1
|
Hu Y, Chen C, Wang C, Guan QF, Hu Y, Ni J, Wu D, Yu SH. Femtosecond-Laser-Ablated Porous Silver Nanowire Heater with Ultralow Driven-Voltage and Ultrafast Sensitivity for Highly Efficient Crude Oil Remedy. NANO LETTERS 2025. [PMID: 39810560 DOI: 10.1021/acs.nanolett.4c05496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The development of viscous-crude oil and water separation technology is important for overcoming pollution caused by oil spills. Although some separators responding to light, electric, and temperature have been proposed, their poor structural homogeneity and inferior controllability, together with weak capillary forces, hinder the rapid salvage of viscous crude oil. Herein, a Joule-heated hydrophobic porous oil/water separator is reported, which has advantages of low energy consumption (169.7 °C·cm2·W-1), short thermal-response time (5 s) and rapid heating rate (13 °C/s). Under an ultralow voltage of 4.5 V, crude oil could infiltrate through the separator within 5 s. COMSOL simulation reveals the thermodynamics of crude oil's unidirectional collection. Significantly, the gradient wettability originating from the asymmetrical temperature on the dual face is the dominant driving force for efficient oil/water separation. Finally, a homemade device is successfully deployed for continuous viscous oil/water separation. This work provides a new avenue for viscous oil remedy.
Collapse
Affiliation(s)
- Youdi Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chao Chen
- Department of Materials Physics and New Energy Device, School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Chaowei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qing-Fang Guan
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jincheng Ni
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Sahoo P, Ramachandran AA, Sow PK. A comprehensive review of fundamentals and future trajectories in oil-water separation system designs with superwetting materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122641. [PMID: 39362169 DOI: 10.1016/j.jenvman.2024.122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
The rapid increase in the production of oily wastewater by industrial and daily activities, oil spill accidents, etc., has led to critical environmental issues. The solution to oil-induced pollution lies in developing efficient oil-water separation technologies. Recently, materials with extreme wettability, particularly those exhibiting superhydrophilic with superoleophobic or superhydrophobic with superoleophilic properties, have emerged as promising solutions for achieving highly efficient and selective oil-water separation. This review offers a comprehensive overview of system designs utilizing such materials for selective oil-water separation. Here, we discuss the rationale underlying the design strategy for the systems used for the separation process. Based on the broad scenarios utilizing oil-water separation, two primary groups of system designs are identified: those handling enclosed oil-water mixtures, such as treating oily wastewater before discharge, and those addressing open-to-air hypaethral oil-water mixtures, such as in the case of oil spills, oil on water bodies post oily wastewater discharge. The review traces the evolution of system designs from batch processing to continuous processing systems, identifies commonalities, and discusses the rationale and underlying design constraints. This analysis can guide the selection of appropriate systems for testing materials in oil-water separation and provides insights into future design development for further real-life deployment.
Collapse
Affiliation(s)
- Priyanka Sahoo
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, NH 17B, Bypass, Road, Zuarinagar, Sancoale, Goa, 403726, India.
| | - Ankitha Athreya Ramachandran
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, NH 17B, Bypass, Road, Zuarinagar, Sancoale, Goa, 403726, India.
| | - Pradeep Kumar Sow
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, NH 17B, Bypass, Road, Zuarinagar, Sancoale, Goa, 403726, India.
| |
Collapse
|
3
|
Zhang C, Cai T, Ge-Zhang S, Mu P, Liu Y, Cui J. Wood Sponge for Oil-Water Separation. Polymers (Basel) 2024; 16:2362. [PMID: 39204585 PMCID: PMC11358951 DOI: 10.3390/polym16162362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
In addition to filtering some sediments, hydrophobic wood sponges can also absorb many organic solvents, particularly crude oil. The leakage of crude oil poses a serious threat to the marine ecosystem, and oil mixed with water also generates great danger for its use. From the perspective of low cost and high performance, wood sponges exhibit great potential for dealing with crude oil pollution. Wood sponge is a renewable material. With a highly oriented layered structure and a highly compressible three-dimensional porous frame, wood sponges are extremely hydrophobic, making them ideal for oil-water separation. Currently, the most common approach for creating wood sponge is to first destroy the wood cell wall to obtain a porous-oriented layered structure and then enhance the oil-water separation ability via superhydrophobic treatment. Wood sponge prepared using various experimental methods and different natural woods exhibits distinctive properties in regards to robustness, compressibility, fatigue resistance, and oil absorption ability. As an aerogel material, wood sponge offers multi-action (absorption, filtration) and reusable oil-water separation functions. This paper introduces the advantages of the use of wood sponge for oil-water separation. The physical and chemical properties of wood sponge and its mechanism of adsorbing crude oil are explained. The synthesis method and the properties are discussed. Finally, the use of wood sponge is summarized and prospected.
