1
|
Kim KR, Kim J, Cho S, Ahn DR. Human β-Defensin 23 as a Carrier for In Vitro and In Vivo Delivery of mRNA. Pharmaceutics 2023; 15:2477. [PMID: 37896237 PMCID: PMC10610245 DOI: 10.3390/pharmaceutics15102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
The successful application of mRNA therapeutics hinges on the effective intracellular delivery of mRNA both in vitro and in vivo. However, this remains a formidable challenge due to the polyanionic nature, longitudinal shape, and low nuclease resistance of mRNA. In this study, we introduce a novel mRNA delivery platform utilizing a human β-defensin peptide, hBD23. The positive charge of hBD23 allows it to form nanocomplexes with mRNA, facilitating cellular uptake and providing protection against serum nucleases. When optimized for peptide-to-mRNA (N/P) ratios, these hBD23/mRNA complexes demonstrated efficient cellular delivery and subsequent protein expression both in vitro and in vivo. Importantly, as hBD23 is human derived, the complexes exhibited minimal cytotoxicity and immunogenicity. Given its high biocompatibility and delivery efficiency, hBD23 represents a promising platform for the in vitro and in vivo delivery of mRNA.
Collapse
Affiliation(s)
- Kyoung-Ran Kim
- Chemical and Biological Integrative Research Center, Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; (K.-R.K.); (J.K.)
| | - Junghyun Kim
- Chemical and Biological Integrative Research Center, Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; (K.-R.K.); (J.K.)
| | - Seunghye Cho
- Division of Biomedical Science and Technology, KIST School, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea;
| | - Dae-Ro Ahn
- Chemical and Biological Integrative Research Center, Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; (K.-R.K.); (J.K.)
- Division of Biomedical Science and Technology, KIST School, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea;
| |
Collapse
|
2
|
Kim J, Jeon S, Kang SJ, Kim KR, Thai HBD, Lee S, Kim S, Lee YS, Ahn DR. Lung-targeted delivery of TGF-β antisense oligonucleotides to treat pulmonary fibrosis. J Control Release 2020; 322:108-121. [PMID: 32179111 DOI: 10.1016/j.jconrel.2020.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 01/19/2023]
Abstract
Pulmonary fibrosis is a serious respiratory disease, with limited therapeutic options. Since TGF-β is a critical factor in the fibrotic process, downregulation of this cytokine has been considered a potential approach for disease treatment. Herein, we designed a new lung-targeted delivery technology based on the complexation of polymeric antisense oligonucleotides (pASO) and dimeric human β-defensin 23 (DhBD23). Antisense oligonucleotides targeting TGF-β mRNA were polymerized by rolling circle amplification and complexed with DhBD23. After complexation with DhBD23, pASO showed improved serum stability and enhanced uptake by fibroblasts in vitro and lung-specific accumulation upon intravenous injection in vivo. The pASO/DhBD23 complex delivered into the lung downregulated target mRNA, and subsequently alleviated lung fibrosis in mice, as demonstrated by western blotting, quantitative reverse-transcriptase PCR (qRT-PCR), immunohistochemistry, and immunofluorescence imaging. Moreover, as the complex was prepared only with highly biocompatible materials such as DNA and human-derived peptides, no systemic toxicity was observed in major organs. Therefore, the pASO/DhBD23 complex is a promising gene therapy platform with lung-targeting ability to treat various pulmonary diseases, including pulmonary fibrosis, with low side effects.
Collapse
Affiliation(s)
- Junghyun Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Seulgi Jeon
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Ewhayeodae-gil 52, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Seong Jae Kang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kyoung-Ran Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hien Bao Dieu Thai
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Seokyung Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sehoon Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Ewhayeodae-gil 52, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| | - Dae-Ro Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| |
Collapse
|