1
|
Zhang W, Gao X, Zhang H, Sun G, Zhang G, Li X, Qi H, Guo J, Qin L, Shi D, Shi X, Li H, Zhang D, Guo W, Ding J. Maglev-fabricated long and biodegradable stent for interventional treatment of peripheral vessels. Nat Commun 2024; 15:7903. [PMID: 39256371 PMCID: PMC11387404 DOI: 10.1038/s41467-024-52288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
While chronic limb-threatening ischemia is a serious peripheral artery disease, the lack of an appropriate stent significantly limits the potential of interventional treatment. In spite of much progress in coronary stents, little is towards peripheral stents, which are expected to be both long and biodegradable and thus require a breakthrough in core techniques. Herein, we develop a long and biodegradable stent with a length of up to 118 mm based on a metal-polymer composite material. To achieve a well-prepared homogeneous coating on a long stent during ultrasonic spraying, a magnetic levitation is employed. In vivo degradation of the stent is investigated in rabbit abdominal aorta/iliac arteries, and its preclinical safety is evaluated in canine infrapopliteal arteries. First-in-man implantation of the stent is carried out in the below-the-knee artery. The 13 months' follow-ups demonstrate the feasibility of the long and biodegradable stent in clinical applications.
Collapse
Affiliation(s)
- Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, China
| | - Xian Gao
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, China
| | - Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Guoyi Sun
- Department of Vascular and Endovascular Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Gui Zhang
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Haiping Qi
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, China
| | - Jingzhen Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Li Qin
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, China
| | - Daokun Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Xiaoli Shi
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, China
| | - Haifeng Li
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, China
| | - Deyuan Zhang
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, China.
| | - Wei Guo
- Department of Vascular and Endovascular Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Zhang J, Chen Z, Rao L, He Y. Coronary bioresorbable metallic stents: Advancements and future perspectives. J Cardiol 2024:S0914-5087(24)00149-7. [PMID: 39134302 DOI: 10.1016/j.jjcc.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 10/04/2024]
Abstract
Percutaneous coronary intervention is a critical treatment for coronary artery disease, particularly myocardial infarction, and is highly recommended in clinical guidelines. Traditional metallic stents, although initially effective, remain permanently in the artery and can lead to complications such as in-stent restenosis, late thrombosis, and chronic inflammation. Given the temporary need for stenting and the potential for late complications, bioresorbable stents have emerged as a promising alternative. However, bioresorbable polymeric stents have encountered significant clinical challenges due to their low mechanical strength and ductility, which increase the risks of thrombosis and local inflammation. Consequently, bioresorbable metals are being considered as a superior option for coronary stents. This review examines the progress of bioresorbable metallic stents from both preclinical and clinical perspectives, aiming to provide a theoretical foundation for future research. Iron, zinc, and magnesium are the primary materials used for these stents. Zinc-based bioresorbable stents have shown promise in preclinical studies due to their biocompatibility and vascular protective properties, although human clinical studies are still limited. Magnesium-based stents have demonstrated positive clinical outcomes, being fully absorbed within 12 months and showing low rates of late lumen loss and target lesion failure at 6- and 12-months post-implantation. Initial trials of iron-based stents have indicated favorable mid-term safety and efficacy, with complete absorption by the body within three years and consistent luminal expansion beyond six months post-implantation. Despite these advancements, further trials are needed for comprehensive validation. In conclusion, while current materials do not fully meet the ideal requirements, ongoing research should focus on developing bioresorbable stents with enhanced performance characteristics to better meet clinical needs.
Collapse
Affiliation(s)
- Junyan Zhang
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhongxiu Chen
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Li Rao
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yong He
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Van Daele L, Chausse V, Parmentier L, Brancart J, Pegueroles M, Van Vlierberghe S, Dubruel P. 3D-Printed Shape Memory Poly(alkylene terephthalate) Scaffolds as Cardiovascular Stents Revealing Enhanced Endothelialization. Adv Healthc Mater 2024; 13:e2303498. [PMID: 38329408 DOI: 10.1002/adhm.202303498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Cardiovascular diseases are the leading cause of death and current treatments such as stents still suffer from disadvantages. Balloon expansion causes damage to the arterial wall and limited and delayed endothelialization gives rise to restenosis and thrombosis. New more performing materials that circumvent these disadvantages are required to improve the success rate of interventions. To this end, the use of a novel polymer, poly(hexamethylene terephthalate), is investigated for this application. The synthesis to obtain polymers with high molar masses up to 126.5 kg mol-1 is optimized and a thorough chemical and thermal analysis is performed. The polymers are 3D-printed into personalized cardiovascular stents using the state-of-the-art solvent-cast direct-writing technique, the potential of these stents to expand using their shape memory behavior is established, and it is shown that the stents are more resistant to compression than the poly(l-lactide) benchmark. Furthermore, the polymer's hydrolytic stability is demonstrated in an accelerated degradation study of 6 months. Finally, the stents are subjected to an in vitro biological evaluation, revealing that the polymer is non-hemolytic and supports significant endothelialization after only 7 days, demonstrating the enormous potential of these polymers to serve cardiovascular applications.
Collapse
Affiliation(s)
- Lenny Van Daele
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| | - Victor Chausse
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Barcelona, 08019, Spain
| | - Laurens Parmentier
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| | - Marta Pegueroles
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Barcelona, 08019, Spain
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| |
Collapse
|
4
|
Zhang Y, Roux C, Rouchaud A, Meddahi-Pellé A, Gueguen V, Mangeney C, Sun F, Pavon-Djavid G, Luo Y. Recent advances in Fe-based bioresorbable stents: Materials design and biosafety. Bioact Mater 2024; 31:333-354. [PMID: 37663617 PMCID: PMC10474570 DOI: 10.1016/j.bioactmat.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Fe-based materials have received more and more interests in recent years as candidates to fabricate bioresorbable stents due to their appropriate mechanical properties and biocompatibility. However, the low degradation rate of Fe is a serious limitation for such application. To overcome this critical issue, many efforts have been devoted to accelerate the corrosion rate of Fe-based stents, through the structural and surface modification of Fe matrix. As stents are implantable devices, the released corrosion products (Fe2+ ions) in vessels may alter the metabolism, by generating reactive oxygen species (ROS), which might in turn impact the biosafety of Fe-based stents. These considerations emphasize the importance of combining knowledge in both materials and biological science for the development of efficient and safe Fe-based stents, although there are still only limited numbers of reviews regarding this interdisciplinary field. This review aims to provide a concise overview of the main strategies developed so far to design Fe-based stents with accelerated degradation, highlighting the fundamental mechanisms of corrosion and the methods to study them as well as the reported approaches to accelerate the corrosion rates. These approaches will be divided into four main sections, focusing on (i) increased active surface areas, (ii) tailored microstructures, (iii) creation of galvanic reactions (by alloying, ion implantation or surface coating of noble metals) and (iv) decreased local pH induced by degradable surface organic layers. Recent advances in the evaluation of the in vitro biocompatibility of the final materials and ongoing in vivo tests are also provided.
Collapse
Affiliation(s)
- Yang Zhang
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Charles Roux
- Univ. Limoges, CNRS, XLIM, UMR 7252, Limoges, France
| | | | - Anne Meddahi-Pellé
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Virginie Gueguen
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Claire Mangeney
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
| | - Fan Sun
- PSL Université, Chimie Paris Tech, IRCP, CNRS UMR 8247, 11, Rue Pierre et Marie Curie, 75005, Paris, France
| | - Graciela Pavon-Djavid
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Yun Luo
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
| |
Collapse
|
5
|
Shi D, Kang Y, Jiang Z, Li X, Zhang H, Wang Q, Guo J, Jiang H, Luo Q, Ding J. Hybrid interpenetrating network of polyester coronary stent with tunable biodegradation and mechanical properties. Biomaterials 2024; 304:122411. [PMID: 38061184 DOI: 10.1016/j.biomaterials.2023.122411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/30/2023]
Abstract
Poly(l-lactide) (PLLA) is an important candidate raw material of the next-generation biodegradable stent for percutaneous coronary intervention, yet how to make a polyester stent with sufficient mechanical strength and relatively fast biodegradation gets to be a dilemma. Herein, we put forward a hybrid interpenetrating network (H-IPN) strategy to resolve this dilemma. As such, we synthesize a multi-functional biodegradable macromer of star-like poly(d,l-lactide-co-ɛ-caprolactone) with six acrylate end groups, and photoinitiate it, after mixing with linear PLLA homopolymer, to trigger the free radical polymerization. The resultant crosslinked polymer blend is different from the classic semi-interpenetrating network, and partial chemical crosslinking occurs between the linear polymer and the macromer network. Combined with the tube blow molding and the postprocessing laser cutting, we fabricate a semi-crosslinked-polyester biodegradable coronary stent composed of H-IPN, which includes a physical network of polyester spherulites and a chemical crosslinking network of copolyester macromers and a part of homopolymers. Compared with the currently main-stream PLLA stent in research, this H-IPN stent realizes a higher and more appropriate biodegradation rate while maintaining sufficient radial strength. A series of polymer chemistry, polymer physics, polymer processing, and in vitro and in vivo biological assessments of medical devices have been made to examine the H-IPN material. The interventional implanting of the H-IPN stent into aorta abdominalis of rabbits and the follow-ups to 12 months have confirmed the safety and effectiveness.