Collapse
Affiliation(s)
- Chang Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China; (C.Z.)
| | - Taoyang Cai
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Shangjie Ge-Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China; (C.Z.)
| | - Pingxuan Mu
- College of Science, Northeast Forestry University, Harbin 150040, China; (C.Z.)
| | - Yuwen Liu
- College of Science, Northeast Forestry University, Harbin 150040, China; (C.Z.)
| | - Jingang Cui
- College of Science, Northeast Forestry University, Harbin 150040, China; (C.Z.)
| |
Collapse
|
4
|
He X, Lu J, Liu J, Wu Z, Li B, Chen Z, Tao W, Li Z. Superhydrophobic Co-MOF-based sponge for efficient oil-water separation utilizing photothermal effect. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134090. [PMID: 38513439 DOI: 10.1016/j.jhazmat.2024.134090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Effectively addressing crude oil spills remains a global challenge due to its high viscosity and limited flow characteristics. In this study, we successfully prepared a modified sponge (PCP@MS) by embedding the photothermal material of Co-HHTP and coating the melamine sponge (MS) with low-surface-energy polydimethylsiloxane (PDMS). The PCP@MS exhibited outstanding hydrophobicity with WCA of 160.2° and high oil absorption capacity of 59-107 g/g. The PCP@MS showed high separation efficiency of 99.2% for various oil-water mixtures, along with notable self-cleaning properties and mechanical stability. The internal micro-nano hierarchical structure on the sponge surface significantly enhanced light absorption, synergizing with the photo-thermal conversion properties of Co-HHTP, enabled PCP@MS to achieve a surface temperature of 109.2 °C under 1.0 solar light within 300 s. With the aid of solar radiation, PCP@MS is able to heat up quickly and successfully lowering the viscosity of the surrounding crude oil, resulting in an oil recovery rate of 8.76 g/min. Density functional theory (DFT) calculation results revealed that Co-HHTP featured a zero-gap band structure, rendering advantageous electronic properties for full-wavelength light absorption. This in situ solar-heated absorbent design is poised to advance the practical application of viscous oil spill cleanup and recovery.
Collapse
Affiliation(s)
- Xuanting He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jihan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jiaxiang Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zixuan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Boyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhong Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wenquan Tao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
5
|
Yan D, Yin K, He Y, Liu Y, Wang L, Deng Q, He J, Awan SU, Khalil ASG. Recent advances in functional micro/nanomaterials for removal of crude oil via thermal effects. NANOSCALE 2024; 16:7341-7362. [PMID: 38511991 DOI: 10.1039/d4nr00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Crude oil is one of the most widely used energy and industrial raw materials that is crucial to the world economy, and is used to produce various petroleum products. However, crude oil often spills during extraction, transportation and use, causing negative impacts on the environment. Thus, there is a high demand for products to remediate leaked crude oil. Among them, oleophilic and hydrophobic adsorbents can absorb crude oil through thermal effects and are research hotspots. In this review, we first present an overview of wettability theory, the heating principles of various thermal effects, and the theory of reducing crude oil viscosity by heating. Then we discuss adsorbents based on different heating methods including the photothermal effect, Joule heating effect, alternating magnetic field heating effect, and composite heating effect. Preparation methods and oil adsorption performance of adsorbents are summarized. Finally, the advantages and disadvantages of various heating methods are briefly summarized, as well as the prospects for future research.
Collapse
Affiliation(s)
- Duanhong Yan
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Kai Yin
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Yuchun He
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Yao Liu
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Lingxiao Wang
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Qinwen Deng
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Jun He
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Saif Ullah Awan
- Department of Electrical Engineering, NUST College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST), Islamabad 54000, Pakistan
| | - Ahmed S G Khalil
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST), 179 New Borg El-Arab City, Alexandria, Egypt
- Environmental and Smart Technology Group, Faculty of Science, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
6
|
Dong L, Li J, Zhang D, Chen X, Guan Y, Wang Z, Li Y. Coupling Carbon-Based Composite Phase Change Materials with a Polyurethane Sponge for Sustained and Efficient Solar-Driven Cleanup of Viscous Crude Oil Spill. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37517-37529. [PMID: 37497553 DOI: 10.1021/acsami.3c07360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The efficient cleanup of crude oil spills is a worldwide problem due to their high viscosity and low fluidity. Under the assistance of solar radiation, adsorbents with in situ heating function are becoming the ideal candidates to solve this problem. In this study, a new strategy coupling a polyurethane (PU) sponge with phase change materials (PCMs) is proposed to realize the efficient utilization of solar energy and crude oil cleanup. Wormlike carbon nanotubes/mesoporous carbon (CNTs/MC) with a core-shell structure was used to encapsulate polyethylene glycol (PEG), which was then introduced into the PU sponge for photothermal conversion and thermal storage. After coating with a polydimethylsiloxane (PDMS) layer, the sponge was further endowed with hydrophobic characteristics. Additionally, PDMS can function as a binder between PEG@CNTs/MC and sponge skeleton. The resulting PEG@CNTs/MC/PU/PDMS (named as PEG@CMPP) exhibited excellent photothermal conversion and high absorption capacity for high-viscosity crude oil. Most importantly, thanks to the heat storage properties of PEG, the stored heat can be sustainably transferred to the surrounding crude oil to promote its continuous absorption even under insufficient light intensity conditions. The crude oil absorption capacity of PEG@CMPP-3 reached approximately 0.96 g/cm3 even after the light source was removed, which manifested the distinctive advantages compared to the conventional photothermal adsorbent. The proposed approach integrates the high efficiency of solar-assisted heating and energy-conserving advantage, thereby providing a feasible strategy for highly efficient remediation of viscous crude oil spills.
