1
|
Kamel MS, Davidson JL, Verma MS. Strategies for Bovine Respiratory Disease (BRD) Diagnosis and Prognosis: A Comprehensive Overview. Animals (Basel) 2024; 14:627. [PMID: 38396598 PMCID: PMC10885951 DOI: 10.3390/ani14040627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Despite significant advances in vaccination strategies and antibiotic therapy, bovine respiratory disease (BRD) continues to be the leading disease affecting the global cattle industry. The etiology of BRD is complex, often involving multiple microbial agents, which lead to intricate interactions between the host immune system and pathogens during various beef production stages. These interactions present environmental, social, and geographical challenges. Accurate diagnosis is essential for effective disease management. Nevertheless, correct identification of BRD cases remains a daunting challenge for animal health technicians in feedlots. In response to current regulations, there is a growing interest in refining clinical diagnoses of BRD to curb the overuse of antimicrobials. This shift marks a pivotal first step toward establishing a structured diagnostic framework for this disease. This review article provides an update on recent developments and future perspectives in clinical diagnostics and prognostic techniques for BRD, assessing their benefits and limitations. The methods discussed include the evaluation of clinical signs and animal behavior, biomarker analysis, molecular diagnostics, ultrasound imaging, and prognostic modeling. While some techniques show promise as standalone diagnostics, it is likely that a multifaceted approach-leveraging a combination of these methods-will yield the most accurate diagnosis of BRD.
Collapse
Affiliation(s)
- Mohamed S. Kamel
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Josiah Levi Davidson
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Mohit S. Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Wang J, Ranjbaran M, Verma MS. Bacteroidales as a fecal contamination indicator in fresh produce industry: A baseline measurement. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119641. [PMID: 38064988 DOI: 10.1016/j.jenvman.2023.119641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
Foodborne outbreaks caused by fecal contamination of fresh produce represent a serious concern to public health and the economy. As the consumption of fresh produce increases, public health officials and organizations have pushed for improvements in food safety procedures and environmental assessments to reduce the risk of contamination. Visual inspections and the establishment of "buffer zones" between animal feeding operations and producing fields are the current best practices for environmental assessments. However, a generalized distance guideline and visual inspections may not be enough to account for all environmental risk variables. Here, we report a baseline measurement surveying the background Bacteroidales concentration, as a quantitative fecal contamination indicator, in California's Salinas Valley. We collected a total of 1632 samples from two romaine lettuce commercial fields at the time of harvesting through two seasons in a year. The quantification of Bacteroidales concentration was performed using qPCR, revealing a notably low concentration (0-2.00 copies/cm2) in the commercial fields. To further enhance the applicability of our findings, we developed a user-friendly method for real-world fecal contamination risk assessment that seamlessly integrates with industry practices. Through the generation of heatmaps that visually illustrate varying risk levels across fields, this approach can identify site-specific risks and offer fresh produce stakeholders a more comprehensive understanding of their land. We anticipate this work can encourage the use of Bacteroidales in the fresh produce industry to monitor fecal contamination and prevent future foodborne outbreaks.
Collapse
Affiliation(s)
- Jiangshan Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Mohsen Ranjbaran
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Mohit S Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Interactions between Humans and Dogs during the COVID-19 Pandemic: Recent Updates and Future Perspectives. Animals (Basel) 2023; 13:ani13030524. [PMID: 36766413 PMCID: PMC9913536 DOI: 10.3390/ani13030524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
COVID-19 is one of the deadliest epidemics. This pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the role of dogs in spreading the disease in human society is poorly understood. This review sheds light on the limited susceptibility of dogs to COVID-19 infections which is likely attributed to the relatively low levels of angiotensin-converting enzyme 2 (ACE2) in the respiratory tract and the phylogenetic distance of ACE2 in dogs from the human ACE2 receptor. The low levels of ACE2 affect the binding affinity between spike and ACE2 proteins resulting in it being uncommon for dogs to spread the disease. To demonstrate the role of dogs in spreading COVID-19, we reviewed the epidemiological studies and prevalence of SARS-CoV-2 in dogs. Additionally, we discussed the use of detection dogs as a rapid and reliable method for effectively discriminating between SARS-CoV-2 infected and non-infected individuals using different types of samples (secretions, saliva, and sweat). We considered the available information on COVID-19 in the human-dog interfaces involving the possibility of transmission of COVID-19 to dogs by infected individuals and vice versa, the human-dog behavior changes, and the importance of preventive measures because the risk of transmission by domestic dogs remains a concern.
