1
|
Visan AI, Negut I. Environmental and Wastewater Treatment Applications of Stimulus-Responsive Hydrogels. Gels 2025; 11:72. [PMID: 39852043 PMCID: PMC11765053 DOI: 10.3390/gels11010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Stimulus-responsive hydrogels have emerged as versatile materials for environmental and wastewater treatment applications due to their ability to adapt to changing environmental conditions. This review highlights recent advances in the design, synthesis, and functionalization of such hydrogels, focusing on their environmental applications. Various synthesis techniques, including radical polymerization, grafting, and copolymerization, enable the development of hydrogels with tailored properties such as enhanced adsorption capacity, selectivity, and reusability. The incorporation of nanoparticles and bio-based polymers further improves their structural integrity and pollutant removal efficiency. Key mechanisms such as adsorption, ion exchange, and photodegradation are discussed, emphasizing their roles in removing heavy metals, dyes, and organic pollutants from wastewater. Additionally, this review presents the potential of hydrogels for oil-water separation, pathogen control, and future sustainability through integration into circular economy frameworks. The adaptability, cost-effectiveness, and eco-friendliness of these hydrogels make them promising candidates for large-scale environmental remediation.
Collapse
Affiliation(s)
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania;
| |
Collapse
|
2
|
Al-Gethami W, Qamar MA, Shariq M, Alaghaz ANMA, Farhan A, Areshi AA, Alnasir MH. Emerging environmentally friendly bio-based nanocomposites for the efficient removal of dyes and micropollutants from wastewater by adsorption: a comprehensive review. RSC Adv 2024; 14:2804-2834. [PMID: 38234871 PMCID: PMC10792434 DOI: 10.1039/d3ra06501d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Water scarcity will worsen due to population growth, urbanization, and climate change. Addressing this issue requires developing energy-efficient and cost-effective water purification technologies. One approach is to use biomass to make bio-based materials (BBMs) with valuable attributes. This aligns with the goal of environmental conservation and waste management. Furthermore, the use of biomass is advantageous because it is readily available, economical, and has minimal secondary environmental impact. Biomass materials are ideal for water purification because they are abundant and contain important functional groups like hydroxyl, carboxyl, and amino groups. Functional groups are important for modifying and absorbing contaminants in water. Single-sourced biomass has limitations such as weak mechanical strength, limited adsorption capacity, and chemical instability. Investing in research and development is crucial for the development of efficient methods to produce BBMs and establish suitable water purification application models. This review covers BBM production, modification, functionalization, and their applications in wastewater treatment. These applications include oil-water separation, membrane filtration, micropollutant removal, and organic pollutant elimination. This review explores the production processes and properties of BBMs from biopolymers, highlighting their potential for water treatment applications. Furthermore, this review discusses the future prospects and challenges of developing BBMs for water treatment and usage. Finally, this review highlights the importance of BBMs in solving water purification challenges and encourages innovative solutions in this field.
Collapse
Affiliation(s)
- Wafa Al-Gethami
- Chemistry Department, Faculty of Science, Taif University Al-Hawiah, PO Box 11099 Taif City Saudi Arabia
| | - Muhammad Azam Qamar
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Mohammad Shariq
- Department of Physics, College of Science, Jazan University Jazan 45142 Saudi Arabia
| | | | - Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38040 Pakistan
| | - Ashwaq A Areshi
- Samtah General Hospital, Ministry of Health Jazan 86735 Saudi Arabia
| | - M Hisham Alnasir
- Department of Physics, RIPHAH International University Islamabad 44000 Pakistan
| |
Collapse
|
3
|
Advances in Asymmetric Wettable Janus Materials for Oil–Water Separation. Molecules 2022; 27:molecules27217470. [DOI: 10.3390/molecules27217470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The frequent occurrence of crude oil spills and the indiscriminate discharge of oily wastewater have caused serious environmental pollution. The existing separation methods have some defects and are not suitable for complex oil–water emulsions. Therefore, the efficient separation of complex oil–water emulsions has been of great interest to researchers. Asymmetric wettable Janus materials, which can efficiently separate complex oil–water emulsions, have attracted widespread attention. This comprehensive review systematically summarizes the research progress of asymmetric wettable Janus materials for oil–water separation in the last decade, and introduces, in detail, the preparation methods of them. Specifically, the latest research results of two-dimensional Janus materials, three-dimensional Janus materials, smart responsive Janus materials, and environmentally friendly Janus materials for oil–water separation are elaborated. Finally, ongoing challenges and outlook for the future research of asymmetric wettable Janus materials are presented.
