1
|
Mao D, Dong Z, Liu X, Li W, Li H, Gu C, Chen G, Zhu X, Yang Y. An Intelligent DNA Nanoreactor for Easy-to-Read In Vivo Tumor Imaging and Precise Therapy. Angew Chem Int Ed Engl 2024; 63:e202311309. [PMID: 38140920 DOI: 10.1002/anie.202311309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Nanomaterial-based in vivo tumor imaging and therapy have attracted extensive attention; however, they suffer from the unintelligent "always ON" or single-parameter responsive signal output, substantial off-target effects, and high cost. Therefore, achieving in vivo easy-to-read tumor imaging and precise therapy in a multi-parameter responsive and intelligent manner remains challenging. Herein, an intelligent DNA nanoreactor (iDNR) was constructed following the "AND" Boolean logic algorithm to address these issues. iDNR-mediated in situ deposition of photothermal substance polydopamine (PDA) can only be satisfied in tumor tissues with abundant membrane protein biomarkers "AND" hydrogen peroxide (H2 O2 ). Therefore, intelligent temperature-based in vivo easy-to-read tumor imaging is realized without expensive instrumentation, and its diagnostic performance matches with that of flow cytometry, and photoacoustic imaging. Moreover, precise photothermal therapy (PTT) of tumors could be achieved via intelligent heating of tumor tissues. The precise PTT of primary tumors in combination with immune checkpoint blockade (ICB) therapy suppresses the growth of distant tumors and inhibits tumor recurrence. Therefore, highly programmable iDNR is a powerful tool for intelligent biomedical applications.
Collapse
Affiliation(s)
- Dongsheng Mao
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, P. R. China
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, P. R. China
| | - Ziliang Dong
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, P. R. China
| | - Xueliang Liu
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, P. R. China
| | - Wenxing Li
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, P. R. China
| | - Hongyi Li
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, P. R. China
| | - Chao Gu
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, P. R. China
| | - Ganghui Chen
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, P. R. China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, P. R. China
| |
Collapse
|
2
|
Zhang R, Cao S, Yang S, Tang X, Sun P, Mao Y, Chen G, Weng W, Zhu X. Metabolic Glycoengineering-Programmed Nondestructive Capture of Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59236-59245. [PMID: 38096273 DOI: 10.1021/acsami.3c15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Circulating tumor cells (CTCs) are the "seeds" for malignant tumor metastasis, and they serve as an ideal target for minimally invasive tumor diagnosis. Abnormal glycolysis in tumor cells, characterized by glycometabolism disorder, has been reported as a universal phenomenon observed in various types of tumors. This provides a potential powerful tool for universal CTC capture. However, to the best of our knowledge, no metabolic glycoengineering-based CTC capture strategies have been reported. Here, we proposed a nondestructive CTC capture method based on metabolic glycoengineering and a nanotechnology-based proximity effect, allowing for highly specific, sensitive, and universal CTC capture. To achieve this goal, cells are first labeled with DNA tags through metabolic glycoengineering and then captured through a DNA tetrahedra-functionalized dual-tentacle magnetic nanodevice. Due to the difference in metabolic performance, only tumor cells are labeled with more densely packed DNA tags and captured through enhanced intermolecular interaction mediated by the proximity effect. In summary, we have constructed a versatile platform for nondestructive CTC capture, offering a novel perspective for the application of CTC liquid biopsy in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Runchi Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Siyu Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Shiqi Yang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaochen Tang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Pei Sun
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yichun Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wenhao Weng
- Department of Clinical Laboratory Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| |
Collapse
|
3
|
Luo Z, Zhang S, Feng Q, Zhou Y, Jin L, Sun J, Chen Y, Jia K, Chu L. Target recognition initiated self-dissociation based DNA nanomachine for sensitive and accurate MicroRNA (miRNA) detection. Anal Biochem 2023; 662:115014. [PMID: 36493863 DOI: 10.1016/j.ab.2022.115014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
As a valuable biomarker for various tumor, sensitive and reliable quantitative determination of microRNA (miRNA) is crucial for both disease diagnosis and cancer treatment. Herein, we depict a novel simple and sensitive miRNA detection approach by exploiting an elegantly designed target recognition initiated self-dissociation based DNA nanomachine. In this nanomachine, target recognition assists the formation of active DNAzyme secondary conformation, and the active DNAzyme generates a nicking site in H probe, initiating the self-assembly of H probe. With the reflexed sequences as primer, dual signal recycles are formed under the cooperation of DNA polymerase and Nb.BbvCI. Eventually, the method exhibits a high sensitivity with the limit of detection as low as 12 fM. In addition, the method is also demonstrated with a high selectivity that can distinguish one mismatched base pair. We believe the established approach can be a robust tool for the early-diagnosis of a variety of cancers and also in anticancer drug development.