Collapse
Affiliation(s)
- Limei Dong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Junfeng Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Dan Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Xiuping Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Yihao Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| |
Collapse
|
7
|
Chen J, Sun M, Ni Y, Zhu T, Huang J, Li X, Lai Y. Superhydrophobic polyurethane sponge for efficient water-oil emulsion separation and rapid solar-assisted highly viscous crude oil adsorption and recovery. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130541. [PMID: 36493650 DOI: 10.1016/j.jhazmat.2022.130541] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Rapid and efficient cleaning of oily wastewater and high viscosity crude oil spills is still a global challenge. Conventional three-dimensional porous adsorbents are ineffective for oil-water separation in harsh environment and are restricted to the low fluidity of high viscosity crude oil at room temperature. Increasing temperature can enormously improve the fluidity of viscous crude oil. Herein, the polydimethylsiloxane (PDMS) /carbon black (CB) -modified polyurethane sponge (PU) were prepared by a simple one-step dip-coating method. PDMS/CB@PU (PCPU) exhibits high adsorption capacity to various oils and organic liquid (28.5-68.7 g/g), strong mechanical properties (500 cycles at 50%), outstanding reusability (100 cycles of adsorption and desorption) and excellent environmental stability due to the special PDMS/CB coating. The maximum surface temperature of PCPU sponge can reach 84.7 ℃ under 1 sunlight irradiation. Therefore, the PCPU sponge can rapidly heat and enhance the fluidity of viscous crude oil, significantly speeding up the viscous oil recovery process with the maximum adsorption capacity of 44.7 g/g. In addition, the PCPU sponge can also combine with the vacuum pump to realize the continuous and rapid repair of viscous oil spills from the seawater surface. In consideration of its simple preparation, cost-effectiveness and high oil absorption ability, this solar-assisted self-heating adsorbent provides a new direction for large-scale cleanup and recycling of viscous crude oil spill on the seawater surface.
Collapse
Affiliation(s)
- Jiajun Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Ming Sun
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Yimeng Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Tianxue Zhu
- Qingyuan Innovation Laboratory, Quanzhou 362801, PR China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China
| | - Xiao Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China.
| |
Collapse
|
8
|
Song C, Jin Y, Gu X, Shi J. A solar-driven self-repairing sponge for efficient recovery of crude oil. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Ma J, Ma S, Xue J, Xu M, Zhang J, Li J, Zhao Z, Zhao S, Pan J, Ye Z. Synthesis of elastic hydrophobic biomass sponge for rapid solar-driven viscous crude-oil cleanup absorption, oil-water separation and organic pollutants treating. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
He Q, Guo Z, Ma S, He Z. Recent Advances in Superhydrophobic Papers for Oil/Water Separation: A Mini-Review. ACS OMEGA 2022; 7:43330-43336. [PMID: 36506134 PMCID: PMC9730453 DOI: 10.1021/acsomega.2c05886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The separation of oceanic spilled oils and industrial oily wastewaters becomes a great challenge, and it is highly desirable to develop efficient materials for oil/water separation. As abundant sustainable resources, superhydrophobic papers (SPs) have drawn much attention because of low-cost and efficient oil/water separation. Herein, this mini-review summarizes recent advances of SPs in terms of design, preparation, and properties. On the basis of the many excellent properties of SPs (i.e., self-cleaning, durability, chemical corrosion resistance, and reusability), the oil/water separation performances (i.e., separation efficiency, permeation flux, and recyclability) of SPs as well as the corresponding mechanisms are discussed. The efficient oil/water separation property and recyclability of SPs make them promising candidates in the field of oily wastewater treatment.
Collapse
Affiliation(s)
- Qingzhen He
- Center
for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM)
Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Zhibiao Guo
- Center
for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM)
Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Shiyu Ma
- Center
for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM)
Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Zhiwei He
- Center
for Advanced Optoelectronic Materials, Anti-Icing Materials (AIM)
Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| |
Collapse
|
11
|
Li Z, Lin Z, Tian Q, Yue X, Qiu F, Zhang T. Solar-heating superhydrophobic modified melamine sponge for efficient recovery of viscous crude oil. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129799. [PMID: 36027746 DOI: 10.1016/j.jhazmat.2022.129799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Developing self-heating sorbents for rapid clean-up of viscous oil spills by using clean solar energy is attracting attention. Still, simple and scalable fabrication approaches of solar-heating sorbents remain challenging. Herein, a facile and practical modification strategy was presented to develop a solar-heating modified melamine sponge (rGO/CNT/MS) by dip-coating layer-by-layer (LBL) electrostatic assembly of GO and CNT with opposite charges onto MS skeleton followed by thermal reduction, without any complicated microfabrication and hydrophobic modification processes. Based on the intercalation of CNT into rGO layers and strong conjugation/hyperconjugation synergy of rGO and CNT, the light sorption ability, photothermal conversion, hydrophobicity and mechanical properties of the rGO/CNT/MS sorbent were further improved compared to rGO/MS and CNT/MS. The surface temperature could reach 75 ℃ in 100 s under 1 sun radiation (1 kW m-2), which would effectively absorb crude oil by in-situ sunlight-heating to reduce its viscosity. The sorption speed increased by about 30 times compared with no sunlight irradiation, and the continuous sorption capacity was up to 1.71 g/cm2 at 610 s driven by pump force. The easily-prepared solar-assisted rGO/CNT/MS with high photothermal performance, corrosion resistance, mechanical compressibility, coating firmness and oil sorption ability showed huge potential application in oil spill recovery.