Collapse
|
4
|
Approaches to Preceramic Polymer Fiber Fabrication and On-Demand Applications. MATERIALS 2022; 15:ma15134546. [PMID: 35806670 PMCID: PMC9267150 DOI: 10.3390/ma15134546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022]
Abstract
The demand for lightweight, high-modulus, and temperature-resistant materials for aerospace and other high-temperature applications has contributed to the development of ceramic fibers that exhibit most of the favorable properties of monolithic ceramics. This review demonstrates preceramic-based polymer fiber spinning and fiber classifications. We discuss different types of fiber spinning and the advantages of each. Tuning the preceramic polymer chemical properties, molar mass, functional chemistry influences, and incorporation with fillers are thoroughly investigated. Further, we present the applications of preceramic-based polymer fibers in different fields including aerospace, biomedical, and sensor applications. This concise review summarizes recent developments in preceramic fiber chemistry and essential applications.
Collapse
|
5
|
Keyvan Rad J, Balzade Z, Mahdavian AR. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Wang FP, Li B, Sun MY, Wahid F, Zhang HM, Wang SJ, Xie YY, Jia SR, Zhong C. In situ regulation of bacterial cellulose networks by starch from different sources or amylose/amylopectin content during fermentation. Int J Biol Macromol 2022; 195:59-66. [PMID: 34871660 DOI: 10.1016/j.ijbiomac.2021.11.198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 11/05/2022]
Abstract
Bacterial cellulose (BC) is a promising biopolymer, but its three-dimensional structure needs to be controllable to be used in multiple fields. BC has some advantages over other types of cellulose, not only in terms of purity and properties but also in terms of modification (in situ modification) during the synthesis process. Here, starches from different sources or with amylose/amylopectin content were added to the growth medium to regulate the structural properties of BC in-situ. The obtained BC membranes were further modified by superhydrophobic treatment for oil-water separation. Starches alter the viscosity of the medium, thus affecting bacterial motility and cellulose synthesis, and adhere to the microfibers, limiting their further polymerization and ultimately altering the membrane porosity, pore size, and mechanical properties perpendicular to the BC fibril layer direction. The average pore diameter of the BC/PS membrane increased by 1.94 times compared to the initial BC membrane. The chemically modified BC/PS membrane exhibited super-hydrophobicity (water contact angle 167°), high oil-water separation flux (dichloromethane, 23,205 Lm-2 h-1 MPa-1), high separation efficiency (>97%). The study provides a foundation for developing methods to regulate the network structure of BC and broaden its application.
Collapse
Affiliation(s)
- Feng-Ping Wang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China
| | - Bo Li
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China
| | - Mei-Yan Sun
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China
| | - Fazli Wahid
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China
| | | | - Shu-Jun Wang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; School of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Yan-Yan Xie
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China
| | - Shi-Ru Jia
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China.
| |
Collapse
|
7
|
Sui W, Hu H, Lin Y, Yi P, Miao L, Zhang H, He H, Li G. Mussel-inspired pH-responsive copper foam with switchable wettability for bidirectional oil-water separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Amphiphilic super-wetting membranes from direct immobilization of nanoparticles by in-situ polymerization and ionic cross-linking during phase inversion. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Ding W, Wang C, Li S, Cheng B, Gan J, Luo Q. Phenolphthalein-based Tetraarylethylene Derivatives Responding to UV/Vis Light and Acid/Base. CHEM LETT 2021. [DOI: 10.1246/cl.210329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wei Ding
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Chun Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Siying Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Bowen Cheng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Jiaan Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Qianfu Luo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
10
|
Zhang W, Wang J, Han X, Li L, Liu E, Lu C. Carbon Nanotubes and Polydopamine Modified Poly(dimethylsiloxane) Sponges for Efficient Oil-Water Separation. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2431. [PMID: 34067132 PMCID: PMC8125137 DOI: 10.3390/ma14092431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
In this paper, effective separation of oil from both immiscible oil-water mixtures and oil-in-water (O/W) emulsions are achieved by using poly(dimethylsiloxane)-based (PDMS-based) composite sponges. A modified hard template method using citric acid monohydrate as the hard template and dissolving it in ethanol is proposed to prepare PDMS sponge composited with carbon nanotubes (CNTs) both in the matrix and the surface. The introduction of CNTs endows the composite sponge with enhanced comprehensive properties including hydrophobicity, absorption capacity, and mechanical strength than the pure PDMS. We demonstrate the successful application of CNT-PDMS composite in efficient removal of oil from immiscible oil-water mixtures within not only a bath absorption, but also continuous separation for both static and turbulent flow conditions. This notable characteristic of the CNT-PDMS sponge enables it as a potential candidate for large-scale industrial oil-water separation. Furthermore, a polydopamine (PDA) modified CNT-PDMS is developed here, which firstly realizes the separation of O/W emulsion without continuous squeezing of the sponge. The combined superhydrophilic and superoleophilic property of PDA/CNT-PDMS is assumed to be critical in the spontaneously demulsification process.
