1
|
Wen X, Pang C, Wang Y, Li F, Fan Z. Effect of different crystal forms of MnO 2 quenchers on the sensitivity of copper nanoclusters and their use in acidphosphatase activity. Mikrochim Acta 2024; 191:592. [PMID: 39261319 DOI: 10.1007/s00604-024-06660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Highly stable copper nanocluster (CuNCs) with aggregation-induced emission (AIE) properties was synthesized. α-, β-, and γ- MnO2 were utilized as quenchers, with CuNCs fluorescence quenching of 48.9%, 91.5%, and 96.6%, respectively. L-ascorbate-2-phosphate (AAP) was hydrolyzed by acid phosphatase (ACP), and ascorbic acid (AA) was formed. Then, MnO2 could be restored by AA, and the fluorescence of the CuNCs could be restored. An on-off-on detection platform with a high signal/noise ratio was constructed for the sensing of ACP. The fluorescence recovery rate of the CuNCs was related to the crystal forms of MnO2. Then, the equilibrium constants (K) for the reaction between AA and MnO2 were calculated to evaluate the reaction process. Compared with the K values of CuNCs/α-MnO2 and CuNCs/γ-MnO2, the K values for AA and β-MnO2 were maximum. The CuNCs/β-MnO2 system exhibited optimal fluorescence recovery for the sensitive detection of ACP. In the concentration range 0.005-0.06 U/mL, the detection limit was 0.0028 U/mL. The determination of serum ACP levels also revealed satisfactory results. This study provides novel insights into enhancing the sensitivity of the determination of quenchers in different crystal form.
Collapse
Affiliation(s)
- Xiaoye Wen
- School of Chemistry and Materials Science, Shanxi Normal University, TaiYuan, 030032, China
| | - Chenjie Pang
- School of Chemistry and Materials Science, Shanxi Normal University, TaiYuan, 030032, China
| | - Yan Wang
- School of Chemistry and Materials Science, Shanxi Normal University, TaiYuan, 030032, China
| | - Fang Li
- School of Chemistry and Materials Science, Shanxi Normal University, TaiYuan, 030032, China
| | - Zhefeng Fan
- School of Chemistry and Materials Science, Shanxi Normal University, TaiYuan, 030032, China.
| |
Collapse
|
2
|
Chai S, Chi Y, Sun W, Hou X, Pei S, Luo K, Lv W. Synthesis of N-doped and P-doped silicon quantum dots and their applications for tetracycline detection in the honey samples and antibacterial properties. Food Chem 2024; 450:139324. [PMID: 38615527 DOI: 10.1016/j.foodchem.2024.139324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
The abuse of tetracycline can lead to its residue in animal derived foods, posing many potential hazards to human health. Therefore, rapid and accurate detection of tetracycline is an important means to ensure food safety. Nitrogen doped and phosphorus doped silicon quantum dots (N-SiQDs, P-SiQDs) with remarkable optical stability were fabricated via a one-pot hydrothermal procedure in this study. Upon the excitation at 346 nm, N-SiQDs and P-SiQDs emitted fluorescence at 431 nm and 505 nm, respectively. Two SiQDs had the potential to serve as a probe for detecting low concentrations of tetracycline (TC), employing a mechanism of the static quenching effect. The calibration curves of N-SiQDs and P-SiQDs were linear within the range of 0-0.8 μM and 0-0.4 μM, the limits of detection were low as 5.35 × 10-4 μmol/L and 6.90 × 10-3 μmol/L, respectively. This method could be used successfully to detect TC in honey samples. Moreover, the remarkable antibacterial efficacy of two SiQDs could be attributed to the generation of a large number of intracellular reactive oxygen species. The SEM images showed that the structure of bacterial cell was disrupted and the surface became irregular when treated with both SiQDs. These properties enabled potential usage of SiQDs as excellent antibacterial material for different biomedical applications.