Collapse
Affiliation(s)
- Zhangdi Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Zhipeng Lin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Qiong Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Xuejie Yue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China; Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China; Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
12
|
Jiang Y, Lu H, Yuan X, Zhang Y, Lei L, Li Y, Sun W, Liu J, Scherman D, Liu Y. A hollow Co 3-xCu xS 4 with glutathione depleting and photothermal properties for synergistic dual-enhanced chemodynamic/photothermal cancer therapy. J Mater Chem B 2022; 10:8082-8093. [PMID: 36128978 DOI: 10.1039/d2tb01590k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemodynamic therapy has become an emerging cancer treatment strategy, in which tumor cells are killed through toxic reactive oxygen species (ROS), especially hydroxyl radicals (˙OH) produced by the Fenton reaction. Nevertheless, low ROS generation efficiency and ROS depletion by cellular antioxidant systems are still the main obstacles in chemodynamic therapy. In the present work, we propose a dually enhanced chemodynamic therapy obtained by inhibiting ˙OH consumption and promoting ˙OH production based on the administration of bimetallic sulfide Co3-xCuxS4 nanoparticles functionalized by polyethylene glycol. These bimetallic nanoparticles display glutathione depleting and photothermal properties. The nanoparticles are gradually degraded in a tumor microenvironment, resulting in Co2+ and Cu2+ release. The released Co2+ triggers a Fenton-like reaction that turns endogenous hydrogen peroxide into highly toxic ˙OH. In the cellular environment, Cu2+ ions are reduced to Cu+ by endogenous GSH, which decreases the intracellular antioxidant capacity and additionally up-regulates ˙OH production via the Cu+-induced Fenton-like reaction. Moreover, under near-infrared light irradiation, the bimetallic nanoparticles display a photothermal conversion efficacy of 46.7%, which not only improves chemodynamic therapy via boosting a Fenton-like reaction but results in photothermal therapy through hyperthermia. Both in vitro cancer cell killing and in vivo tumor ablation experiments show that the bimetallic nanoparticles display outstanding therapeutic efficacy and negligible systemic toxicity, indicating their anticancer potential.
Collapse
Affiliation(s)
- Ying Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China.
| | - Hao Lu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China.
| | - Xiangyang Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China.
| | - Yuanyuan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China.
| | - Lingli Lei
- Small Molecule Drugs Sichuan Key Laboratory, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, P. R. China
| | - Yongcan Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China.
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, P. R. China
| | - Jing Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China.
| | - Daniel Scherman
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS); UMR 8258 CNRS; U 1022 Inserm; Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, F-75270 cedex 06, France.
| | - Yingshuai Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
13
|
Wu Z, Zheng K, Cheng Z, Zhou S. Solar-Assisted Superhydrophobic MoS 2/PDMS/MS Sponge for the Efficient Cleanup of Viscous Oil. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10902-10914. [PMID: 36004428 DOI: 10.1021/acs.langmuir.2c01809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Industrialization releases many high-viscosity oil pollutants into the environment, requiring a hydrophobic recyclable oil-absorbing material. Therefore, a self-heating and superhydrophobic melamine sponge (MS) by connecting polydimethylsiloxane (PDMS) was coated with functionalized molybdenum disulfide (MoS2) nanosheets on a three-dimensional microstructure of a commercial MS (MoS2/PDMS/MS) via a simple and low-cost dip-coating method. The prepared sponge showed a water contact angle of 151.8°, indicating that the modified sponge exhibited superhydrophobicity. Due to the addition of MoS2, the modified sponge can convert light into heat, and its surface could be heated to 59.7 °C within 30 s. Because of the excellent MoS2/PDMS/MS photothermal performance, the sponge could decrease the viscosity of the high-viscosity oil, absorbing the high-viscosity oil efficiently. After simultaneous thermal analysis and repeated compression tests, the modified sponge exhibited high thermochemical stability, mechanical property, and reusability. This superhydrophobic multifunctional sponge shows excellent potential for high-viscosity oil absorption.