Collapse
Affiliation(s)
- Daokun Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yahong Kang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China; Shanghai Key Laboratory of Interventional Medical Devices and Equipment, Shanghai MicroPort Medical Group Co., Ltd, Shanghai, 201203, China
| | - Zailai Jiang
- Shanghai Key Laboratory of Interventional Medical Devices and Equipment, Shanghai MicroPort Medical Group Co., Ltd, Shanghai, 201203, China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jingzhen Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hongyan Jiang
- Shanghai Key Laboratory of Interventional Medical Devices and Equipment, Shanghai MicroPort Medical Group Co., Ltd, Shanghai, 201203, China.
| | - Qiyi Luo
- Shanghai Key Laboratory of Interventional Medical Devices and Equipment, Shanghai MicroPort Medical Group Co., Ltd, Shanghai, 201203, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
6
|
Zhang H, Li X, Qu Z, Zhang W, Wang Q, Cao D, Wang Y, Wang X, Wang Y, Yu L, Ding J. Effects of serum proteins on corrosion rates and product bioabsorbability of biodegradable metals. Regen Biomater 2023; 11:rbad112. [PMID: 38173765 PMCID: PMC10761199 DOI: 10.1093/rb/rbad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Corrodible metals are the newest kind of biodegradable materials and raise a new problem of the corrosion products. However, the removal of the precipitated products has been unclear and even largely ignored in publications. Herein, we find that albumin, an abundant macromolecule in serum, enhances the solubility of corrosion products of iron in blood mimetic Hank's solution significantly. This is universal for other main biodegradable metals such as magnesium, zinc and polyester-coated iron. Albumin also influences corrosion rates in diverse trends in Hank's solution and normal saline. Based on quantitative study theoretically and experimentally, both the effects on corrosion rates and soluble fractions are interpreted by a unified mechanism, and the key factor leading to different corrosion behaviors in corrosion media is the interference of albumin to the Ca/P passivation layer on the metal surface. This work has illustrated that the interactions between metals and media macromolecules should be taken into consideration in the design of the next-generation metal-based biodegradable medical devices in the formulism of precision medicine. The improved Hank's solution in the presence of albumin and with a higher content of initial calcium salt is suggested to access biodegradable metals potentially for cardiovascular medical devices, where the content of calcium salt is calculated after consideration of chelating of calcium ions by albumin, resulting in the physiological concentration of free calcium ions.
Collapse
Affiliation(s)
- Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zehua Qu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Dinglingge Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yaoben Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xin Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
7
|
Das A, Mehrotra S, Kumar A. Advances in Fabrication Technologies for the Development of Next-Generation Cardiovascular Stents. J Funct Biomater 2023; 14:544. [PMID: 37998113 PMCID: PMC10672426 DOI: 10.3390/jfb14110544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Coronary artery disease is the most prevalent cardiovascular disease, claiming millions of lives annually around the world. The current treatment includes surgically inserting a tubular construct, called a stent, inside arteries to restore blood flow. However, due to lack of patient-specific design, the commercial products cannot be used with different vessel anatomies. In this review, we have summarized the drawbacks in existing commercial metal stents which face problems of restenosis and inflammatory responses, owing to the development of neointimal hyperplasia. Further, we have highlighted the fabrication of stents using biodegradable polymers, which can circumvent most of the existing limitations. In this regard, we elaborated on the utilization of new fabrication methodologies based on additive manufacturing such as three-dimensional printing to design patient-specific stents. Finally, we have discussed the functionalization of these stent surfaces with suitable bioactive molecules which can prove to enhance their properties in preventing thrombosis and better healing of injured blood vessel lining.
Collapse
Affiliation(s)
- Ankita Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India;
| | - Shreya Mehrotra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India;
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India;
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre of Excellence for Orthopaedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
8
|
Abyzova E, Dogadina E, Rodriguez RD, Petrov I, Kolesnikova Y, Zhou M, Liu C, Sheremet E. Beyond Tissue replacement: The Emerging role of smart implants in healthcare. Mater Today Bio 2023; 22:100784. [PMID: 37731959 PMCID: PMC10507164 DOI: 10.1016/j.mtbio.2023.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023] Open
Abstract
Smart implants are increasingly used to treat various diseases, track patient status, and restore tissue and organ function. These devices support internal organs, actively stimulate nerves, and monitor essential functions. With continuous monitoring or stimulation, patient observation quality and subsequent treatment can be improved. Additionally, using biodegradable and entirely excreted implant materials eliminates the need for surgical removal, providing a patient-friendly solution. In this review, we classify smart implants and discuss the latest prototypes, materials, and technologies employed in their creation. Our focus lies in exploring medical devices beyond replacing an organ or tissue and incorporating new functionality through sensors and electronic circuits. We also examine the advantages, opportunities, and challenges of creating implantable devices that preserve all critical functions. By presenting an in-depth overview of the current state-of-the-art smart implants, we shed light on persistent issues and limitations while discussing potential avenues for future advancements in materials used for these devices.
Collapse
Affiliation(s)
- Elena Abyzova
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
| | - Elizaveta Dogadina
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | | | - Ilia Petrov
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
| | | | - Mo Zhou
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | | |
Collapse
|
9
|
Wu M, Xun M, Chen Y. Adaptation of Vascular Smooth Muscle Cell to Degradable Metal Stent Implantation. ACS Biomater Sci Eng 2023. [PMID: 37364226 DOI: 10.1021/acsbiomaterials.3c00637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Iron-, magnesium-, or zinc-based metal vessel stents support vessel expansion at the period early after implantation and degrade away after vascular reconstruction, eliminating the side effects due to the long stay of stent implants in the body and the risks of restenosis and neoatherosclerosis. However, emerging evidence has indicated that their degradation alters the vascular microenvironment and induces adaptive responses of surrounding vessel cells, especially vascular smooth muscle cells (VSMCs). VSMCs are highly flexible cells that actively alter their phenotype in response to the stenting, similarly to what they do during all stages of atherosclerosis pathology, which significantly influences stent performance. This Review discusses how biodegradable metal stents modify vascular conditions and how VSMCs respond to various chemical, biological, and physical signals attributable to stent implantation. The focus is placed on the phenotypic adaptation of VSMCs and the clinical complications, which highlight the importance of VSMC transformation in future stent design.
Collapse
Affiliation(s)
- Meichun Wu
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
- School of Nursing, University of South China, Hengyang, Hunan 410001, China
| | - Min Xun
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 410001, China
| | - Yuping Chen
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 410001, China
| |
Collapse
|
10
|
Wang Q, Liu Q, Gao J, He J, Zhang H, Ding J. Stereo Coverage and Overall Stiffness of Biomaterial Arrays Underly Parts of Topography Effects on Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6142-6155. [PMID: 36637977 DOI: 10.1021/acsami.2c19742] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface topography is a biophysical factor affecting cell behaviors, yet the underlying cues are still not clear. Herein, we hypothesized that stereo coverage and overall stiffness of biomaterial arrays on the scale of single cells underly parts of topography effects on cell adhesion. We fabricated a series of microarrays (micropillar, micropit, and microtube) of poly(l-lactic acid) (PLLA) using mold casting based on pre-designed templates. The characteristic sizes of array units were less than that of a single cell, and thus, each cell could sense the micropatterns with varied roughness. With human umbilical vein endothelial cells (HUVECs) as the model cell type, we examined spreading areas and cell viabilities on different surfaces. "Stereo coverage" was defined to quantify the actual cell spreading fraction on a topographic surface. Particularly in the case of high micropillars, cells were confirmed not able to touch the bottom and had to partially hang among the micropillars. Then, in our opinion, a cell sensed the overall stiffness combining the bulk stiffness of the raw material and the stiffness of the culture medium. Spreading area and single cell viability were correlated to coverage and topographic feature of the prepared microarrays in particular with the significantly protruded geometry feather. Cell traction forces exerted on micropillars were also discussed. These findings provide new insights into the surface modifications toward biomedical implants.