Collapse
Affiliation(s)
- Shuiqin Chai
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China.
| | - Yuting Chi
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Wanlin Sun
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Xin Hou
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Shuchen Pei
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Kang Luo
- People's Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing 404037, PR China.
| | - Wenyi Lv
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China.
| |
Collapse
|
3
|
Han Y, Kou M, Quan K, Wang J, Zhang H, Ihara H, Takafuji M, Qiu H. Enantioselective Glutamic Acid Discrimination and Nanobiological Imaging by Chiral Fluorescent Silicon Nanoparticles. Anal Chem 2024; 96:2173-2182. [PMID: 38261544 DOI: 10.1021/acs.analchem.3c05150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Enantioselective discrimination of chiral molecules is essential in chemistry, biology, and medical science due to the configuration-dependent activities of enantiomers. Therefore, identifying a specific amino acid and distinguishing it from its enantiomer by using nanomaterials with outstanding performance are of great significance. Herein, blue- and green-emitting chiral silicon nanoparticles named bSiNPs and gSiNPs, respectively, with excellent water solubility, salt resistance, pH stability, photobleaching resistance, biocompatibility, and ability to promote soybean germination, were fabricated in a facile one-step method. Especially, chiral gSiNPs presented excellent fluorescence recognition ability for glutamic acid enantiomers within 1 min, and the enantiomeric recognition difference factor was as high as 9.0. The mechanism for enantiomeric fluorescence recognition was systematically explored by combining the fluorescence spectra with density functional theory (DFT) calculation. Presumably, the different Gibbs free energy and hydrogen-bonding interaction of the chiral recognition module with glutamic acid enantiomers mainly contributed to the difference in the fluorescence signals. Most noteworthy was the fact that the chiral gSiNPs can showcase not only the ability to recognize l- and d-glutamic acids in living cells but also the test strips fabricated by soaking gSiNPs can be applied for d-glutamic acid visual detection. As a result, this study provided insights into the design of multifunctional chiral sensing nanoplatforms for enantiomeric detection and other applications.
Collapse
Affiliation(s)
- Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manchang Kou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Kaijun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Juanjuan Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Haixia Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 860-8555, Japan
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 860-8555, Japan
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Han Y, Wang Y, Zhang H, Zhao L, Qiu H. Facile synthesis of yellow-green fluorescent silicon nanoparticles and their application in detection of nitrophenol isomers. Talanta 2023; 257:124347. [PMID: 36801561 DOI: 10.1016/j.talanta.2023.124347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
A clear formation mechanism is essential for the controllable synthesis of nanomaterials with different optical properties, which is also one of the challenges facing the preparation of fluorescent silicon nanomaterials. In this work, a one-step room temperature synthesis method was established to prepare yellow-green fluorescent silicon nanoparticles (SiNPs). The obtained SiNPs exhibited excellent pH stability, salt tolerance, anti-photobleaching ability and biocompatibility. Based on X-ray photoelectron spectroscopy, transmission electron microscopy, ultra high performance liquid chromatography tandem mass spectrometry and other characterization data, the formation mechanism of the SiNPs was proposed, which provided a theoretical basis and important reference for the controllable preparation of SiNPs and other fluorescent nanomaterials. In addition, the obtained SiNPs illustrated excellent sensitivity for nitrophenol isomers, the linear range of o-nitrophenol, m-nitrophenol, p-nitrophenol was 0.05-600 μM, 20-600 μM and 0.01-600 μM under the λex and λem were set as 440 nm and 549 nm, and related limit detection was 16.7 nM, 6.7 μM and 3.3 nM, respectively. The developed SiNP-based sensor achieved satisfactory recoveries in detecting nitrophenol isomers in a river water sample, showing great promise in practical applications.
Collapse
Affiliation(s)
- Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxiang Wang
- Key Laboratory of Sensor and Sensing Technology of Gansu Province, Gansu Academy of Sciences, Lanzhou, 730000, China
| | - Haixia Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Liang Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Lu M, Pan C, Qin X, Wu M. Silicon Nanoparticle-Based Ratiometric Fluorescence Probes for Highly Sensitive and Visual Detection of VB 2. ACS OMEGA 2023; 8:14499-14508. [PMID: 37125092 PMCID: PMC10134237 DOI: 10.1021/acsomega.3c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
In this work, blue fluorescent silicon nanoparticles (SiNPs) were prepared by a simple one-step hydrothermal method using (3-aminopropyl) triethoxy silane (APTES) and eriochrome black T as raw materials. The SiNPs showed favorable water solubility, thermal stability, pH stability, salt tolerance, and photobleaching resistance. At an excitation wavelength of 376 nm, the SiNPs emitted bright blue fluorescence at 460 nm. In the presence of vitamin B2 (VB2), the fluorescence intensity (FL intensity) of the SiNPs at 460 nm decreased obviously, and a new peak appeared at 521 nm. Based on this, a novel ratiometric fluorescence method was established for VB2 detection. There was a good linear relationship between the fluorescence intensity ratio (F 521/F 460) and VB2 concentration from 0.5 to 60 μM with a detection limit of 135 nM. This method was successfully applied to detect VB2 content in the samples of vitamin B2 drugs and beverages. Additionally, a simple paper sensor based on the SiNPs was designed to visualize detection of VB2. With the support of color recognition software on a smartphone, the visual quantitative analysis of VB2 was realized, ranging from 40 to 800 μM.