Collapse
|
4
|
Dassanayake RP, Clawson ML, Tatum FM, Briggs RE, Kaplan BS, Casas E. Differential identification of Mannheimia haemolytica genotypes 1 and 2 using colorimetric loop-mediated isothermal amplification. BMC Res Notes 2023; 16:4. [PMID: 36658613 PMCID: PMC9850709 DOI: 10.1186/s13104-023-06272-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Mannheimia haemolytica is the primary bacterial pathogen associated with bovine respiratory disease complex (BRDC). While M. haemolytica has been subdivided into 12 capsular serotypes (ST), ST1, ST2 and ST6 are commonly isolated from cattle. More recently, M. haemolytica strains isolated from North American cattle have been classified into genotypes 1 (ST2) and 2 (ST1 and ST6). Of the two genotypes, genotype 1 strains are frequently isolated from healthy animals whereas, genotype 2 strains are predominantly isolated from BRDC animals. However, isolation of both genotypes from pneumonic lung samples can complicate diagnosis. Therefore, the aim of this study was to develop a colorimetric loop-mediated isothermal amplification (LAMP) assay to differentiate M. haemolytica genotypes. RESULTS The genotype specificity of the LAMP was tested using purified genomic DNA from 22 M. haemolytica strains (10 genotype 1, 12 genotype 2) and strains from four related Pasteurellaceae species; Bibersteinia trehalosi, Mannheimia glucosida, Pasteurella multocida, and Histophilus somni. Genotype 1 (adhesin pseudogene B1) specific-LAMP reactions amplified DNA only from genotype 1 strains while genotype 2 (adhesin G) reactions amplified DNA only from genotype 2 strains. The overall detection sensitivity and specificity of the newly developed colorimetric LAMP assay for each genotype were 100%. The limits of detection of two LAMP assays were 1-100 target gene copies per reaction. LAMP primers designed in this study may help the differential identification of M. haemolytica genotypes 1 and 2.
Collapse
Affiliation(s)
- Rohana P. Dassanayake
- grid.508983.fUnited States Department of Agriculture, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Agricultural Research
Service, Ames, IA 50010 USA
| | - Michael L. Clawson
- grid.512847.dUnited States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Animal Health Genomic Research Unit, Clay Center, NE 68933 USA
| | - Fred M. Tatum
- grid.508983.fUnited States Department of Agriculture, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Agricultural Research
Service, Ames, IA 50010 USA
| | - Robert E. Briggs
- grid.508983.fUnited States Department of Agriculture, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Agricultural Research
Service, Ames, IA 50010 USA
| | - Bryan S. Kaplan
- grid.508983.fUnited States Department of Agriculture, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Agricultural Research
Service, Ames, IA 50010 USA
| | - Eduardo Casas
- grid.508983.fUnited States Department of Agriculture, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Agricultural Research
Service, Ames, IA 50010 USA
| |
Collapse
|
5
|
Wang J, Davidson JL, Kaur S, Dextre AA, Ranjbaran M, Kamel MS, Athalye SM, Verma MS. Paper-Based Biosensors for the Detection of Nucleic Acids from Pathogens. BIOSENSORS 2022; 12:bios12121094. [PMID: 36551061 PMCID: PMC9776365 DOI: 10.3390/bios12121094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 05/17/2023]
Abstract
Paper-based biosensors are microfluidic analytical devices used for the detection of biochemical substances. The unique properties of paper-based biosensors, including low cost, portability, disposability, and ease of use, make them an excellent tool for point-of-care testing. Among all analyte detection methods, nucleic acid-based pathogen detection offers versatility due to the ease of nucleic acid synthesis. In a point-of-care testing context, the combination of nucleic acid detection and a paper-based platform allows for accurate detection. This review offers an overview of contemporary paper-based biosensors for detecting nucleic acids from pathogens. The methods and limitations of implementing an integrated portable paper-based platform are discussed. The review concludes with potential directions for future research in the development of paper-based biosensors.
