witnessed a boom in scientific and technological activities owing to the customized spatial orientation and tailored physical properties. A large amount of 2D heterostructures have been constructed on the basis of the combination of mechanical exfoliation and located transfer method, opening wide possibilities for designing novel hybrid systems with tuned structures, properties, and applications. Among the as-developed 2D heterostructures, in-plane graphene and h-BN heterostructures have drawn the most attention in the past few decades. The controllable synthesis, the investigation of properties, and the expansion of applications have been widely explored. Herein, the fabrication of graphene and h-BN heterostructures is mainly focused on. Then, the spatial configurations for the heterostructures are systematically probed to identify the highly related unique features. Moreover, as a most promising approach for the scaled production of 2D materials, the in situ CVD fabrication of the heterostructures is summarized, demonstrating a significant potential in the controllability of size, morphology, and quality. Further, the recent applications of the 2D heterostructures are discussed. Finally, the concerns and challenges are fully elucidated and a bright future has been envisioned.
Collapse
Affiliation(s)
- Ziyi Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 P. R. China.
| | | | | | | | | | | | | |
Collapse
|