Collapse
Affiliation(s)
- Zhigang Luo
- Department of Experimental Medicine, Third People's Hospital of Sichuan Province, No. 121, Jinglong Road, Longquanyi District, Chengdu, Sichuan, 610100, China.
| | - Shuang Zhang
- Department of Nuclear Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China.
| | - Qing Feng
- Department of Experimental Medicine, Third People's Hospital of Sichuan Province, No. 121, Jinglong Road, Longquanyi District, Chengdu, Sichuan, 610100, China
| | - Ya Zhou
- Department of Experimental Medicine, Third People's Hospital of Sichuan Province, No. 121, Jinglong Road, Longquanyi District, Chengdu, Sichuan, 610100, China
| | - Lian Jin
- Department of Experimental Medicine, Third People's Hospital of Sichuan Province, No. 121, Jinglong Road, Longquanyi District, Chengdu, Sichuan, 610100, China
| | - Jinqiu Sun
- Department of Experimental Medicine, Third People's Hospital of Sichuan Province, No. 121, Jinglong Road, Longquanyi District, Chengdu, Sichuan, 610100, China
| | - Yunfeng Chen
- Department of Experimental Medicine, Third People's Hospital of Sichuan Province, No. 121, Jinglong Road, Longquanyi District, Chengdu, Sichuan, 610100, China
| | - Kun Jia
- Department of Experimental Medicine, Third People's Hospital of Sichuan Province, No. 121, Jinglong Road, Longquanyi District, Chengdu, Sichuan, 610100, China
| | - Lei Chu
- Department of Dermatology, People's Hospital of Jianyang City, No.180 Yiyuan Roud, Jianyang, Chengdu, Sichuan, 641400, China.
| |
Collapse
|
4
|
Sheng A, Yang J, Cheng L, Zhang J. Boronic Ester-Mediated Dual Recognition Coupled with a CRISPR/Cas12a System for Lipopolysaccharide Analysis. Anal Chem 2022; 94:12523-12530. [PMID: 36040369 DOI: 10.1021/acs.analchem.2c02776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, boronic ester-mediated dual recognition has been coupled with a CRISPR/Cas12a system; thus, a new method for highly specific and sensitive detection of lipopolysaccharide (LPS) is proposed via the simultaneous recognition of boronic acid and an LPS aptamer (LPSA) as well as signal amplification by CRISPR/Cas12a. Specifically, boronic acid-modified magnetic beads (MB@APBA) and aptamers are employed for the simultaneous dual recognition of LPS, while polymerase isotherm amplification is further utilized to induce LPS cycling and form a double strand, which can activate the CRISPR/Cas12a system so as to amplify the signal. Consequently, a linear detection range can be obtained from 0.05 to 5000 ng/mL, with the lowest detection limit of 44.86 pg/mL. The capturing of MB@APBA on 1, 2- and 1, 3-cis dihydroxyl-containing substances can not only eliminate the interference of other molecules but also enhance the highly specific recognition of LPSA on LPS. Moreover, MB@APBA can be reused by adjusting the pH value of the reaction system. The method can be developed as a universal platform for the analytical detection of other carbohydrates.
Collapse
Affiliation(s)
- Anzhi Sheng
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China.,Research Center of Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Jingyi Yang
- Research Center of Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Liangfen Cheng
- Research Center of Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Juan Zhang
- Research Center of Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
5
|
Wu Y, Ji D, Dai C, Kong D, Chen Y, Wang L, Guo M, Liu Y, Wei D. Triple-Probe DNA Framework-Based Transistor for SARS-CoV-2 10-in-1 Pooled Testing. NANO LETTERS 2022; 22:3307-3316. [PMID: 35426688 PMCID: PMC9017248 DOI: 10.1021/acs.nanolett.2c00415] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/10/2022] [Indexed: 05/03/2023]
Abstract
Accurate and population-scale screening technology is crucial in the control and prevention of COVID-19, such as pooled testing with high overall testing efficiency. Nevertheless, pooled testing faces challenges in sensitivity and specificity due to diluted targets and increased contaminations. Here, we develop a graphene field-effect transistor sensor modified with triple-probe tetrahedral DNA framework (TDF) dimers for 10-in-1 pooled testing of SARS-CoV-2 RNA. The synergy effect of triple probes as well as the special nanostructure achieve a higher binding affinity, faster response, and better specificity. The detectable concentration reaches 0.025-0.05 copy μL-1 in unamplified samples, lower than that of the reverse transcript-polymerase chain reaction. Without a requirement of nucleic-acid amplification, the sensors identify all of the 14 positive cases in 30 nasopharyngeal swabs within an average diagnosis time of 74 s. Unamplified 10-in-1 pooled testing enabled by the triple-probe TDF dimer sensor has great potential in the screening of COVID-19 and other epidemic diseases.
Collapse
Affiliation(s)
- Yungen Wu
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| | - Daizong Ji
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| | - Changhao Dai
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| | - Derong Kong
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| | - Yiheng Chen
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| | - Liqian Wang
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public
Health Clinical Center, Fudan University, Shanghai 201508,
China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
| | - Dacheng Wei
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| |
Collapse
|
6
|
Sang P, Hu Z, Cheng Y, Yu H, Xie Y, Yao W, Guo Y, Qian H. Nucleic Acid Amplification Techniques in Immunoassay: An Integrated Approach with Hybrid Performance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5783-5797. [PMID: 34009975 DOI: 10.1021/acs.jafc.0c07980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An immunoassay is mostly employed for the direct detection of food contaminants, and a molecular assay for targeting nucleic acids employs amplification techniques for distinguishing genes. The integration of an immunoassay with nucleic acid amplification techniques inherits the direct and rapid performance of an immunoassay and the ultrasensitive merit of a molecular assay. Enthusiastic attention has been attracted in recent years on the utilization of isothermal amplification techniques in an immunoassay, as well as the employment of a lateral flow immunoassay in a molecular assay. Thus, this Review discussed these kinds of approaches from two categories: immuno-nucleic acid amplification (I-NAA) and nucleic acid amplification-immunoassay (NAA-I). The advantages, drawbacks, and future developments were discussed for a comprehensive understanding.
Collapse
Affiliation(s)
- Panting Sang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhigang Hu
- Wuxi Children's Hospital, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials. Talanta 2021; 223:121722. [DOI: 10.1016/j.talanta.2020.121722] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
|