Collapse
Affiliation(s)
- Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Qingsong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| |
Collapse
|
11
|
Cao D, Ding J. Recent advances in regenerative biomaterials. Regen Biomater 2022; 9:rbac098. [PMID: 36518879 PMCID: PMC9745784 DOI: 10.1093/rb/rbac098] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 07/22/2023] Open
Abstract
Nowadays, biomaterials have evolved from the inert supports or functional substitutes to the bioactive materials able to trigger or promote the regenerative potential of tissues. The interdisciplinary progress has broadened the definition of 'biomaterials', and a typical new insight is the concept of tissue induction biomaterials. The term 'regenerative biomaterials' and thus the contents of this article are relevant to yet beyond tissue induction biomaterials. This review summarizes the recent progress of medical materials including metals, ceramics, hydrogels, other polymers and bio-derived materials. As the application aspects are concerned, this article introduces regenerative biomaterials for bone and cartilage regeneration, cardiovascular repair, 3D bioprinting, wound healing and medical cosmetology. Cell-biomaterial interactions are highlighted. Since the global pandemic of coronavirus disease 2019, the review particularly mentions biomaterials for public health emergency. In the last section, perspectives are suggested: (i) creation of new materials is the source of innovation; (ii) modification of existing materials is an effective strategy for performance improvement; (iii) biomaterial degradation and tissue regeneration are required to be harmonious with each other; (iv) host responses can significantly influence the clinical outcomes; (v) the long-term outcomes should be paid more attention to; (vi) the noninvasive approaches for monitoring in vivo dynamic evolution are required to be developed; (vii) public health emergencies call for more research and development of biomaterials; and (viii) clinical translation needs to be pushed forward in a full-chain way. In the future, more new insights are expected to be shed into the brilliant field-regenerative biomaterials.
Collapse
Affiliation(s)
- Dinglingge Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
12
|
Zong J, He Q, Liu Y, Qiu M, Wu J, Hu B. Advances in the development of biodegradable coronary stents: A translational perspective. Mater Today Bio 2022; 16:100368. [PMID: 35937578 PMCID: PMC9352968 DOI: 10.1016/j.mtbio.2022.100368] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/25/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Implantation of cardiovascular stents is an important therapeutic method to treat coronary artery diseases. Bare-metal and drug-eluting stents show promising clinical outcomes, however, their permanent presence may create complications. In recent years, numerous preclinical and clinical trials have evaluated the properties of bioresorbable stents, including polymer and magnesium-based stents. Three-dimensional (3D) printed-shape-memory polymeric materials enable the self-deployment of stents and provide a novel approach for individualized treatment. Novel bioresorbable metallic stents such as iron- and zinc-based stents have also been investigated and refined. However, the development of novel bioresorbable stents accompanied by clinical translation remains time-consuming and challenging. This review comprehensively summarizes the development of bioresorbable stents based on their preclinical/clinical trials and highlights translational research as well as novel technologies for stents (e.g., bioresorbable electronic stents integrated with biosensors). These findings are expected to inspire the design of novel stents and optimization approaches to improve the efficacy of treatments for cardiovascular diseases. Bioresorbable stents can overcome the limitations of non-degradable stents. 3D printing of shape-memory polymeric stents can lead to better clinical outcomes. Advances in Mg-, Fe- and Zn-based stents from a translational perspective. Electronic stents integrated with biosensors can covey stent status in real time. Development in the assessment of stent performance in vivo.
Collapse
Affiliation(s)
- Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuxiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiehong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| |
Collapse
|
13
|
Jain C, Surabhi P, Marathe K. Critical Review on the Developments in Polymer Composite Materials for Biomedical Implants. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:893-917. [PMID: 36369719 DOI: 10.1080/09205063.2022.2145870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There has been a lack of research for developing functional polymer composites for biomedical implants. Even though metals are widely used as implant materials, there is a need for developing polymer composites as implant materials because of the stress shielding effect that causes a lack of compatibility of metals with the human body. This review aims to bring out the latest developments in polymer composite materials for body implants and to emphasize the significance of polymer composites as a viable alternative to conventional materials used in the biomedical industry for ease of life. This review article explores the developments in functional polymer composites for biomedical applications and provides distinct divisions for their applications based on the part of the body where they are implanted. Each application has been covered in some detail. The various applications covered are bone transplants and bone regeneration, cardiovascular implants (stents), dental implants and restorative materials, neurological and spinal implants, and tendon and ligament replacement.
Collapse
Affiliation(s)
| | | | - Kumudinee Marathe
- Department of Chemical Engg, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India 400019
| |
Collapse
|
14
|
Long-term safety and absorption assessment of a novel bioresorbable nitrided iron scaffold in porcine coronary artery. Bioact Mater 2022; 17:496-505. [PMID: 35415293 PMCID: PMC8976101 DOI: 10.1016/j.bioactmat.2022.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
This study aimed to investigate the long-term biocompatibility, safety, and degradation of the ultrathin nitrided iron bioresorbable scaffold (BRS) in vivo, encompassing the whole process of bioresorption in porcine coronary arteries. Fifty-two nitrided iron scaffolds (strut thickness of 70 μm) and 28 Vision Co–Cr stents were randomly implanted into coronary arteries of healthy mini-swine. The efficacy and safety of the nitrided iron scaffold were comparable with those of the Vision stentwithin 52 weeks after implantation. In addition, the long-term biocompatibility, safety, and bioresorption of the nitrided iron scaffold were evaluated by coronary angiography, optical coherence tomography, micro-computed tomography, scanning electron microscopy, energy dispersive spectrometry and histopathological evaluations at 4, 12, 26, 52 weeks and even at 7 years after implantation. In particular, a large number of struts were almost completely absorbed in situ at 7 years follow-up, which were first illustrated in this study. The lymphatic drainage pathway might serve as the potential clearance way of iron and its corrosion products. This study investigated the long-term safety and the total degradative process of nitrided iron scaffold in porcine coronary artery. The safety and biocompatibility of the nitrided iron scaffold were comparable to those of the Vision stent within 12 months after implantation. This ultrathin nitrided iron scaffold can be degraded and bioresorbed completely with long-term biocompatibility in porcine coronary artery. Interestingly, the lymphatic metabolic pathway might serve as the potential absorption route for iron and its corrosion products.
Collapse
|
15
|
Zhang H, Zhang W, Qiu H, Zhang G, Li X, Qi H, Guo J, Qian J, Shi X, Gao X, Shi D, Zhang D, Gao R, Ding J. A Biodegradable Metal-Polymer Composite Stent Safe and Effective on Physiological and Serum-Containing Biomimetic Conditions. Adv Healthc Mater 2022; 11:e2201740. [PMID: 36057108 DOI: 10.1002/adhm.202201740] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Indexed: 01/28/2023]
Abstract
The new-generation coronary stents are expected to be biodegradable, and then the biocompatibility along with biodegradation becomes more challenging. It is a critical issue to choose appropriate biomimetic conditions to evaluate biocompatibility. Compared with other candidates for biodegradable stents, iron-based materials are of high mechanical strength, yet have raised more concerns about biodegradability and biocompatibility. Herein, a metal-polymer composite strategy is applied to accelerate the degradation of iron-based stents in vitro and in a porcine model. Furthermore, it is found that serum, the main environment of vascular stents, ensured the safety of iron corrosion through its antioxidants. This work highlights the importance of serum, particularly albumin, for an in vitro condition mimicking blood-related physiological condition, when reactive oxygen species, inflammatory response, and neointimal hyperplasia are concerned. The resultant metal-polymer composite stent is implanted into a patient in clinical research via interventional treatment, and the follow-up confirms its safety, efficacy, and appropriate biodegradability.
