1
|
Zhao Y, Lee S, Long T, Park HL, Lee TW. Natural biomaterials for sustainable flexible neuromorphic devices. Biomaterials 2025; 314:122861. [PMID: 39405825 DOI: 10.1016/j.biomaterials.2024.122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 11/10/2024]
Abstract
Neuromorphic electronics use neural models in hardware to emulate brain-like behavior, and provide power-efficient, extremely compact, and massively-parallel processing, so they are ideal candidates for next-generation information-processing units. However, traditional rigid neuromorphic devices are limited by their unavoidable mechanical and geometrical mismatch with human tissues or organs. At the same time, the rapid development of these electronic devices has generated a large amount of electronic waste, thereby causing severe ecological problems. Natural biomaterials have mechanical properties compatible with biological tissues, and are environmentally benign, ultra-thin, and lightweight, so use of these materials can address these limitations and be used to create next-generation sustainable flexible neuromorphic electronics. Here, we explore the advantages of natural biomaterials in simulating synaptic behavior of sustainable neuromorphic devices. We present the flexibility, biocompatibility, and biodegradability of these neuromorphic devices, and consider the potential applicability of these properties in wearable and implantable bioelectronics. Finally, we consider the challenges of device fabrication and neuromorphic system integration by natural biomaterials, then suggest future research directions.
Collapse
Affiliation(s)
- Yanfei Zhao
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seungbeom Lee
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Tingyu Long
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hea-Lim Park
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Engineering Research, Research Institute of Advanced Materials, Soft Foundry, SN Display Co. Ltd., Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Ai R, Luo W, Liu X, Zhang T, Sang J, Zhang Y. A NiAl-layered double hydroxides memristor with artificial synapse function and its Boolean logic applications. J Chem Phys 2025; 162:044701. [PMID: 39840681 DOI: 10.1063/5.0248908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025] Open
Abstract
In the era of artificial intelligence, there has been a rise in novel computing methods due to the increased demand for rapid and effective data processing. It is of great significance to develop memristor devices capable of emulating the computational neural network of the brain, especially in the realm of artificial intelligence applications. In this work, a memristor based on NiAl-layered double hydroxides is presented with excellent electrical performance, including analog resistive conversion characteristics and the effect of multi-level conductivity modulation. In addition, the device's conductance can be continuously adjusted by varying pulse width, interval, and amplitude. The successful replication of synaptic features has been achieved. In order to implement the functions of "NOT," "AND," and "OR," a logic gate is constructed using two synaptic devices. The confirmation of the potential use of synaptic devices in brain-like computing was demonstrated. In addition, it demonstrates the potential of these devices in supporting computing models beyond von Neumann architecture.
Collapse
Affiliation(s)
- Ruibo Ai
- Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China
| | - Wang Luo
- Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China
| | - Xiaojun Liu
- Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China
| | - Tao Zhang
- Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China
| | - Jiqun Sang
- Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China
| | - Yaolin Zhang
- Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
3
|
Desai TR, Gupta A, Gurnani C. Nanostructured NiS 2-based flexible smart sensors for human respiration monitoring. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230323. [PMID: 39246081 DOI: 10.1098/rsta.2023.0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 09/10/2024]
Abstract
The growing demand for wearable healthcare devices has led to an urgent need for cost-effective, wireless and portable breath monitoring systems. However, it is essential to explore novel nanomaterials that combine state-of-the-art flexible sensors with high performance and sensing capabilities along with scalability and industrially acceptable processing. In this study, we demonstrate a highly efficient NiS2-based flexible capacitive sensor fabricated via a solution-processible route using a novel single-source precursor [Ni{S2P(OPr)2}2]. The developed sensor could precisely detect the human respiration rate and exhibit rapid responsiveness, exceptional sensitivity and selectivity at ambient temperatures, with an ultra-fast response and recovery. The device effectively differentiates the exhaled breath patterns including slow, fast, oral and nasal breath, as well as post-exercise breath rates. Moreover, the sensor shows outstanding bending stability, repeatability, reliable and robust sensing performance and is capable of contactless sensing. The sensor was further employed with a user-friendly wireless interface to facilitate smartphone-enabled real-time breath monitoring systems. This work opens up numerous avenues for cost-effective, sustainable and versatile sensors with potential applications for Internet of Things-based flexible and wearable electronics.This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.
Collapse
Affiliation(s)
- Trishala R Desai
- Department of Chemistry, Ecole Centrale School of Engineering, Mahindra University, Hyderabad, Telangana 500043, India
| | - Aashi Gupta
- Department of Chemistry, Ecole Centrale School of Engineering, Mahindra University, Hyderabad, Telangana 500043, India
| | - Chitra Gurnani
- Department of Chemistry, Ecole Centrale School of Engineering, Mahindra University, Hyderabad, Telangana 500043, India
| |
Collapse
|
4
|
Yan J, Armstrong JPK, Scarpa F, Perriman AW. Hydrogel-Based Artificial Synapses for Sustainable Neuromorphic Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403937. [PMID: 39087845 DOI: 10.1002/adma.202403937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/16/2024] [Indexed: 08/02/2024]
Abstract
Hydrogels find widespread applications in biomedicine because of their outstanding biocompatibility, biodegradability, and tunable material properties. Hydrogels can be chemically functionalized or reinforced to respond to physical or chemical stimulation, which opens up new possibilities in the emerging field of intelligent bioelectronics. Here, the state-of-the-art in functional hydrogel-based transistors and memristors is reviewed as potential artificial synapses. Within these systems, hydrogels can serve as semisolid dielectric electrolytes in transistors and as switching layers in memristors. These synaptic devices with volatile and non-volatile resistive switching show good adaptability to external stimuli for short-term and long-term synaptic memory effects, some of which are integrated into synaptic arrays as artificial neurons; although, there are discrepancies in switching performance and efficacy. By comparing different hydrogels and their respective properties, an outlook is provided on a new range of biocompatible, environment-friendly, and sustainable neuromorphic hardware. How potential energy-efficient information storage and processing can be achieved using artificial neural networks with brain-inspired architecture for neuromorphic computing is described. The development of hydrogel-based artificial synapses can significantly impact the fields of neuromorphic bionics, biometrics, and biosensing.