Collapse
Affiliation(s)
- Jiangshan Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Josiah Levi Davidson
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Simerdeep Kaur
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Andres A. Dextre
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Mohsen Ranjbaran
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Mohamed S. Kamel
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Shreya Milind Athalye
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Mohit S. Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
6
|
Wang J, Ranjbaran M, Ault A, Verma MS. A loop-mediated isothermal amplification assay to detect Bacteroidales and assess risk of fecal contamination. Food Microbiol 2022; 110:104173. [DOI: 10.1016/j.fm.2022.104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/04/2022]
|
7
|
Ranjbaran M, Verma MS. Microfluidics at the interface of bacteria and fresh produce. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Centeno-Martinez RE, Glidden N, Mohan S, Davidson JL, Fernández-Juricic E, Boerman JP, Schoonmaker J, Pillai D, Koziol J, Ault A, Verma MS, Johnson TA. Identification of bovine respiratory disease through the nasal microbiome. Anim Microbiome 2022; 4:15. [PMID: 35193707 PMCID: PMC8862248 DOI: 10.1186/s42523-022-00167-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/04/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Bovine respiratory disease (BRD) is an ongoing health and economic challenge in the dairy and beef cattle industries. Multiple risk factors make an animal susceptible to BRD. The presence of Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis in lung tissues have been associated with BRD mortalities, but they are also commonly present in the upper respiratory tract of healthy animals. This study aims to compare the cattle nasal microbiome (diversity, composition and community interaction) and the abundance of BRD pathogens (by qPCR) in the nasal microbiome of Holstein steers that are apparently healthy (Healthy group, n = 75) or with BRD clinical signs (BRD group, n = 58). We then used random forest models based on nasal microbial community and qPCR results to classify healthy and BRD-affected animals and determined the agreement with the visual clinical signs. Additionally, co-occurring species pairs were identified in visually BRD or healthy animal groups. RESULTS Cattle in the BRD group had lower alpha diversity than pen-mates in the healthy group. Amplicon sequence variants (ASVs) from Trueperella pyogenes, Bibersteinia and Mycoplasma spp. were increased in relative abundance in the BRD group, while ASVs from Mycoplasma bovirhinis and Clostridium sensu stricto were increased in the healthy group. Prevalence of H. somni (98%) and P. multocida (97%) was high regardless of BRD clinical signs whereas M. haemolytica (81 and 61%, respectively) and M. bovis (74 and 51%, respectively) were more prevalent in the BRD group than the healthy group. In the BRD group, the abundance of M. haemolytica and M. bovis was increased, while H. somni abundance was decreased. Visual observation of clinical signs agreed with classification by the nasal microbial community (misclassification rate of 32%) and qPCR results (misclassification rate 34%). Co-occurrence analysis demonstrated that the nasal microbiome of BRD-affected cattle presented fewer bacterial associations than healthy cattle. CONCLUSIONS This study offers insight into the prevalence and abundance of BRD pathogens and the differences in the nasal microbiome between healthy and BRD animals. This suggests that nasal bacterial communities provide a potential platform for future studies and potential pen-side diagnostic testing.
Collapse
Affiliation(s)
| | - Natalie Glidden
- Department of Animal Science, Purdue University, West Lafayette, IN, USA
| | - Suraj Mohan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Josiah Levi Davidson
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | | | | | - Jon Schoonmaker
- Department of Animal Science, Purdue University, West Lafayette, IN, USA
| | - Deepti Pillai
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Jennifer Koziol
- Department of Veterinary Clinical Science, Purdue University, West Lafayette, IN, USA
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA
| | - Aaron Ault
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Mohit S Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Timothy A Johnson
- Department of Animal Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
9
|
Davidson JL, Wang J, Maruthamuthu MK, Dextre A, Pascual-Garrigos A, Mohan S, Putikam SVS, Osman FOI, McChesney D, Seville J, Verma MS. A paper-based colorimetric molecular test for SARS-CoV-2 in saliva. BIOSENSORS & BIOELECTRONICS: X 2021; 9:100076. [PMID: 34423284 PMCID: PMC8364207 DOI: 10.1016/j.biosx.2021.100076] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 04/16/2023]
Abstract
Herein, we describe the development of a paper-based device to detect nucleic acids of pathogens of interest in complex samples using loop-mediated isothermal amplification (LAMP) by producing a colorimetric response visible to the human eye. To demonstrate the utility of this device in emerging public health emergencies, we developed and optimized our device to detect SARS-CoV-2 in human saliva without preprocessing. The resulting device was capable of detecting the virus within 60 min and had an analytical sensitivity of 97% and a specificity of 100% with a limit of detection of 200 genomic copies/μL of patient saliva using image analysis. The device consists of a configurable number of reaction zones constructed of Grade 222 chromatography paper separated by 20 mil polystyrene spacers attached to a Melinex® backing via an ARclean® double-sided adhesive. The resulting device is easily configurable to detect multiple targets and has the potential to detect a variety of pathogens simply by changing the LAMP primer sets.