Collapse
Affiliation(s)
- Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.,National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Hong Qiu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China
| | - Gui Zhang
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Haiping Qi
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Jingzhen Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Jie Qian
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China
| | - Xiaoli Shi
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Xian Gao
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Daokun Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Deyuan Zhang
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Runlin Gao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
16
|
A Biosurfactant-containing TSD Strategy to Modify Bovine Pericardial Bioprosthetic Valves for Anticalcification. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
He J, Shen R, Liu Q, Zheng S, Wang X, Gao J, Wang Q, Huang J, Ding J. RGD Nanoarrays with Nanospacing Gradient Selectively Induce Orientation and Directed Migration of Endothelial and Smooth Muscle Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37436-37446. [PMID: 35943249 DOI: 10.1021/acsami.2c10006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Directed migration of cells through cell-surface interactions is a paramount prerequisite in biomaterial-induced tissue regeneration. However, whether and how the nanoscale spatial gradient of adhesion molecules on a material surface can induce directed migration of cells is not sufficiently known. Herein, we employed block copolymer micelle nanolithography to prepare gold nanoarrays with a nanospacing gradient, which were prepared by continuously changing the dipping velocity. Then, a self-assembly monolayer technique was applied to graft arginine-glycine-aspartate (RGD) peptides on the nanodots and poly(ethylene glycol) (PEG) on the glass background. Since RGD can trigger specific cell adhesion via conjugating with integrin (its receptor in the cell membrane) and PEG can resist protein adsorption and nonspecific cell adhesion, a nanopattern with cell-adhesion contrast and a gradient of RGD nanospacing was eventually prepared. In vitro cell behaviors were examined using endothelial cells (ECs) and smooth muscle cells (SMCs) as a demonstration. We found that SMCs exhibited significant orientation and directed migration along the nanospacing gradient, while ECs exhibited only a weak spontaneously anisotropic migration. The gradient response was also dependent upon the RGD nanospacing ranges, namely, the start and end nanospacings under a given distance and gradient. The different responses of these two cell types to the RGD nanospacing gradient provide new insights for designing cell-selective nanomaterials potentially used in cell screening, wound healing, etc.
Collapse
Affiliation(s)
- Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Runjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai 200434, China
| | - Shuang Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xinlei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiale Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
18
|
Pan K, Zhang W, Shi H, Dai M, Wei W, Liu X, Li X. Zinc Ion-crosslinked polycarbonate/heparin composite coatings for biodegradable Zn-alloy stent applications. Colloids Surf B Biointerfaces 2022; 218:112725. [PMID: 35914466 DOI: 10.1016/j.colsurfb.2022.112725] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/12/2022] [Accepted: 07/24/2022] [Indexed: 12/19/2022]
Abstract
Zinc and its alloys are the best candidates for biodegradable cardiovascular stents due to their good corrosion rate and biocompatibility in vasculature. However, the cytotoxicity caused by the rapid release of zinc ions during the initial degradation stage and the lack of an anticoagulant function are huge challenges for their practical clinical applications. In this work, we developed a zinc ion-crosslinked polycarbonate/heparin composite coating via electrophoretic deposition (EPD) to improve the biocompatibility and provide anticoagulant functions for Zn-alloy stents. Both electrochemical tests and in vitro immersion tests demonstrated an enhanced corrosion resistance and lower Zn ion release rate of the coated Zn alloys. Enhanced adhesion and proliferation of endothelial cells on coated Zn alloys were also observed, indicating faster reendothelialization than that on bare Zn alloys. Moreover, the surface erosion of the composite coating led to the uniform and long-term release of heparin, which remarkably inhibited the adhesion and activation of platelets, and may have endowed the coated Zn-alloy stents with long-term anticoagulant functions.
Collapse
Affiliation(s)
- Kai Pan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wei Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Hui Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Miao Dai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wei Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xiaoya Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
19
|
Wang G, Gao C, Xiao B, Zhang J, Jiang X, Wang Q, Guo J, Zhang D, Liu J, Xie Y, Shu C, Ding J. Research and clinical translation of trilayer stent-graft of expanded polytetrafluoroethylene for interventional treatment of aortic dissection. Regen Biomater 2022; 9:rbac049. [PMID: 35958517 PMCID: PMC9362767 DOI: 10.1093/rb/rbac049] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The aortic dissection (AD) is a life-threatening disease. The transcatheter endovascular aortic repair (EVAR) affords a minimally invasive technique to save lives of these critical patients, and an appropriate stent-graft gets to be the key medical device during an EVAR procedure. Herein, we report a trilayer stent-graft and corresponding delivery system used for the treatment of the AD disease. The stent-graft is made of nitinol stents with an asymmetric Z-wave design and two expanded polytetrafluoroethylene (ePTFE) membranes. Each of inner and outer surfaces of the stent-graft was covered by an ePTFE membrane, and the two membranes were then sintered together. The biological studies of the sintered ePTFE membranes indicated that the stent-graft had excellent cytocompatibility and hemocompatibility in vitro. Both the stent-graft and the delivery system exhibited satisfactory mechanical properties and operability. The safety and efficacy of this stent-graft and the corresponding delivery system were demonstrated in vivo. In 9 canine experiments, the blood vessels of the animals implanted with the stent-grafts were of good patency, and there were no thrombus and obvious stenosis by angiography after implantation for 6 months. Furthermore, all of the 9 clinical cases experienced successful implantation using the stent-graft and its post-release delivery system, and the one-year follow-ups indicated the preliminary safety and efficacy of the trilayer stent-graft with an asymmetric Z-wave design for interventional treatment.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Caiyun Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| | - Benhao Xiao
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Jie Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Xunyuan Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| | - Jingzhen Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Jianxiong Liu
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Yuehui Xie
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Chang Shu
- Department of Vascular Surgery, the Second Xiangya Hospital of Central South University , Changsha, 410011, China
- State Key Laboratory of Cardiovascular Diseases, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College , Beijing, 100037, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| |
Collapse
|
20
|
Yu C, Liu X, Zhang J, Chao Y, Jia X, Wang C, Wallace GG. A Battery Method to Enhance the Degradation of Iron Stent and Regulating the Effect on Living Cells. SMALL METHODS 2022; 6:e2200344. [PMID: 35689331 DOI: 10.1002/smtd.202200344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Iron is a promising material for cardiovascular stent applications, however, the low biodegradation rate presents a challenge. Here, a dynamic method to improve the degradation rate of iron and simultaneously deliver electrical energy that could potentially inhibit cell proliferation on the device is reported. It is realized by pairing iron with a biocompatible hydrogel cathode in a cell culture media-based electrolyte forming an iron-air battery. This system does not show cytotoxicity to human adipose-stem cells over a period of 21 days but inhibits cell proliferation. The combination of enhanced iron degradation and inhibited cell proliferation by this dynamic method suggests it might be an approach for restenosis inhibition of biodegradable stents.
Collapse
Affiliation(s)
- Changchun Yu
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, 2500, Australia
| | - Xiao Liu
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, 2500, Australia
| | - Jiahao Zhang
- College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Yunfeng Chao
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, 2500, Australia
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Caiyun Wang
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, 2500, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, 2500, Australia
| |
Collapse
|
21
|
Wang Q, Yu X, Chen X, Gao J, Shi D, Shen Y, Tang J, He J, Li A, Yu L, Ding J. A Facile Composite Strategy to Prepare a Biodegradable Polymer Based Radiopaque Raw Material for "Visualizable" Biomedical Implants. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24197-24212. [PMID: 35580332 DOI: 10.1021/acsami.2c05184] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Enabling a biodegradable polymer radiopaque under X-ray is much desired for many medical devices. Physical blending of a present biodegradable polymer and a commercialized medical contrast agent is convenient yet lacks comprehensive fundamental research. Herein, we prepared a biodegradable polymer-based radiopaque raw material by blending poly(l-lactic acid) (PLLA or simply PLA) and iohexol (IHX), where PLA constituted the continuous phase and IHX particles served as the dispersed phase. The strong X-ray adsorption of IHX enabled the composite radiopaque; the hydrolysis of the polyester and the water solubility of the contrast agent enabled the composite biodegradable in an aqueous medium. The idea was confirmed by in vitro characterizations of the resultant composite, in vivo subcutaneous implantation in rats up to 6 months, and the clear visualization of a part of a biodegradable occluder in a Bama piglet under X-ray. We also found that the crystallization of PLA was significantly enhanced in the presence of the solid particles, which should be taken into consideration in the design of an appropriate biomaterial composite because crystallization degree influences the biodegradation rate and mechanical property of a material to a large extent. We further tried to introduce a small amount of poly(vinylpyrrolidone) into the blend of PLA and IHX. Compared to the bicomponent composite, the tricomponent one exhibited decreased modulus and increased elongation at break and tensile strength. This paves more ways for researchers to select appropriate raw materials according to the regenerated tissue and the application site.