Collapse
Affiliation(s)
- Jiongyi Yan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - James P K Armstrong
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY, UK
| | - Fabrizio Scarpa
- Bristol Composites Institute, School of Civil, Aerospace and Design Engineering (CADE), University of Bristol, University Walk, Bristol, BS8 1TR, UK
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| |
Collapse
|
5
|
Dong X, Sun H, Lai X, Yang F, Ma T, Zhang X, Chen J, Zhao Y, Chen J, Zhang X, Li Y. MoO x Synaptic Memristor with Programmable Multilevel Conductance for Reliable Neuromorphic Hardware. J Phys Chem Lett 2024; 15:3668-3676. [PMID: 38535723 DOI: 10.1021/acs.jpclett.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Memristor holds great potential for enabling next-generation neuromorphic computing hardware. Controlling the interfacial characteristics of the device is critical for seamlessly integrating and replicating the synaptic dynamic behaviors; however, it is commonly overlooked. Herein, we report the straightforward oxidation of a Mo electrode in air to design MoOx memristors that exhibit nonvolatile ultrafast switching (0.6-0.8 mV/decade, <1 mV/decade) with a high on/off ratio (>104), a long durability (>104 s), a low power consumption (17.9 μW), excellent device-to-device uniformity, ingeniously synaptic behavior, and finely programmable multilevel analog switching. The analyzed physical mechanism of the observed resistive switching behavior might be the conductive filaments formed by the oxygen vacancies. Intriguingly, upon organization into memristor-based crossbar arrays, in addition to simulated multipattern memorization, edge detection on random images can be implemented well by parallel processing of pixels using a 3 × 3 × 2 array of Prewitt filter groups. These are vital functions for neural system hardware in efficient in-memory computing neural systems with massive parallelism beyond a von Neumann architecture.
Collapse
Affiliation(s)
- Xiaofei Dong
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hao Sun
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xinhua Lai
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Fengxia Yang
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tingting Ma
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiang Zhang
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jianbiao Chen
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yun Zhao
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jiangtao Chen
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xuqiang Zhang
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yan Li
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
6
|
Rana AK, Gupta VK, Hart P, Thakur VK. Cellulose-alginate hydrogels and their nanocomposites for water remediation and biomedical applications. ENVIRONMENTAL RESEARCH 2024; 243:117889. [PMID: 38086501 DOI: 10.1016/j.envres.2023.117889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
In the last decade, both cellulose and alginate polysaccharides have been extensively utilized for the synthesis of biocompatible hydrogels because of their alluring characteristics like low cost, biodegradability, hydrophilicity, biodegradability, ease of availability and non-toxicity. The presence of abundant hydrophilic functional groups (like carboxyl and hydroxyl) on the surface of cellulose and alginate or their derivatives makes these materials promising candidates for the preparation of hydrogels with appealing structures and characteristics, leading to growing research in water treatment and biomedical fields. These two polysaccharides are typically blended together to improve hydrogels' desired qualities (mechanical strength, adsorption properties, cellulose/alginate yield). So, keeping in view their extensive applicability, in the present review article, recent advances in the development of cellulose/nanocellulose-alginate-based hydrogels and their relevance in water treatment (adsorption of dyes, heavy metals, etc.) and biomedical field (wound healing, tissue engineering, drug delivery) has been reviewed. Further, impact of other inorganic/organic additives in cellulose/nanocellulose-alginate-based hydrogels properties like contaminants adsorption, drug delivery, tissue engineering, etc., has also been studied. Moreover, the current difficulties and future prospects of nanocellulose-alginate-based hydrogels regarding their water purification and biomedical applications are also discussed at the end.
Collapse
Affiliation(s)
- Ashvinder K Rana
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK
| | - Phil Hart
- Renewable and Sustainable Energy Research Centre, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, 248007, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali, 140413, Punjab, India.
| |
Collapse
|
7
|
Xia Y, Zhang C, Xu Z, Lu S, Cheng X, Wei S, Yuan J, Sun Y, Li Y. Organic iontronic memristors for artificial synapses and bionic neuromorphic computing. NANOSCALE 2024; 16:1471-1489. [PMID: 38180037 DOI: 10.1039/d3nr06057h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
To tackle the current crisis of Moore's law, a sophisticated strategy entails the development of multistable memristors, bionic artificial synapses, logic circuits and brain-inspired neuromorphic computing. In comparison with conventional electronic systems, iontronic memristors offer greater potential for the manifestation of artificial intelligence and brain-machine interaction. Organic iontronic memristive materials (OIMs), which possess an organic backbone and exhibit stoichiometric ionic states, have emerged as pivotal contenders for the realization of high-performance bionic iontronic memristors. In this review, a comprehensive analysis of the progress and prospects of OIMs is presented, encompassing their inherent advantages, diverse types, synthesis methodologies, and wide-ranging applications in memristive devices. Predictably, the field of OIMs, as a rapidly developing research subject, presents an exciting opportunity for the development of highly efficient neuro-iontronic systems in areas such as in-sensor computing devices, artificial synapses, and human perception.
Collapse
Affiliation(s)
- Yang Xia
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Zheng Xu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Shuanglong Lu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinli Cheng
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Shice Wei
- School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Junwei Yuan
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yanqiu Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|