Collapse
Affiliation(s)
- Wen Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (W.Z.); (L.L.); (E.L.)
| | - Juanjuan Wang
- Tianjin Key Laboratory of Building Green Functional Materials, School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China;
| | - Xue Han
- Tianjin Key Laboratory of Building Green Functional Materials, School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China;
| | - Lele Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (W.Z.); (L.L.); (E.L.)
| | - Enping Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (W.Z.); (L.L.); (E.L.)
| | - Conghua Lu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (W.Z.); (L.L.); (E.L.)
- Tianjin Key Laboratory of Building Green Functional Materials, School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China;
| |
Collapse
|
11
|
Kollarigowda RH, Braun PV. Direct and Divergent Solid-Phase Synthesis of Azobenzene and Spiropyran Derivatives. J Org Chem 2021; 86:4391-4397. [PMID: 33656880 DOI: 10.1021/acs.joc.0c02375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we report a solid-phase approach to synthesize azobenzene and spiropyran derivatives. The divergent synthesis process requires no purification steps to obtain the desired product with a 28-55% yield, depending on the specific compound. For the spiropyran compounds, solid-phase resin cleavage is performed under mild conditions to minimize spiropyran ring opening. The solid-phase method enables the synthesis of a library of azobenzene and spiropyran derivatives without the need to develop purification strategies for each derivative.
Collapse
Affiliation(s)
- Ravichandran H Kollarigowda
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Paul V Braun
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Mruthunjayappa MH, Sharma VT, Dharmalingam K, Sanna Kotrappanavar N, Mondal D. Engineering a Biopolymer-Based Ultrafast Permeable Aerogel Membrane Decorated with Task-Specific Fe-Al Nanocomposites for Robust Water Purification. ACS APPLIED BIO MATERIALS 2020; 3:5233-5243. [PMID: 35021698 DOI: 10.1021/acsabm.0c00630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present work demonstrates an innovative strategy for robust water purification using an engineered aerogel membrane fabricated from biopolymers and task-specific Fe-Al-based nanocomposites. The as-prepared ethylenediaminetetraacetate dianhydride cross-linked chitosan- and agarose (7:3 weight ratio)-based aerogel membrane decorated with α-FeOOH- and γ-AlOOH-based nanocomposites was characterized using various analytical tools, which suggested formation of a highly stable network interconnected through covalent and electrostatic interactions. The optimized bionanocomposite-based aerogel (BNC-AG-0.1) membrane showed macroporous and partial unidirectional short-range channels with an ultralow density of 0.021 g·m-2, a high swelling ratio of 1974%, and a remarkable pure water flux of 19,228 L·m-2·h-1 (>6-fold higher flux compared to the reported aerogel membranes). The aerogel membranes were successfully utilized for purification of diverse pollutants such as dyes, emerging pollutants (EPs), arsenate, and fluoride in a continuous flow method under gravitational force. The BNC-AG-0.1 membrane exhibits high rejection (95-98.6%) for both cationic and anionic dyes with a flux rate of 1150-1375 L·m-2·h-1 and a rejection of 89-92% for EPs with a flux rate of 1098-1165 L·m-2·h-1. Moreover, the BNC-AG-0.1 membrane showed a qmax of 102.45 mg·g-1 (at pH 6.5) for As(V) with >93% rejection at a flow rate of 1000 L·m-2·h-1. Furthermore, the aerogel membrane showed an excellent removal efficiency (92%) of arsenic up to the 10th cycle and hence demonstrated as a potential adsorption-based membrane for arsenic-free potable water. On the other hand, the BNC-AG-0.1 membrane showed a qmax of 81.56 mg·g-1 (at pH 6.5) for F- removal with >99% rejection at a flow rate of 250 L·m-2·h-1. When applied for real-water purification, approximately 4734 L of safe drinking water (the F- concentration is less than the WHO permissible limit) per square meter of the aerogel membrane can be obtained with a flux rate of 250 L·m-2·h-1. Overall, the prepared aerogel membrane showed robust removal of a variety of contaminants with ultrafast water permeation and established excellent recyclability.