Collapse
Affiliation(s)
- Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiaoye Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xianmiao Chen
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Daokun Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yang Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jingyu Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Anning Li
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
22
|
Tungsten disulfide nanotubes enhance flow-induced crystallization and radio-opacity of polylactide without adversely affecting in vitro toxicity. Acta Biomater 2022; 138:313-326. [PMID: 34798318 PMCID: PMC9505057 DOI: 10.1016/j.actbio.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/17/2021] [Accepted: 11/04/2021] [Indexed: 01/17/2023]
Abstract
Treatment of vascular disease, from peripheral ischemia to coronary heart disease (CHD), is poised for transformation with the introduction of transient implants designed to "scaffold" regeneration of blood vessels and ultimately leave nothing behind. Improved materials could expand the use of these devices. Here, we examine one of the leading polymers for bioresorbable scaffolds (BRS), polylactide (PLA), as the matrix of nanocomposites with tungsten disulfide (WS2) nanotubes (WSNT), which may provide mechanical reinforcement and enhance radio-opacity. We evaluate in vitro cytotoxicity using vascular cells, flow-induced crystallization and radio-opacity of PLA-WSNT nanocomposites at low WSNT concentration. A small amount of WSNT (0.1 wt%) can effectively promote oriented crystallization of PLA without compromising molecular weight. And radio-opacity improves significantly: as little as 0.5 to 1 wt% WSNT doubles the radio-opacity of PLA-WSNT relative to PLA at 17 keV. The results suggest that a single component, WSNT, has the potential to increase the strength of BRS to enable thinner devices and increase radio-opacity to improve intraoperative visualization. The in vitro toxicity results indicate that PLA-WSNT nanocomposites are worthy of investigation in vivo. Although substantial further preclinical studies are needed, PLA-WSNT nanocomposites may provide a complement of material properties that may improve BRS and expand the range of lesions that can be treated using transient implants. STATEMENT OF SIGNIFICANCE: Bioresorbable Scaffolds (BRSs) support regeneration of arteries without permanent mechanical constraint. Poly-L-lactide (PLLA) is the structural material of the first approved BRS for coronary heart disease (ABSORB BVS), withdrawn due to adverse events in years 1-3. Here, we examine tungsten disulfide (WS2) nanotubes (WSNT) in PLA to address two contributors to early complications: (1) reinforce PLLA (enable thinner BRS), and (2) increase radiopacity (provide intraoperative visibility). For BRS, it is significant that WSNT disperse, remain dispersed, reduce friction and improve mechanical properties without additional chemicals or surface modifications. Like WS2 nanospheres, bare WSNT and PLA-WSNT nanocomposites show low cytotoxicity in vitro. PLA-WSNT show enhanced flow-induced crystallization relative to PLA, motivating future study of the processing behavior and strength of these materials.
Collapse
|
23
|
Current status and outlook of biodegradable metals in neuroscience and their potential applications as cerebral vascular stent materials. Bioact Mater 2021; 11:140-153. [PMID: 34938919 PMCID: PMC8665265 DOI: 10.1016/j.bioactmat.2021.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/01/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past two decades, biodegradable metals (BMs) have emerged as promising materials to fabricate temporary biomedical devices, with the purpose of avoiding potential side effects of permanent implants. In this review, we first surveyed the current status of BMs in neuroscience, and briefly summarized the representative stents for treating vascular stenosis. Then, inspired by the convincing clinical evidence on the in vivo safety of Mg alloys as cardiovascular stents, we analyzed the possibility of producing biodegradable cerebrovascular Mg alloy stents for treating ischemic stroke. For these novel applications, some key factors should also be considered in designing BM brain stents, including the anatomic features of the cerebral vasculature, hemodynamic influences, neuro-cytocompatibility and selection of alloying elements. This work may provide insights into the future design and fabrication of BM neurological devices, especially for brain stents. The current status of the application of biodegradable metals (BM) in neuroscience was presented. We analyzed the possibility of producing biodegradable cerebrovascular Mg alloy stents for ischemic stroke treatment. Key factors in designing BM brain stents were discussed. This work may provide insights into the future design and fabrication of BM neurological devices, especially for brain stents.
Collapse
|
24
|
Schauer A, Redlich C, Scheibler J, Poehle G, Barthel P, Maennel A, Adams V, Weissgaerber T, Linke A, Quadbeck P. Biocompatibility and Degradation Behavior of Molybdenum in an In Vivo Rat Model. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7776. [PMID: 34947370 PMCID: PMC8705131 DOI: 10.3390/ma14247776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 12/03/2022]
Abstract
The biocompatibility and degradation behavior of pure molybdenum (Mo) as a bioresorbable metallic material (BMM) for implant applications were investigated. In vitro degradation of a commercially available Mo wire (ø250 µm) was examined after immersion in modified Kokubo's SBF for 28 days at 37 °C and pH 7.4. For assessment of in vivo degradation, the Mo wire was implanted into the abdominal aorta of female Wistar rats for 3, 6 and 12 months. Microstructure and corrosion behavior were analyzed by means of SEM/EDX analysis. After explantation, Mo levels in serum, urine, aortic vessel wall and organs were investigated via ICP-OES analysis. Furthermore, histological analyses of the liver, kidneys, spleen, brain and lungs were performed, as well as blood count and differentiation by FACS analysis. Levels of the C-reactive protein were measured in blood plasma of all the animals. In vitro and in vivo degradation behavior was very similar, with formation of uniform, non-passivating and dissolving product layers without occurrence of a localized corrosion attack. The in vitro degradation rate was 101.6 µg/(cm2·d) which corresponds to 33.6 µm/y after 28 days. The in vivo degradation rates of 12, 33 and 36 µg/(cm2·d) were observed after 3, 6 and 12 months for the samples properly implanted in the aortic vessel wall. This corresponds with a degradation rate of 13.5 µm/y for the 12-month cohort. However, the magnitude of degradation strongly depended on the implant site, with the wires incorporated into the vessel wall showing the most severe degradation. Degradation of the implanted Mo wire neither induced an increase in serum or urine Mo levels nor were elevated Mo levels found in the liver and kidneys compared with the respective controls. Only in the direct vicinity of the implant in the aortic vessel wall, a significant amount of Mo was found, which, however, was far below the amounts to be expected from degrading wires. No abnormalities were detected for all timepoints in histological and blood analyses compared to the control group. The C-reactive protein levels were similar between all the groups, indicating no inflammation processes. These findings suggest that dissolved Mo from a degrading implant is physiologically transported and excreted. Furthermore, radiographic and µCT analyses revealed excellent radiopacity of Mo in tissues. These findings and the unique combination with its extraordinary mechanical properties make Mo an interesting alternative for established BMMs.
Collapse
Affiliation(s)
- Antje Schauer
- Laboratory of Experimental and Molecular Cardiology, Dresden University of Technology, Heart Center Dresden, 01307 Dresden, Germany; (P.B.); (A.M.); (V.A.); (A.L.)
| | - Christian Redlich
- Dresden Branch Lab., Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Winterbergstraße 28, 01277 Dresden, Germany; (C.R.); (J.S.); (G.P.); (T.W.); (P.Q.)
| | - Jakob Scheibler
- Dresden Branch Lab., Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Winterbergstraße 28, 01277 Dresden, Germany; (C.R.); (J.S.); (G.P.); (T.W.); (P.Q.)
| | - Georg Poehle
- Dresden Branch Lab., Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Winterbergstraße 28, 01277 Dresden, Germany; (C.R.); (J.S.); (G.P.); (T.W.); (P.Q.)
| | - Peggy Barthel
- Laboratory of Experimental and Molecular Cardiology, Dresden University of Technology, Heart Center Dresden, 01307 Dresden, Germany; (P.B.); (A.M.); (V.A.); (A.L.)
| | - Anita Maennel
- Laboratory of Experimental and Molecular Cardiology, Dresden University of Technology, Heart Center Dresden, 01307 Dresden, Germany; (P.B.); (A.M.); (V.A.); (A.L.)
| | - Volker Adams
- Laboratory of Experimental and Molecular Cardiology, Dresden University of Technology, Heart Center Dresden, 01307 Dresden, Germany; (P.B.); (A.M.); (V.A.); (A.L.)