Collapse
Affiliation(s)
- Zhuobin Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Ke Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550003, P. R. China
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zuqin Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Shaoqi Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550003, P. R. China
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
14
|
Li SL, He JH, Li Z, Lu JH, Liu BW, Fu T, Zhao HB, Wang YZ. A sponge heated by electromagnetic induction and solar energy for quick, efficient, and safe cleanup of high-viscosity crude oil spills. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129272. [PMID: 35739787 DOI: 10.1016/j.jhazmat.2022.129272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Frequent oil spills have caused severe environmental and ecological damage. Effective cleanup has become a complex challenge owing to the poor flowability of viscous crude oils. The current method of solar heating to reduce the viscosity of heavy oil is only suitable during sunny days, while the use of Joule heating is limited by the risk of direct exposure to high-voltage electricity. Herein, we demonstrate a noncontact electromagnetic induction and solar dual-heating sponge for the quick, safe, and energy-saving cleanup of ultrahigh-viscosity heavy oil. The resulting sponge with magnetic, conductive, and hydrophobic properties can be rapidly heated to absorb heavy oil under alternating magnetic fields, solar irradiation, or both of these conditions. By constructing theoretical models and fitting the actual data, an in-depth analysis of induction and solar heating processes is carried out. The sponge has excellent resilience and stability, indicating its reusability, fast and continuous adsorption (16.17 g in 10 s), and large capacity (75-81 g/g, the highest value ever) for soft asphalt (a highly viscous crude oil). This work provides a new noncontact dual-heating strategy for heavy oil cleanup, in which absorbents use induction heating during an emergency and then switch to partial or full solar heating to save energy in sunny conditions. ENVIRONMENTAL IMPLICATION: Heavy oils stranded on the beach or floating on water can kill underwater plants by blocking sunlight, or trap water birds and other animals. Heavy oil also contains aromatic substances that are toxic to aquatic organisms. Although oil spills near shallow water cannot be cleaned up by fences or other machinery, an oil adsorbent can deal with this problem. However, common adsorbents cannot effectively absorb high-viscosity oils, such as heavy oil. In this paper, an induction and solar dual-heating sponge is developed for the effective cleanup of high-viscosity oil.
Collapse
Affiliation(s)
- Shu-Liang Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jie-Hao He
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhen Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jia-Hui Lu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo-Wen Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Teng Fu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hai-Bo Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
15
|
Zheng D, Yao W, Sun C, Chen X, Wang Z, Wang B, Tan H, Zhang Y. Solar-assisted self-heating Ti 3C 2T x-decorated wood aerogel for adsorption and recovery of highly viscous crude oil. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129068. [PMID: 35650730 DOI: 10.1016/j.jhazmat.2022.129068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/24/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Frequent oil-spill accidents have posed serious threats to ecosystem balance and the efficiency of resources use. Hydrophobic adsorbents that can adsorb and recover oil without causing secondary pollution are ideal candidates for the remediation of oil contamination in water. However, these composites are inefficient for crude oil-spills cleanup because crude oil has low liquidity of at room temperature. Increasing the temperature can effectively enhance the flowability of crude oil. To achieve efficient crude-oil heating and removal in situ, wood aerogels were immersed in Ti3C2Tx suspensions and then coated with polydimethylsiloxane (PDMS) to obtain a solar-heated adsorbent (PT-WA). The prepared PT-WA exhibits super-hydrophobicity (water contact angle: 154° ± 2°), mechanical robustness (withstanding 20 loading-unloading cycles under 50% strain without structural damage), strong solar absorption, and favorable photothermal-conversion capability (rising to ~85 °C within 90 s under 1.5 sun). Owing to these advantages, PT-WA is an effective adsorbent for crude oil cleanup. In addition, a 'self-heating crude oil collector' was assembled for the fast adsorption and restoration of crude oil from the water surface. This solar-assisted self-heating sorbent offers a competitive platform for the cleanup and recycling of viscous crude oil spills.
Collapse
Affiliation(s)
- Dingyuan Zheng
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Wenrui Yao
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Ce Sun
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Xiaojian Chen
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Zanru Wang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Baiwang Wang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Haiyan Tan
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Yanhua Zhang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
16
|
Miao S, Xiong Z, Zhang J, Wu Y, Gong X. Polydopamine/SiO 2 Hybrid Structured Superamphiphobic Fabrics with Good Photothermal Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9431-9440. [PMID: 35875891 DOI: 10.1021/acs.langmuir.2c01629] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, photothermal materials that can convert light into heat energy have attracted extensive attention. In this work, we report a simple and effective approach to construct a self-cleaning photothermal superamphiphobic fabric. Dopamine (DA) can self-polymerize into polydopamine (PDA) and adhere to the surface of cotton fabric as a secondary reaction platform. Then, SiO2 nanoparticles were in situ grown on the PDA@fabric surface by the sol-gel method. The PDA clusters can not only provide good photothermal conversion performance but also be integrated with SiO2 to create micro-nano rough structures. Finally, the surface of SiO2 was modified by the long chain of fluorosilane to decrease the fabric surface energy, resulting in superamphiphobicity. The contact angles of water, ethylene glycol, and pump oil on the modified fabric surface could reach 161.1, 158.1, and 142.2°, respectively, making the fabric resistant to contamination by water, common beverages, and oil. Due to the adhesion of the PDA layer, the strong binding force between the fabric and SiO2 particles enabled the modified fabric to withstand various chemical and mechanical attacks, showing excellent mechanical robustness and harsh environmental stability. More importantly, the surface temperature of the modified fabric could be increased from 19.6 to 37.0 °C, which is close to the human body temperature, under the irradiation of simulated sunlight (I = 15 A, 300 s). The photothermal superamphiphobic fabrics with self-cleaning properties show great promise in the photothermal conversion field.