Collapse
Affiliation(s)
| | - Vibha T Sharma
- Centre for Nano & Material Science, JAIN (Deemed to be University), Jain Global Campus, Bangalore 562112, India
| | - Kalpana Dharmalingam
- Central Electrochemical Research Institute-Madras Unit, CSIR Madras Complex, Taramani, Chennai 600 113, India
| | - Nataraj Sanna Kotrappanavar
- Centre for Nano & Material Science, JAIN (Deemed to be University), Jain Global Campus, Bangalore 562112, India.,IMDEA Water Institute, Parque Científico Tecnológico de la Universidad de Alcalá, Avenida Punto Com, 2, Alcalá de Henares, 28805 Madrid, Spain
| | - Dibyendu Mondal
- Centre for Nano & Material Science, JAIN (Deemed to be University), Jain Global Campus, Bangalore 562112, India
| |
Collapse
|
13
|
Qu R, Li X, Liu Y, Zhai H, Zhao S, Feng L, Wei Y. Superwetting Patterned Membranes with an Anisotropy/Isotropy Transition: Towards Signal Expression and Liquid Permeation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ruixiang Qu
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiangyu Li
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yanan Liu
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Huajun Zhai
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Shuaiheng Zhao
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Lin Feng
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yen Wei
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
14
|
Zhang N, Qi Y, Zhang Y, Luo J, Cui P, Jiang W. A Review on Oil/Water Mixture Separation Material. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02524] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ning Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Yunfei Qi
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Yana Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| | - Jialiang Luo
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| | - Ping Cui
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Wei Jiang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| |
Collapse
|
15
|
Qu R, Li X, Liu Y, Zhai H, Zhao S, Feng L, Wei Y. Superwetting Patterned Membranes with an Anisotropy/Isotropy Transition: Towards Signal Expression and Liquid Permeation. Angew Chem Int Ed Engl 2020; 59:13437-13443. [PMID: 32368822 DOI: 10.1002/anie.202005030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 01/02/2023]
Abstract
Superwetting membranes with responsive properties have attracted heightened attention because of their fine-tunable surface wettability. However, their functional diversity is severely limited by the "black-or-white" wettability transition. Herein, we describe a coating strategy to fabricate multifunctional responsive superwetting membranes with SiO2 /octadecylamine patterns. The adjustable patterns in the responsive region are the key factor for functional diversity. Specifically, the coated part of the membrane displayed a superhydrophobicity/superhydrophilicity transition at different pH values, whereas the uncoated part exhibited invariant superhydrophilicity. On the basis of this anisotropy/isotropy transition, the membranes can serve as either responsive permeable membranes or signal-expression membranes, thus enabling the responsive separation and permeation of liquids with satisfactory separation efficiency (>99.90 %) and flux (ca. 60 L m-2 h), as well as real-time liquid signal expression with alterable signals.
Collapse
Affiliation(s)
- Ruixiang Qu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiangyu Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yanan Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huajun Zhai
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuaiheng Zhao
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lin Feng
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
16
|
Zhao X, Wang J, Huang J, Li L, Liu E, Zhao J, Li Q, Zhang X, Lu C. Path-Guided Hierarchical Surface Relief Gratings on Azo-Films Induced by Polarized Light Illumination through Surface-Wrinkling Phase Mask. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2837-2846. [PMID: 32151133 DOI: 10.1021/acs.langmuir.0c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface relief gratings (SRGs) with hierarchical microstructures are highly needed owing to their diverse applications in various fields. Here, we introduce surface-wrinkling templates as novel nonlithographic phase masks to direct the generation of hierarchical well-prescribed SRGs on nonconformally contacted azo-films by a simple single-beam illumination. The light-induced SRGs have controlled microstructures including single/double/triple wavelengths and single/double orientations as well as their organizations. These microstructures can be well tailored by the wavelength of the surface-wrinkling phase masks and the polarization direction of incident light relative to the wrinkling patterns in the phase masks. Interestingly, we find that the larger wavelength is induced prior to the smaller ones, offering another new strategy to tailor the microstructures of SRGs through simple manipulation of the illumination duration. In particular, path-guided SRGs with unprecedented well-organized hierarchical microstructures have been available in the case of controlled moving of the light illumination through the surface-wrinkling phase mask. As demonstrated, the obtained hierarchical SRGs with the capability of multiple optical inscription/erasure have great application potentials in fields such as confidential information (or pattern) records and encryption/decryption.
Collapse
Affiliation(s)
- Xiaoxin Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Juanjuan Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, P. R. China
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Jinkai Huang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Lele Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Enping Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Jingxin Zhao
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Qifeng Li
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xin Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Conghua Lu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, P. R. China
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|