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, 01099 Dresden, Germany
| | - Thomas Weissgaerber
- Dresden Branch Lab., Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Winterbergstraße 28, 01277 Dresden, Germany; (C.R.); (J.S.); (G.P.); (T.W.); (P.Q.)
| | - Axel Linke
- Laboratory of Experimental and Molecular Cardiology, Dresden University of Technology, Heart Center Dresden, 01307 Dresden, Germany; (P.B.); (A.M.); (V.A.); (A.L.)
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, 01099 Dresden, Germany
| | - Peter Quadbeck
- Dresden Branch Lab., Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Winterbergstraße 28, 01277 Dresden, Germany; (C.R.); (J.S.); (G.P.); (T.W.); (P.Q.)
| |
Collapse
|
25
|
Putra N, Tigrine A, Aksakal S, de la Rosa V, Taheri P, Fratila-Apachitei L, Mol J, Zhou J, Zadpoor A. Poly(2-ethyl-2-oxazoline) coating of additively manufactured biodegradable porous iron. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112617. [DOI: 10.1016/j.msec.2021.112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022]
|
26
|
Shen Y, Zhang W, Xie Y, Li A, Wang X, Chen X, Liu Q, Wang Q, Zhang G, Liu Q, Liu J, Zhang D, Zhang Z, Ding J. Surface modification to enhance cell migration on biomaterials and its combination with 3D structural design of occluders to improve interventional treatment of heart diseases. Biomaterials 2021; 279:121208. [PMID: 34749074 DOI: 10.1016/j.biomaterials.2021.121208] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/29/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
The dominant source of thromboembolism in heart comes from the left atrial appendage (LAA). An occluder can close LAA and significantly reduce the risk of strokes, particularly for those patients with atrial fibrillation. However, it is technically challenging to fabricate an LAA occluder that is appropriate for percutaneous implantation and can be rapidly endothelialized to accomplish complete closure and avoid severe complication. Hypothesizing that a fast migration rate of endothelial cells on the implant surface would lead to rapid endothelialization, we fabricated an LAA occlusion device for interventional treatment with a well-designed 3D architecture and a nanoscale 2D coating. Through screening of biomaterials surfaces with cellular studies in vitro including cell observations, qPCR, RNA sequencing, and implantation studies in vivo, we revealed that a titanium-nitrogen nanocoating on a NiTi alloy promoted high migration rate of endothelial cells on the surface. The effectiveness of this first nanocoating LAA occluder was validated in animal experiments and a patient case, both of which exhibited successful implantation, fast sealing and long-term safety of the device. The mechanistic insights gained in this study will be useful for the design of medical devices with appropriate surface modification, not necessarily for improved cell adhesion but sometimes for enhanced cell migration.
Collapse
Affiliation(s)
- Yang Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China; R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, China
| | - Yumei Xie
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Anning Li
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, China
| | - Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xianmiao Chen
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, China
| | - Qingsong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Gui Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jianxiong Liu
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, China.
| | - Zhiwei Zhang
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
27
|
He J, Liu Q, Zheng S, Shen R, Wang X, Gao J, Wang Q, Huang J, Ding J. Enlargement, Reduction, and Even Reversal of Relative Migration Speeds of Endothelial and Smooth Muscle Cells on Biomaterials Simply by Adjusting RGD Nanospacing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42344-42356. [PMID: 34469116 DOI: 10.1021/acsami.1c08559] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although many tissue regeneration processes after biomaterial implantation are related to migrations of multiple cell types on material surfaces, available tools to adjust relative migration speeds are very limited. Herein, we put forward a nanomaterial strategy to employ surface modification with arginine-glycine-aspartate (RGD) nanoarrays to tune in vitro cell migration using endothelial cells (ECs) and smooth muscle cells (SMCs) as demonstrated cell types. We found that migrations of both cell types exhibited a nonmonotonic trend with the increase of RGD nanospacing, yet with different peaks-74 nm for SMCs but 95 nm for ECs. The varied sensitivities afford a facile way to regulate the relative migration speeds. Although ECs migrated at a speed similar to SMCs on a non-nano surface, the migration of ECs could be controlled to be significantly faster or slower than SMCs simply by adjusting the RGD nanospacing. This study suggests a potential application of surface modification of biomaterials on a nanoscale level.
Collapse
Affiliation(s)
- Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- Navy Medical Center, The Second Military Medical University, Shanghai 200433, China
| | - Shuang Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Runjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xinlei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiale Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
28
|
Wang X, Lei X, Yu Y, Miao S, Tang J, Fu Y, Ye K, Shen Y, Shi J, Wu H, Zhu Y, Yu L, Pei G, Bi L, Ding J. Biological sealing and integration of a fibrinogen-modified titanium alloy with soft and hard tissues in a rat model. Biomater Sci 2021; 9:5192-5208. [PMID: 34159966 DOI: 10.1039/d1bm00762a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Percutaneous or transcutaneous devices are important and unique, and the corresponding biological sealing at the skin-implant interface is the key to their long-term success. Herein, we investigated the surface modification to enhance biological sealing, using a metal sheet and screw bonded by biomacromolecule fibrinogen mediated via pre-deposited synthetic macromolecule polydopamine (PDA) as a demonstration. We examined the effects of a Ti-6Al-4V titanium alloy modified with fibrinogen (Ti-Fg), PDA (Ti-PDA) or their combination (Ti-PDA-Fg) on the biological sealing and integration with skin and bone tissues. Human epidermal keratinocytes (HaCaT), human foreskin fibroblasts (HFF) and preosteoblasts (MC3T3-E1), which are closely related to percutaneous implants, exhibited better adhesion and spreading on all the three modified sheets compared with the unmodified alloy. After three-week subcutaneous implantation in Sprague-Dawley (SD) rats, the Ti-PDA-Fg sheets could significantly attenuate the soft tissue response and promote angiogenesis compared with other groups. Furthermore, in the model of percutaneous tibial implantation in SD rats, the Ti-PDA-Fg screws dramatically inhibited epithelial downgrowth and promoted new bone formation. Hence, the covalent immobilization of fibrinogen through the precoating of PDA is promising for enhanced biological sealing and osseointegration of metal implants with soft and hard tissues, which is critical for an orthopedic percutaneous medical device.
Collapse
Affiliation(s)
- Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Xing Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China. and Department of Orthopedic Surgery, Linyi People's Hospital, Linyi 276000, China
| | - Yue Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Sheng Miao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Jingyu Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Ye Fu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Kai Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Yang Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Jiayue Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Hao Wu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Yi Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Guoxian Pei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China. and Southern University of Science and Technology Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Long Bi
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
29
|
Djorgbenoo R, Rubio MMM, Yin Z, Moore KJ, Jayapalan A, Fiadorwu J, Collins BE, Velasco B, Allado K, Tsuruta JK, Gorman CB, Wei J, Johnson KA, He P. Amphiphilic phospholipid-iodinated polymer conjugates for bioimaging. Biomater Sci 2021; 9:5045-5056. [PMID: 34127999 DOI: 10.1039/d0bm02098b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amphiphilic phospholipid-iodinated polymer conjugates were designed and synthesized as new macromolecular probes for a highly radiopaque and biocompatible imaging technology. Bioconjugation of PEG 2000-phospholipids and iodinated polyesters by click chemistry created amphiphilic moieties with hydrophobic polyesters and hydrophilic PEG units, which allowed their self-assemblies into vesicles or spiked vesicles. More importantly, the conjugates exhibited high radiopacity and biocompatibility in in vitro X-ray and cell viability measurements. This new type of bioimaging contrast agent with a Mn value of 11 289 g mol-1 was found to have a significant X-ray signal at 3.13 mg mL-1 of iodine equivalent than baseline and no cytotoxicity after 48 hours incubation of with HEK and 3T3 cells at 20 μM (20 picomoles) concentration of conjugates per well. The potential of adopting the described macromolecular probes for bioimaging was demonstrated, which could further promote the development of a field-friendly and highly sensitive bioimaging contrast agent for point-of-care diagnostic applications.
