1
|
Zhang S, Wang R, Ji Y, Wang Z, Wu H, Li Y, Zhang S, Luo S, Zhao C, Di J, Wu D. High AIPH-Loaded Infinite coordination Polymers nanoparticles for long-term thermodynamic-chemo cascade tumor synergistic therapy. Int J Pharm 2025; 669:125092. [PMID: 39681220 DOI: 10.1016/j.ijpharm.2024.125092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/23/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
To enhance the tumor thermodynamic-chemo synergistic therapy efficacy, high loading of AIPH-Cu(II)-AQ4N Infinite Coordination Polymer nanoparticles (ICP NPs) were developed, which have high AIPH loading of 44.5 %, thermal stability, pH responsive release all therapeutic agents in the tumor tissue and lower toxicity. A long-term thermodynamic-chemo cascade tumor synergistic therapy strategy was developed with these nanoparticles. It is found ICP NPs exhibit diameters of 115.8 ± 23.7 nm, a substantial fraction of AQ4N and less 40 % of AIPH is released from ICP NPs within 70 h at pH 4.0-5.0, while the release rates of AQ4N and AIPH from ICP NPs over 72 h almost no release in normal tissues. A long-term two-stage therapeutic cascade procedure assisted by electrothermal was carried out, in which sufficient amount of AIPH maintain thermodynamic therapy 10 min at first stage and thermodynamic-chemo synergistic therapy 72 h at second stage. Under this procedure, the resulting nanoparticles demonstrate the powerful comprehensive therapeutic outcomes, small tumor entire eliminated and there is no recurrence for 60 days. Even for large tumors, the tumor inhibition rate is as high as 90 % at 16 days using lower drug dosage. This study offers remarkable potential for tumor cascade synergistic therapy in future.
Collapse
Affiliation(s)
- Shuai Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Rong Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuanyuan Ji
- Department of Geriatric General Surgery, Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xian Jiaotong University, Xi'an 710004, Shaanxi, PR China
| | - Zhidong Wang
- Department of Geriatric General Surgery, Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xian Jiaotong University, Xi'an 710004, Shaanxi, PR China
| | - Hong Wu
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an 710032, PR China
| | - Yan Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shuo Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Siyuan Luo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chenyu Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jingran Di
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
2
|
Kluitmann J, Csáki A, Fritzsche W, Köhler JM. Tuning the Growth Pattern of Triangular Silver Nanoplates from Lateral to Vertical by Secondary Metal Addition. Chemphyschem 2024:e202400823. [PMID: 39703072 DOI: 10.1002/cphc.202400823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/20/2024] [Indexed: 12/21/2024]
Abstract
We are presenting an easy synthetic access to the aqueous synthesis of truncated trigonal silver nanobipyramids with tunable width and height in a facile two step synthesis. We modified a synthesis that employs seed particles with twinning faults on which silver is deposited laterally along the twinning fault, leading to flat particles. The ratio of lateral and vertical growth is adjusted by the co-titration of further noble metal salts at nanomolar concentrations alongside the silver precursor. Thus, besides the edge lengths, the thickness and related aspect ratio of metal bipyramids can be tuned. By tracking the growth of the particles via their localized surface plasmon resonance position during the reaction using optical transmission spectroscopy, we present insights into the modification of the growth mechanism for truncated silver nanobipyramids.
Collapse
Affiliation(s)
- Jonas Kluitmann
- Department of Physical Chemistry and Microreaction Technology, Institute for Chemistry and Biotechnology, TU Ilmenau, Weimarer Straße 32, 98693, Ilmenau, Germany
| | - Andrea Csáki
- Nanobiophotonics Department, Molecular Plasmonics Group, Leibniz IPHT Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Wolfgang Fritzsche
- Nanobiophotonics Department, Molecular Plasmonics Group, Leibniz IPHT Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Johann Michael Köhler
- Department of Physical Chemistry and Microreaction Technology, Institute for Chemistry and Biotechnology, TU Ilmenau, Weimarer Straße 32, 98693, Ilmenau, Germany
| |
Collapse
|
3
|
Yalamandala BN, Moorthy T, Liu ZH, Huynh TMH, Iao HM, Pan WC, Wang KL, Chiang CS, Chiang WH, Liao LD, Liu YC, Hu SH. A Self-Cascading Catalytic Therapy and Antigen Capture Scaffold-Mediated T Cells Augments for Postoperative Brain Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406178. [PMID: 39676476 DOI: 10.1002/smll.202406178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/19/2024] [Indexed: 12/17/2024]
Abstract
The recruitment of T lymphocytes holds great potential for suppressing the most aggressive glioblastoma (GBM) recurrence with immunotherapy. However, the phenomenon of immune privilege and the generally low immunogenicity of vaccines often reduce the presence of lymphocytes within brain tumors, especially in brain tumor recurrence clusters. In this study, an implantable self-cascading catalytic therapy and antigen capture scaffold (CAS) that can boost catalytic therapy efficiency at post-surgery brain tumor and capture the antigens via urethane-polyethylene glycol-polypropylene glycol (PU-EO-PO) segments are developed for postoperative brain immunotherapy. The CAS consists of 3D-printed elastomers modified with iron (Fe2+) metal-organic frameworks (MOFs, MIL88) and acts as a programmed peroxide mimic in cancer cells to initiate the Fenton reaction and sustain ROS production. With the assistance of chloroquine (CQ), autophagy is inhibited through lysosome deacidification, which interrupts the self-defense mechanism, further enhances cytotoxicity, and releases antigens. Then, CAS containing PU-EO-PO groups acts as an antigen depot to detain autologous tumor-associated antigens to dendritic cells maturation and T cell augments for sustained immune stimulation. CAS enhanced the immune response to postoperative brain tumors and improved survival through brain immunotherapy.