Collapse
Affiliation(s)
- Shiwei Miao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Zheng Xiong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jixi Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yongzhong Wu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
17
|
Yu J, Yue D, Sun D, Li B, Ge Y, Lin Y. Micron flower-like CuO light trapping grown on the copper foam skeleton combined with PVDF membrane for solar-driven vacuum membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
18
|
Keller C, Kurita-Oyamada H, Grayson SM, Denslow ND. Physical Evidence of Oil Uptake and Toxicity Assessment of Amphiphilic Grafted Nanoparticles Used as Oil Dispersants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7917-7923. [PMID: 35580268 PMCID: PMC9227714 DOI: 10.1021/acs.est.1c08564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Herein, we report the toxicity evaluation of a new prototype dispersant system, silicon dioxide nanoparticles (NPs) functionalized with (3-glycidoxypropyl)triethoxysilane (GPS) and grafted poly(ε-caprolactone)-block-poly[oligo(ethylene glycol)methyl methacrylate mono-methyl ether] (NP-PCL-POEGMA). This serves as a follow up of our previous study where grafted silicon dioxide NPs functionalized with GPS and grafted hyperbranched poly(glycidol) (NP-HPG) were evaluated for reducing the toxicity in embryo, juvenile, and adult fish populations. In this study, the NP-HPG sample is used as a baseline to compare against the new NP-PCL-POEGMA samples. The relative size was established for three NP-PCL-POEGMA samples via cryogenic transmission electron microscopy. A quantitative mortality study determined that these NPs are non-toxic to embryo populations. An ethoxyresorufin-O-deethylase assay was performed on these NP-PCL-POEGMA samples to test for reduced cytochrome P450 1A after the embryos were exposed to the water-accommodated fraction of crude oil. Overall, these NP-PCL-POEGMA NPs better protected the embryo populations than the previous NP-HPG sample (using a protein activity end point), showing a trend in the right direction for prototype dispersants to replace the commercially utilized Corexit.
Collapse
Affiliation(s)
- Christopher
B. Keller
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hajime Kurita-Oyamada
- Department
of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611, United States
| | - Scott M. Grayson
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Nancy D. Denslow
- Department
of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
19
|
Chen X, Yang Y, Guan Y, Luo C, Bao M, Li Y. A solar-heated antibacterial sodium alginate aerogel for highly efficient cleanup of viscous oil spills. J Colloid Interface Sci 2022; 621:241-253. [PMID: 35461139 DOI: 10.1016/j.jcis.2022.04.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS Major oil spills highlight the need for environmentally responsible and cost-effective recovery technologies. However, challenges remain for heavy oil spill recovery because of its high viscosity and low fluidity. To achieve this goal, an ecofriendly bio-based aerogel with efficient photothermal conversion ability was developed as a novel absorbent to achieve the fast removal of heavy oil spill by reducing the oil viscosity. EXPERIMENTS From the renewable and abundant raw material sodium alginate (SA), hydrophobic and antibacterial SA/graphene oxide/ZIF-8 aerogel (SAGZM) was successfully fabricated via freezing-drying and chemical vapor deposition (CVD) technique. A series of characterization and tests, including aerogel structure, selective wettability, photothermal conversion ability, crude oil removal capability, and antibacterial ability, have been investigated in detail. SAGZM aerogels have rich pore structure, high porosity, excellent mechanical properties, and better photothermal conversion efficiency. FINDINGS Under sunlight illumination, the recovery ability of SAGZM for heavy crude oil was investigated through infrared thermal imaging, oil permeability behavior analysis, and the continuous absorption for crude oil. In addition, these results are well supported by the theoretical liquid absorption coefficient. This study indicates that SAGZM is highly efficient in in situ regulating oil viscosity through its remarkably photothermal conversion capability. Importantly, SAGZM possesses an excellent antibacterial ability that is often neglected in the design of environmentally friendly materials in extending its service life. The findings of this work not only provide an eco-friendly bio-based aerogel material but also demonstrate that the photo-responsive SAGZM is efficient in heavy crude oil absorption. The proposed solar-heated SA-based aerogel provides a sustainable approach and material to solve the recovery problem of viscous crude oil spills.
Collapse
Affiliation(s)
- Xiuping Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Yushuang Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Yihao Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Chengyi Luo
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China.
| |
Collapse
|
20
|
Yin Z, Chen X, Zhou T, Xue M, Li M, Liu K, Zhou D, Ou J, Xie Y, Ren Z, Luo Y, Hong Z. Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Wang PL, Ma C, Yuan Q, Mai T, Ma MG. Novel Ti 3C 2T x MXene wrapped wood sponges for fast cleanup of crude oil spills by outstanding Joule heating and photothermal effect. J Colloid Interface Sci 2022; 606:971-982. [PMID: 34487944 DOI: 10.1016/j.jcis.2021.08.092] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/15/2022]
Abstract
Remediation of crude oil spills is a great challenge owing to the poor mobility and high viscosity of crude oil. Herein, a porous polydimethylsiloxane@wood sponge/MXene (PDMS@WSM) with outstanding compressibility and hydrophobic/lipophilic ability was demonstrated as crude oil absorbent. The surface temperature of PDMS@WSM could quickly rise to 80 °C with a working voltage of 4 V and to 66 °C under simulated sunlight irradiation of 1.5 KW m-2, respectively. Due to the excellent Joule heating and photothermal conversion effect, the PDMS@WSM displayed maximum adsorption capacity of 11.2×105 g m-3 within 6 min. The PDMS@WSM showed preferable reusability and cycle stability because of its brilliant compressibility. Moreover, the oil-collecting device based on PDMS@WSM could continuously collect crude oil spills, achieving an active collection of 25 mL crude oil within 150 s. Therefore, the porous PDMS@WSM absorbent exhibited great potential for crude oil spills remediation, energy regulation, and desalination of hypersaline water.