Collapse
Affiliation(s)
- Josiah Levi Davidson
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiangshan Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Murali Kannan Maruthamuthu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Andres Dextre
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Ana Pascual-Garrigos
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Suraj Mohan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Sai Venkata Sravan Putikam
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Fujr Osman Ibrahim Osman
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | - Mohit S Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
10
|
Hong T, Liu X, Zhou Q, Liu Y, Guo J, Zhou W, Tan S, Cai Z. What the Microscale Systems "See" In Biological Assemblies: Cells and Viruses? Anal Chem 2021; 94:59-74. [PMID: 34812604 DOI: 10.1021/acs.analchem.1c04244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xing Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Qi Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yilian Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jing Guo
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China.,Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.,Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| |
Collapse
|
11
|
Pascual-Garrigos A, Maruthamuthu MK, Ault A, Davidson J, Rudakov G, Pillai D, Koziol J, Schoonmaker JP, Johnson T, Verma MS. On-farm colorimetric detection of Pasteurella multocida, Mannheimia haemolytica, and Histophilus somni in crude bovine nasal samples. Vet Res 2021; 52:126. [PMID: 34600578 PMCID: PMC8487530 DOI: 10.1186/s13567-021-00997-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/03/2021] [Indexed: 11/10/2022] Open
Abstract
This work modifies a loop-mediated isothermal amplification (LAMP) assay to detect the bovine respiratory disease (BRD) bacterial pathogens Pasteurella multocida, Mannheimia haemolytica, and Histophilus somni in a colorimetric format on a farm. BRD causes a significant health and economic burden worldwide that partially stems from the challenges involved in determining the pathogens causing the disease. Methods such as polymerase chain reaction (PCR) have the potential to identify the causative pathogens but require lab equipment and extensive sample processing making the process lengthy and expensive. To combat this limitation, LAMP allows accurate pathogen detection in unprocessed samples by the naked eye allowing for potentially faster and more precise diagnostics on the farm. The assay developed here offers 66.7-100% analytical sensitivity, and 100% analytical specificity (using contrived samples) while providing 60-100% concordance with PCR results when tested on five steers in a feedlot. The use of a consumer-grade water bath enabled on-farm execution by collecting a nasal swab from cattle and provided a colorimetric result within 60 min. Such an assay holds the potential to provide rapid pen-side diagnostics to cattle producers and veterinarians.