Collapse
Affiliation(s)
- Richmond Djorgbenoo
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411, USA.
| | - Mac Michael M Rubio
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411, USA.
| | - Ziyu Yin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, USA
| | - Keyori J Moore
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411, USA.
| | - Anitha Jayapalan
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, USA
| | - Joshua Fiadorwu
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411, USA.
| | - Boyce E Collins
- Engineering Research Center for Revolutionizing Biomaterials, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411, USA
| | - Brian Velasco
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | - Kokougan Allado
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, USA
| | - James K Tsuruta
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | - Christopher B Gorman
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, USA
| | - Kennita A Johnson
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | - Peng He
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411, USA.
| |
Collapse
|
30
|
Recent advances and directions in the development of bioresorbable metallic cardiovascular stents: Insights from recent human and in vivo studies. Acta Biomater 2021; 127:1-23. [PMID: 33823325 DOI: 10.1016/j.actbio.2021.03.058] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Over the past two decades, significant advancements have been made regarding the material formulation, iterative design, and clinical translation of metallic bioresorbable stents. Currently, magnesium-based (Mg) stent devices have remained at the forefront of bioresorbable stent material development and use. Despite substantial advances, the process of developing novel absorbable stents and their clinical translation is time-consuming, expensive, and challenging. These challenges, coupled with the continuous refinement of alternative bioresorbable metallic bulk materials such as iron (Fe) and zinc (Zn), have intensified the search for an ideal absorbable metallic stent material. Here, we discuss the most recent pre-clinical and clinical evidence for the efficacy of bioresorbable metallic stents and material candidates. From this perspective, strategies to improve the clinical performance of bioresorbable metallic stents are considered and critically discussed, spanning material alloy development, surface manipulations, material processing techniques, and preclinical/biological testing considerations. STATEMENT OF SIGNIFICANCE: Recent efforts in using Mg, Fe, and Zn based materials for bioresorbable stents include elemental profile changes as well as surface modifications to improve each of the three classes of materials. Although a variety of alloys for absorbable metallic stents have been developed, the ideal absorbable stent material has not yet been discovered. This review focuses on the state of the art for bioresorbable metallic stent development. It covers the three bulk materials used for degradable stents (Mg, Fe, and Zn), and discusses their advances from a translational perspective. Strategies to improve the clinical performance of bioresorbable metallic stents are considered and critically discussed, spanning material alloy development, surface manipulations, material processing techniques, and preclinical/biological testing considerations.
Collapse
|
31
|
Balla E, Daniilidis V, Karlioti G, Kalamas T, Stefanidou M, Bikiaris ND, Vlachopoulos A, Koumentakou I, Bikiaris DN. Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties-From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers (Basel) 2021; 13:1822. [PMID: 34072917 PMCID: PMC8198026 DOI: 10.3390/polym13111822] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Environmental problems, such as global warming and plastic pollution have forced researchers to investigate alternatives for conventional plastics. Poly(lactic acid) (PLA), one of the well-known eco-friendly biodegradables and biobased polyesters, has been studied extensively and is considered to be a promising substitute to petroleum-based polymers. This review gives an inclusive overview of the current research of lactic acid and lactide dimer techniques along with the production of PLA from its monomers. Melt polycondensation as well as ring opening polymerization techniques are discussed, and the effect of various catalysts and polymerization conditions is thoroughly presented. Reaction mechanisms are also reviewed. However, due to the competitive decomposition reactions, in the most cases low or medium molecular weight (MW) of PLA, not exceeding 20,000-50,000 g/mol, are prepared. For this reason, additional procedures such as solid state polycondensation (SSP) and chain extension (CE) reaching MW ranging from 80,000 up to 250,000 g/mol are extensively investigated here. Lastly, numerous practical applications of PLA in various fields of industry, technical challenges and limitations of PLA use as well as its future perspectives are also reported in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (E.B.); (V.D.); (G.K.); (T.K.); (M.S.); (N.D.B.); (A.V.); (I.K.)
| |
Collapse
|
32
|
Rao W, Cai C, Tang J, Wei Y, Gao C, Yu L, Ding J. Coordination Insertion Mechanism of
Ring‐Opening
Polymerization of Lactide Catalyzed by Stannous Octoate
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000519] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Weihan Rao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Caiyun Cai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Jingyu Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Yiman Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Caiyun Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
- Zhuhai Fudan Innovation Institute Zhuhai Guangdong 519000 China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
- Zhuhai Fudan Innovation Institute Zhuhai Guangdong 519000 China
| |
Collapse
|
33
|
Yao X, Wang X, Ding J. Exploration of possible cell chirality using material techniques of surface patterning. Acta Biomater 2021; 126:92-108. [PMID: 33684535 DOI: 10.1016/j.actbio.2021.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Consistent left-right (LR) asymmetry or chirality is critical for embryonic development and function maintenance. While chirality on either molecular or organism level has been well established, that on the cellular level has remained an open question for a long time. Although it remains unclear whether chirality exists universally on the cellular level, valuable efforts have recently been made to explore this fundamental topic pertinent to both cell biology and biomaterial science. The development of material fabrication techniques, surface patterning, in particular, has afforded a unique platform to study cell-material interactions. By using patterning techniques, chirality on the cellular level has been examined for cell clusters and single cells in vitro in well-designed experiments. In this review, we first introduce typical fabrication techniques of surface patterning suitable for cell studies and then summarize the main aspects of preliminary evidence of cell chirality on patterned surfaces to date. We finally indicate the limitations of the studies conducted thus far and describe the perspectives of future research in this challenging field. STATEMENT OF SIGNIFICANCE: While both biomacromolecules and organisms can exhibit chirality, it is not yet conclusive whether a cell has left-right (LR) asymmetry. It is important yet challenging to study and reveal the possible existence of cell chirality. By using the technique of surface patterning, the recent decade has witnessed progress in the exploration of possible cell chirality within cell clusters and single cells. Herein, some important preliminary evidence of cell chirality is collected and analyzed. The open questions and perspectives are also described to promote further investigations of cell chirality in biomaterials.
Collapse
|
34
|
Biodegradable polymeric occluder for closure of atrial septal defect with interventional treatment of cardiovascular disease. Biomaterials 2021; 274:120851. [PMID: 33965798 DOI: 10.1016/j.biomaterials.2021.120851] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
The next-generation closure device for interventional treatment of congenital heart disease is regarded to be biodegradable, yet the corresponding biomaterial technique is still challenging. Herein, we report the first fully biodegradable atrial septal defect (ASD) occluder finally coming into clinical use, which is made of biodegradable poly(l-lactic acid) (PLLA). We characterized the physico-chemical properties of PLLA fibers as well as the raw polymer and the operability of the as-fabricated occluders. Cell behaviors on material were observed, and in vivo fiber degradation and inflammatory responses were examined. ASD models in piglets were created, and 44 PLLA ASD occluders were implanted via catheter successfully. After 36 months, the PLLA ASD occluders almost degraded without any complications. The mechanical properties and thickness between newborn and normal atrial septum showed no significant difference. We further accomplished the first clinical implantation of the PLLA ASD occluder in a four-year boy, and the two-year follow-up up to date preliminarily indicated safety and feasibility of such new-generation fully biodegradable occluder made of synthetic polymers.
Collapse
|
35
|
Mao T, He Y, Gu Y, Yang Y, Yu Y, Wang X, Ding J. Critical Frequency and Critical Stretching Rate for Reorientation of Cells on a Cyclically Stretched Polymer in a Microfluidic Chip. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13934-13948. [PMID: 33739805 DOI: 10.1021/acsami.0c21186] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability of cells to sense and respond to mechanical signals from their surrounding microenvironments is one of the key issues in tissue engineering and regeneration, yet a fundamental study of cells with both cell observation and mechanical stimulus is challenging and should be based upon an appropriate microdevice. Herein we designed and fabricated a two-layer microfluidic chip to enable simultaneous observation of live cells and cyclic stretching of an elastic polymer, polydimethylsiloxane (PDMS), with a modified surface for enhanced cell adhesion. Human mesenchymal stem cells (hMSCs) were examined with a series of frequencies from 0.00003 to 2 Hz and varied amplitudes of 2%, 5%, or 10%. The cells with an initial random orientation were confirmed to be reoriented perpendicular to the stretching direction at frequencies greater than a threshold value, which we term critical frequency (fc); additionally, the critical frequency fc was amplitude-dependent. We further introduced the concept of critical stretching rate (Rc) and found that this quantity can unify both frequency and amplitude dependences. The reciprocal value of Rc in this study reads 8.3 min, which is consistent with the turnover time of actin filaments reported in the literature, suggesting that the supramolecular relaxation in the cytoskeleton within a cell might be responsible for the underlying cell mechanotransduction. The theoretical calculation of cell reorientation based on a two-dimensional tensegrity model under uniaxial cyclic stretching is well consistent with our experiments. The above findings provide new insight into the crucial role of critical frequency and critical stretching rate in regulating cells on biomaterials under biomechanical stimuli.