Collapse
Affiliation(s)
- Pei-Lin Wang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Chang Ma
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Qi Yuan
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Tian Mai
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Ming-Guo Ma
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
22
|
Yan L, Wang W, Zhao Q, Zhu Z, Liu B, Hu C. Construction of perylene diimide/CuS supramolecular heterojunction for the highly efficient visible light-driven environmental remediation. J Colloid Interface Sci 2022; 606:898-911. [PMID: 34481249 DOI: 10.1016/j.jcis.2021.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022]
Abstract
Developing photocatalysts that are inexpensive and efficient in degrading pollutants are essential for environmental remediation. Herein, a novel system of perylene diimide (PDI)/CuS p-n heterojunction was synthesized by a two-step self-assembly strategy for removal of tetracycline in waste water. Results showed that PDI/CuS-10% exhibited highest photocatalytic behavior. The apparent rate constants for tetracycline (TC) degradation for the blend were 5.27 and 2.68 times higher than that of CuS or PDI, respectively. The enhancement of photocatalytic activity was mainly attributed to the π-π stacking and p-n junction, which can accelerate the separation of the photo-generated h+-e- pairs. Besides, the light absorption of PDI/CuS from 800 to 200 nm was significantly enhanced and the absorption edge even reached the near-infrared region, which also played an important role in providing desired photocatalytic properties. Surprisingly, PDI/CuS could maintain high catalytic activity even after 5 cycles under simulated conditions, indicating that the composite had high potential for practical applications. Owing to high efficiency, low cost and wide application range, the PDI/CuS nanocomposites are promising candidates for environmental remediation.
Collapse
Affiliation(s)
- Lingfeng Yan
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Wei Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Department of Textile, Garment & Design, Changshu Institute of Technology, Suzhou 215500, China
| | - Qiangqiang Zhao
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhijia Zhu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Baojiang Liu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| | - Chunyan Hu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
23
|
Superhydrophobic polyaniline absorbent for solar-assisted adsorption of highly viscous crude oil. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Li Z, Tian Q, Xu J, Sun S, Cheng Y, Qiu F, Zhang T. Easily Fabricated Low-Energy Consumption Joule-Heated Superhydrophobic Foam for Fast Cleanup of Viscous Crude Oil Spills. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51652-51660. [PMID: 34677939 DOI: 10.1021/acsami.1c13574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Effective cleanup of viscous crude oil spills remains a persistent and crippling challenge. Herein, this work presents a Joule-heated superhydrophobic flower-like Cu8(PO3OH)2(PO4)4·7H2O-coated copper foam (SHB-CF@CP) for rapid cleanup of viscous crude oil spills via a facile strategy. The SHB-CF@CP shows outstanding water repellency and excellent stability of hydrophobicity in harsh environments. Due to the high electrical conductivity and thermal conductivity, it requires lower power energy consumption (less than 1 V of voltage input) to raise the temperature significantly, which dramatically reduces the viscosity of crude oil (from ∼2 × 105 to ∼60 mPa s) and then increases the oil absorption rate, effectively avoiding the poor mobility and ineffective absorption of viscous crude oil. Notably, the SHB-CF@CP can achieve continuous and quick cleanup of crude oil under in situ pumping force. The high-performance Joule-heated SHB-CF@CP sorbent with a strong porous skeleton, corrosion resistance, and low predicted operational costs holds a promise of promoting its practical applications in the cleanup of intractable and large-area viscous oil spills.