Collapse
Affiliation(s)
- Ana Pascual-Garrigos
- Department of Agricultural and Biological Engineering, Purdue University, 225 S University Street, West Lafayette, IN 47907 USA
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47906 USA
- Birck Nanotechnology Center, Purdue University, 1205 W State St, West Lafayette, IN 47907 USA
| | - Murali Kannan Maruthamuthu
- Department of Agricultural and Biological Engineering, Purdue University, 225 S University Street, West Lafayette, IN 47907 USA
- Birck Nanotechnology Center, Purdue University, 1205 W State St, West Lafayette, IN 47907 USA
| | - Aaron Ault
- School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, IN 47907 USA
| | - Josiah
Levi
Davidson
- Department of Agricultural and Biological Engineering, Purdue University, 225 S University Street, West Lafayette, IN 47907 USA
- Birck Nanotechnology Center, Purdue University, 1205 W State St, West Lafayette, IN 47907 USA
| | - Grigorii Rudakov
- Department of Agricultural and Biological Engineering, Purdue University, 225 S University Street, West Lafayette, IN 47907 USA
- Birck Nanotechnology Center, Purdue University, 1205 W State St, West Lafayette, IN 47907 USA
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907 USA
| | - Deepti Pillai
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, IN 47907 USA
| | - Jennifer Koziol
- School of Veterinary Medicine, Texas Tech University,
7671 Evans Drive
,
Amarillo
, TX 79106 USA
| | - Jon P. Schoonmaker
- Department of Animal Sciences, Purdue University, 270 S Russell Street, West Lafayette, IN 47907 USA
| | - Timothy Johnson
- Department of Animal Sciences, Purdue University, 270 S Russell Street, West Lafayette, IN 47907 USA
| | - Mohit S. Verma
- Department of Agricultural and Biological Engineering, Purdue University, 225 S University Street, West Lafayette, IN 47907 USA
- Birck Nanotechnology Center, Purdue University, 1205 W State St, West Lafayette, IN 47907 USA
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907 USA
| |
Collapse
|
12
|
Pascual-Garrigos A, Maruthamuthu MK, Ault A, Davidson JL, Rudakov G, Pillai D, Koziol J, Schoonmaker JP, Johnson T, Verma MS. On-farm colorimetric detection of Pasteurella multocida, Mannheimia haemolytica, and Histophilus somni in crude bovine nasal samples. Vet Res 2021; 52:126. [PMID: 34600578 DOI: 10.1021/acsagscitech.0c00072] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/03/2021] [Indexed: 05/28/2023] Open
Abstract
This work modifies a loop-mediated isothermal amplification (LAMP) assay to detect the bovine respiratory disease (BRD) bacterial pathogens Pasteurella multocida, Mannheimia haemolytica, and Histophilus somni in a colorimetric format on a farm. BRD causes a significant health and economic burden worldwide that partially stems from the challenges involved in determining the pathogens causing the disease. Methods such as polymerase chain reaction (PCR) have the potential to identify the causative pathogens but require lab equipment and extensive sample processing making the process lengthy and expensive. To combat this limitation, LAMP allows accurate pathogen detection in unprocessed samples by the naked eye allowing for potentially faster and more precise diagnostics on the farm. The assay developed here offers 66.7-100% analytical sensitivity, and 100% analytical specificity (using contrived samples) while providing 60-100% concordance with PCR results when tested on five steers in a feedlot. The use of a consumer-grade water bath enabled on-farm execution by collecting a nasal swab from cattle and provided a colorimetric result within 60 min. Such an assay holds the potential to provide rapid pen-side diagnostics to cattle producers and veterinarians.
Collapse
Affiliation(s)
- Ana Pascual-Garrigos
- Department of Agricultural and Biological Engineering, Purdue University, 225 S University Street, West Lafayette, IN, 47907, USA
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN, 47906, USA
- Birck Nanotechnology Center, Purdue University, 1205 W State St, West Lafayette, IN, 47907, USA
| | - Murali Kannan Maruthamuthu
- Department of Agricultural and Biological Engineering, Purdue University, 225 S University Street, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, 1205 W State St, West Lafayette, IN, 47907, USA
| | - Aaron Ault
- School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, IN, 47907, USA
| | - Josiah Levi Davidson
- Department of Agricultural and Biological Engineering, Purdue University, 225 S University Street, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, 1205 W State St, West Lafayette, IN, 47907, USA
| | - Grigorii Rudakov
- Department of Agricultural and Biological Engineering, Purdue University, 225 S University Street, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, 1205 W State St, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Deepti Pillai
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, IN, 47907, USA
| | - Jennifer Koziol
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Drive , Amarillo , TX, 79106, USA
| | - Jon P Schoonmaker
- Department of Animal Sciences, Purdue University, 270 S Russell Street, West Lafayette, IN, 47907, USA
| | - Timothy Johnson
- Department of Animal Sciences, Purdue University, 270 S Russell Street, West Lafayette, IN, 47907, USA
| | - Mohit S Verma
- Department of Agricultural and Biological Engineering, Purdue University, 225 S University Street, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, 1205 W State St, West Lafayette, IN, 47907, USA.
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|