Collapse
Affiliation(s)
- Bhanu Nirosha Yalamandala
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Thrinayan Moorthy
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
- Chang Gung University School of Medicine, Taoyuan, 33305, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Thi My Hue Huynh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hoi Man Iao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Wan-Chi Pan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Kang-Li Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Yu-Chen Liu
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, 565-0871, Japan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
4
|
Ghaffarlou M, Rashidzadeh H, Mohammadi A, Mousazadeh N, Barsbay M, Sharafi A, Gharbavi M, Danafar H, Javani S. Photothermal and radiotherapy with alginate-coated gold nanoparticles for breast cancer treatment. Sci Rep 2024; 14:13299. [PMID: 38858410 PMCID: PMC11164878 DOI: 10.1038/s41598-024-60396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/23/2024] [Indexed: 06/12/2024] Open
Abstract
Radiation therapy and phototherapy are commonly used cancer treatments that offer advantages such as a low risk of adverse effects and the ability to target cancer cells while sparing healthy tissue. A promising strategy for cancer treatment involves using nanoparticles (NPs) in combination with radiation and photothermal therapy to target cancer cells and improve treatment efficacy. The synthesis of gold NPs (AuNPs) for use in biomedical applications has traditionally involved toxic reducing agents. Here we harnessed dopamine (DA)-conjugated alginate (Alg) for the facile and green synthesis of Au NPs (Au@Alg-DA NPs). Alg-DA conjugate reduced Au ions, simultaneously stabilized the resulting AuNPs, and prevented aggregation, resulting in particles with a narrow size distribution and improved stability. Injectable Au@Alg-DA NPs significantly promoted ROS generation in 4T1 breast cancer cells when exposed to X-rays. In addition, their administration raised the temperature under a light excitation of 808 nm, thus helping to destroy cancer cells more effectively. Importantly, no substantial cytotoxicity was detected in our Au@Alg-DA NPs. Taken together, our work provides a promising route to obtain an injectable combined radio enhancer and photothermally active nanosystem for further potential clinic translation.
Collapse
Affiliation(s)
| | - Hamid Rashidzadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Mohammadi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Navid Mousazadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Murat Barsbay
- Department of Chemistry, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmoud Gharbavi
- Nanotechnology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Pain Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Siamak Javani
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
5
|
Kim K, Park MH. Advancing Cancer Treatment: Enhanced Combination Therapy through Functionalized Porous Nanoparticles. Biomedicines 2024; 12:326. [PMID: 38397928 PMCID: PMC10887220 DOI: 10.3390/biomedicines12020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer remains a major global health challenge, necessitating the development of innovative treatment strategies. This review focuses on the functionalization of porous nanoparticles for combination therapy, a promising approach to enhance cancer treatment efficacy while mitigating the limitations associated with conventional methods. Combination therapy, integrating multiple treatment modalities such as chemotherapy, phototherapy, immunotherapy, and others, has emerged as an effective strategy to address the shortcomings of individual treatments. The unique properties of mesoporous silica nanoparticles (MSN) and other porous materials, like nanoparticles coated with mesoporous silica (NP@MS), metal-organic frameworks (MOF), mesoporous platinum nanoparticles (mesoPt), and carbon dots (CDs), are being explored for drug solubility, bioavailability, targeted delivery, and controlled drug release. Recent advancements in the functionalization of mesoporous nanoparticles with ligands, biomaterials, and polymers are reviewed here, highlighting their role in enhancing the efficacy of combination therapy. Various research has demonstrated the effectiveness of these nanoparticles in co-delivering drugs and photosensitizers, achieving targeted delivery, and responding to multiple stimuli for controlled drug release. This review introduces the synthesis and functionalization methods of these porous nanoparticles, along with their applications in combination therapy.
Collapse
Affiliation(s)
- Kibeom Kim
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea;
| | - Myoung-Hwan Park
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea;
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
6
|
Di Y, Deng R, Liu Z, Mao Y, Gao Y, Zhao Q, Wang S. Optimized strategies of ROS-based nanodynamic therapies for tumor theranostics. Biomaterials 2023; 303:122391. [PMID: 37995457 DOI: 10.1016/j.biomaterials.2023.122391] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in regulating the metabolism of tumor growth, metastasis, death and other biological processes. ROS-based nanodynamic therapies (NDTs) are becoming attractive due to non-invasive, low side effects and tumor-specific advantages. NDTs have rapidly developed into numerous branches, such as photodynamic therapy, chemodynamic therapy, sonodynamic therapy and so on. However, the complexity of the tumor microenvironment and the limitations of existing sensitizers have greatly restricted the therapeutic effects of NDTs, which heavily rely on ROS levels. To address the limitations of NDTs, various strategies have been developed to increase ROS yield, which is an urgent aspect for the positive development of NDTs. In this review, the nanodynamic potentiation strategies in terms of unique properties and universalities of NDTs are comprehensively outlined. We mainly summarize the current dilemmas faced by each NDT and the respective solutions. Meanwhile, the NDTs universalities-based potentiation strategies and NDTs-based combined treatments are elaborated. Finally, we conclude with a discussion of the key issues and challenges faced in the development and clinical transformation of NDTs.
Collapse
Affiliation(s)
- Yifan Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Ruizhu Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yikun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|