Collapse
Affiliation(s)
- Tianjiao Mao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yingning He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yexin Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yuqian Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yue Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xinlei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
36
|
Wang X, Wang H, He F, Zhang J. In Vitro Cell Migration through Three-Dimensional Interfaces of Varying Depths, Widths, and Curvatures on Micropatterned Polymer Surfaces. ACS APPLIED BIO MATERIALS 2020; 3:7472-7482. [DOI: 10.1021/acsabm.0c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuan Wang
- School of Biological Science and Medical Engineering, Beihang University, 100083 Beijing, China
- Hefei Innovation Research Institute, Beihang University, 230013 Hefei, China
| | - Hua Wang
- School of Biological Science and Medical Engineering, Beihang University, 100083 Beijing, China
- Hefei Innovation Research Institute, Beihang University, 230013 Hefei, China
| | - Fang He
- Hefei Innovation Research Institute, Beihang University, 230013 Hefei, China
| | - Jicong Zhang
- School of Biological Science and Medical Engineering, Beihang University, 100083 Beijing, China
- Hefei Innovation Research Institute, Beihang University, 230013 Hefei, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, 100083 Beijing, China
- Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, 100083 Beijing, China
| |
Collapse
|
37
|
In vivo degradation and endothelialization of an iron bioresorbable scaffold. Bioact Mater 2020; 6:1028-1039. [PMID: 33102944 PMCID: PMC7566209 DOI: 10.1016/j.bioactmat.2020.09.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Detection of in vivo biodegradation is critical for development of next-generation medical devices such as bioresorbable stents or scaffolds (BRSs). In particular, it is urgent to establish a nondestructive approach to examine in vivo degradation of a new-generation coronary stent for interventional treatment based on mammal experiments; otherwise it is not available to semi-quantitatively monitor biodegradation in any clinical trial. Herein, we put forward a semi-quantitative approach to measure degradation of a sirolimus-eluting iron bioresorbable scaffold (IBS) based on optical coherence tomography (OCT) images; this approach was confirmed to be consistent with the present weight-loss measurements, which is, however, a destructive approach. The IBS was fabricated by a metal-polymer composite technique with a polylactide coating on an iron stent. The efficacy as a coronary stent of this new bioresorbable scaffold was compared with that of a permanent metal stent with the name of trade mark Xience, which has been widely used in clinic. The endothelial coverage on IBS was found to be greater than on Xience after implantation in a rabbit model; and our well-designed ultrathin stent exhibited less individual variation. We further examined degradation of the IBSs in both minipig coronary artery and rabbit abdominal aorta models. The present result indicated much faster iron degradation of IBS in the rabbit model than in the porcine model. The semi-quantitative approach to detect biodegradation of IBS and the finding of the species difference might be stimulating for fundamental investigation of biodegradable implants and clinical translation of the next-generation coronary stents. A semi-quantitative OCT method was suggested to evaluate in vivo biodegradation of an iron based coronary stent IBS in a nondestructive manner. The in vivo biodegradation of IBS exhibited dependence on animal species. The endothelial coverage on the biodegradable stent IBS was better than on the commercialized nonbiodegradable stent Xience in rabbits.
Collapse
|
38
|
He Y, Mao T, Gu Y, Yang Y, Ding J. A simplified yet enhanced and versatile microfluidic platform for cyclic cell stretching on an elastic polymer. Biofabrication 2020; 12:045032. [DOI: 10.1088/1758-5090/abb295] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Liu Q, Zheng S, Ye K, He J, Shen Y, Cui S, Huang J, Gu Y, Ding J. Cell migration regulated by RGD nanospacing and enhanced under moderate cell adhesion on biomaterials. Biomaterials 2020; 263:120327. [PMID: 32927304 DOI: 10.1016/j.biomaterials.2020.120327] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022]
Abstract
While nanoscale modification of a biomaterial surface is known to influence various cell behaviors, it is unclear whether there is an optimal nanospacing of a bioactive ligand with respect to cell migration. Herein, we investigated the effects of nanospacing of arginine-glycine-aspartate (RGD) peptide on cell migration and its relation to cell adhesion. To this end, we prepared RGD nanopatterns with varied nanospacings (31-125 nm) against the nonfouling background of poly(ethylene glycol), and employed human umbilical vein endothelial cells (HUVECs) to examine cell behaviors on the nanopatterned surfaces. While HUVECs adhered well on surfaces of RGD nanospacing less than 70 nm and exhibited a monotonic decrease of adhesion with the increase of RGD nanospacing, cell migration exhibited a nonmonotonic change with the ligand nanospacing: the maximum migration velocity was observed around 90 nm of nanospacing, and slow or very slow migration occurred in the cases of small or large RGD nanospacings. Therefore, moderate cell adhesion is beneficial for fast cell migration. Further molecular biology studies revealed that attenuated cell adhesion and activated dynamic actin rearrangement accounted for the promotion of cell migration, and the genes of small G proteins such as Cdc42 were upregulated correspondingly. The present study sheds new light on cell migration and its relation to cell adhesion, and paves a way for designing biomaterials for applications in regenerative medicine.
Collapse
Affiliation(s)
- Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China; Navy Special Medical Center, The Second Military Medical University, Shanghai, 200433, China
| | - Shuang Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Kai Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yang Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shuquan Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jiale Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yexin Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China; Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
40
|
Liu R, Ding J. Chromosomal Repositioning and Gene Regulation of Cells on a Micropillar Array. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35799-35812. [PMID: 32667177 DOI: 10.1021/acsami.0c05883] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While various cell responses on material surfaces have been examined, relatively few reports are focused on significant self-deformation of cell nuclei and corresponding chromosomal repositioning. Herein, we prepared a micropillar array of poly(lactide-co-glycolide) (PLGA) and observed significant nuclear deformation of HeLa cells on the polymeric micropillars. In particular, we detected the territory positioning of chromosomes 18 and 19 and gene expression profiles of HeLa cells on the micropillar array using fluorescence in situ hybridization and a DNA microarray. Chromosome 18 was found to be translocated closer to the nuclear periphery than chromosome 19 on the micropillar array. With the repositioning of chromosomal territories, HeLa cells changed their gene expressions on the micropillar array with 180 genes upregulated and 255 genes downregulated for all of the 23 pairs of chromosomes under the experimental conditions and the employed Bioinformatics criteria. Hence, this work deepens the understanding on cell-material interactions by revealing that material surface topography can probably influence chromosomal repositioning in the nuclei and gene expressions of cells.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
41
|
Yao X, Ding J. Effects of Microstripe Geometry on Guided Cell Migration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27971-27983. [PMID: 32479054 DOI: 10.1021/acsami.0c05024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell migration on material surfaces is a fundament issue in the fields of biomaterials, cell biology, tissue engineering, regenerative medicine, etc. Herein, we aim to guide cell migration by flat microstripes with significant contrast of cell adhesion and varied geometric features of the adhesive stripes. To this end, we designed and fabricated cell-adhesive arginine-glycine-aspartate (RGD) microstripes on the nonfouling poly(ethylene glycol) (PEG) background and examined the microstripe-guided adhesion and migration of a few cell types. The migration of cell clusters adhering on the RGD regions was found to be significantly affected by the widths and arc radiuses of the guided microstripes. The cells migrated fastest on the straight microstripes with width of about 20 μm, which we defined as single file confined migration (SFCM). We also checked the possible left-right asymmetric bias of cell migration guided by combinatory microstripes with alternative wavy and quasi-straight stripes under a given width, and found that the velocity of CCW (counter clockwise) migration was higher than that of CW (clockwise) migration for primary rat mesenchymal stem cells (rMSCs), whereas no left-right asymmetric bias was observed for NIH3T3 (mouse embryonic fibroblast cell line) and Hela (human cervix epithelial carcinoma cell line) cells. Comparison of migration of cells on the nanotopological stripe and smooth surfaces further confirmed the importance of cell orientation coherence for guided cell migration and strengthened the superiority of SFCM.
Collapse
Affiliation(s)
- Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|