Collapse
|
6
|
Chi Y, Sun W, Zhou L, Pei S, Zeng H, Cheng Y, Chai S. The preparation of hybrid silicon quantum dots by one-step synthesis for tetracycline detection and antibacterial applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1145-1156. [PMID: 36787098 DOI: 10.1039/d2ay02102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, we prepared three different silicon quantum dots (SiQDs-1, SiQDs-2 and SiQDs-3) by hydrothermal synthesis with rose Bengal as the reducing agent and triacetoxy(methyl)silane and allyloxytrimethylsilane as silicon sources. The as-prepared SiQDs not only exhibited potent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) but also showed specific responses to tetracycline (TC). The minimum inhibitory concentrations (MICs) of SiQDs-1, SiQDs-2 and SiQDs-3 were 0.55 mg mL-1, 0.47 mg mL-1 and 0.39 mg mL-1 against E. coli, respectively, and 0.45 mg mL-1, 0.34 mg mL-1 and 0.34 mg mL-1 against S. aureus, respectively. By examining the morphologies of bacteria and generation of reactive oxygen species (ROS), we speculated that these SiQDs shrink the bacteria and even directly destroy the bacterial structural integrity through the production of singlet oxygen. In addition, the fluorescence quenching effectiveness of SiQDs-3 also showed a strong linear relationship with TC concentration in the range of 0-1.2 μM with a detection limit of 0.318 μM, as a result of the internal filtering effect. Together, SiQDs not only can be a candidate to treat resistant bacterial infections, but also may be applied in practical detection of TC.
Collapse
Affiliation(s)
- Yuting Chi
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Wanlin Sun
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Lijia Zhou
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Shuchen Pei
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Haichun Zeng
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Yunying Cheng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, P. R. China.
| | - Shuiqin Chai
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| |
Collapse
|
7
|
Wang D, Li H, Qiu H, Chen J. Preparation and Evaluation of Silicon Quantum Dots-Bonded Silica Stationary Phase for Reversed-Phase Chromatography. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Pan C, Qin X, Lu M, Ma Q. Water Soluble Silicon Nanoparticles as a Fluorescent Probe for Highly Sensitive Detection of Rutin. ACS OMEGA 2022; 7:28588-28596. [PMID: 35990497 PMCID: PMC9386801 DOI: 10.1021/acsomega.2c03463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 05/17/2023]
Abstract
In this work, water-soluble fluorescent silicon nanoparticles (SiNPs) were prepared by one-pot hydrothermal method using 3-(2-aminoethylamino)propyldimethoxymethylsilane (AEAPDMMS) as a silicon source and amidol as a reducing agent. The prepared SiNPs showed bright green fluorescence, excellent stability against photobleaching, salt tolerance, temperature stability, and good water solubility. Due to the internal filtration effect (IFE), rutin could selectively quench the fluorescence of the SiNPs. Based on such phenomena, a highly sensitive fluorescence method was established for rutin detection. The linear range and limit of detection (LOD) were 0.05-400 μM and 15.2 nM, respectively. This method was successfully applied to detect rutin in the samples of rutin tablets, Sophora japonica, fry Sophora japonica, and S. japonica carbon with satisfactory recovery.
Collapse
|
9
|
Pan C, Wen Q, Ma L, Qin X, Feng S. Green-emitting silicon nanoparticles as a fluorescent probe for highly-sensitive crocin detection and pH sensing. NEW J CHEM 2022. [DOI: 10.1039/d2nj00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel green fluorescent silicon nanoparticles were synthesized via a one-pot hydrothermal method and utilized as a fluorescent probe for highly sensitive and accurate detection of crocin and pH sensing.
Collapse
Affiliation(s)
- Congjie Pan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Qiaoqiao Wen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Longfei Ma
- Henan Police College, Zhengzhou, 450046, China
| | - Xuezhen Qin
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Suxiang Feng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, 450046, Henan, China
| |
Collapse
|