Collapse
Affiliation(s)
- Zhangdi Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Qiong Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Jicheng Xu
- Zhenjiang Key Laboratory of Functional Chemistry, Institute of Medicine and Chemical Engineering, Zhenjiang College, Zhenjiang 212028, China
| | - Shouzhen Sun
- Liaohe Oilfield Company of China National Petroleum Corporation, Panjin 124011, Liaoning Province, China
| | - Ying Cheng
- School of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710065, Shaanxi Province, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| |
Collapse
|
25
|
Yue X, Zhang Z, Zhang T, Yang D, Xu J, Qiu F. Simply realizing durable PVDF/candle soot foam with excellent solar absorption for solar-assisted recovery of heavy oil spill. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Zhu Y, Du Y, Su J, Mo Y, Yu S, Wang Z. Durable superhydrophobic melamine sponge based on polybenzoxazine and Fe3O4 for oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Dong T, Li Q, Tian N, Zhao H, Zhang Y, Han G. Concus Finn Capillary driven fast viscous oil-spills removal by superhydrophobic cruciate polyester fibers. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126133. [PMID: 34229398 DOI: 10.1016/j.jhazmat.2021.126133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Developing functional materials integrating multi-tasking oil/water separation performances is significant but challenging for the remediation of large-scale oil spills causing pernicious environmental damages. Herein, a novel Concus Finn Capillary driven oil sorbent (OSCPF) fabricated by aligning superhydrophobic cruciate polyester fibers based on yarn spinning mechanism is designed to realize the clean-up of oil spills and various oil/water mixtures at high speeds. Instantaneous oil diffusion is achieved by abrupt Concus Finn Capillary driven oil-flows along aligned channels. This advance reduces the penetrating time for viscous crude oils by 95.00% comparing with that of non-oriented circular polyester fibers. The OSCPF possess great oil sorption capacity of 54.36-124.71 g/g and can separate oils from immiscible oil/water mixtures, including seawater, soap-water, CuCl2-water, and KMnO4-water, and surfactant-stabilized O/W emulsions by the way of adsorption with satisfactory separation efficiency (99.41-99.83%). Especially, the OSCPF is effectively used to enclose oil spills to prevent rapid oil diffusion and in-situ continuously collect the spillages from water surface and underwater by pumping device with recovery rates of 15,727-104,227 L·m-2·h-1. Considering the unique structural design, fast oil sorption speed, and low operating cost, this work provides a prospective oil remover addressing the remediation of catastrophic multi-tasking oil/water pollutions.
Collapse
Affiliation(s)
- Ting Dong
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao, PR China.
| | - Qiang Li
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Na Tian
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Haiguang Zhao
- Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Yuanming Zhang
- Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China.
| | - Guangting Han
- Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China.
| |
Collapse
|
28
|
Huang Z, Zhang J, Li S, Yuan G, Li F, Zeng Y, Han L, Jia Q, Zhang H, Zhang S. Joule-heatable bird-nest-bioinspired/carbon nanotubes-modified sepiolite porous ceramics: An efficient, sturdy, and continuous strategy for oil recovery. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125979. [PMID: 34015716 DOI: 10.1016/j.jhazmat.2021.125979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Oil-spill accident is a severe globally concerned environmental issue. In this work, a Joule-heatable bird-nest-bioinspired/carbon nanotubes-modified sepiolite porous ceramic (JBN/CM-SC) was developed, using inexpensive sepiolite porous ceramics as the substrate and carbon nanotubes (CNTs) derived from waste plastics as the modifier. The former exhibited outstanding mechanical property (1.7 MPa of compressive strength), gas permeability (9.1 × 10-11 m2), thermal conductivity (0.215 W·m-1·K-1) and thermal/chemical stability. As expected, the deposited CNTs not only conferred a hydrophobic surface, but also resulted in a Joule-heating ability of intrinsically non-conductive ceramics. As-prepared JBN/CM-SC demonstrated a separation rate as high as 120-200 kg·s-1·m-2 for oil recovery and a high selectivity of over 95%. The Joule heat generated by the heated JBN/CM-SC could in-situ reduce the oil-viscosity, remarkably increasing the oil-diffusion. The separation rate was enhanced by ~12 times with respect to that of the non-heated counterpart. In addition, the idea of modular design was proposed. By simply combining JBN/CM-SC components with pipes and a pump, a continuous in-situ collection of oil from an oil/water mixture was realized, providing an efficient, sturdy, and continuous approach to recover the spilled oil in an oil-spill accident.
Collapse
Affiliation(s)
- Zhong Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, No. 947 Heping Rd, Wuhan 430081, China
| | - Jun Zhang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, No. 947 Heping Rd, Wuhan 430081, China
| | - Saisai Li
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Ma'anshan 243002, China
| | - Gaoqian Yuan
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, No. 947 Heping Rd, Wuhan 430081, China
| | - Faliang Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, No. 947 Heping Rd, Wuhan 430081, China
| | - Yuan Zeng
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, No. 947 Heping Rd, Wuhan 430081, China
| | - Lei Han
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, No. 947 Heping Rd, Wuhan 430081, China
| | - Quanli Jia
- Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou 450052, China
| | - Haijun Zhang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, No. 947 Heping Rd, Wuhan 430081, China.
| | - Shaowei Zhang
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Stocker Rd, Exeter EX4 4QF, UK.
| |
Collapse
|
29
|
Wu X, Li S, Huang J, Chen Z, Cai W, Lai Y. Solar-assisted isotropically thermoconductive sponge for highly viscous crude oil spill remediation. iScience 2021; 24:102665. [PMID: 34189434 PMCID: PMC8215226 DOI: 10.1016/j.isci.2021.102665] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/15/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Efficiently cleaning up high-viscosity crude oil spills is still a serious global problem. In this paper, a composite filler PPy-polydopamine/BN (PPB) with high photothermal effect and high thermal conductivity was first prepared. Then the polyurethane sponge is decorated with polydimethylsiloxane and PPB to obtain a solar-assisted isotropically thermoconductive adsorbent (PPB@PU), which exhibits remarkable stability and durable mechanical properties. Meanwhile, the PPB@PU sponge has good thermal conductivity, and its surface temperature rises to 91°C in just 1 min under irradiation (1 sun). Therefore, the PPB@PU sponge can quickly heat and adsorb the crude oil contacted by the surface, significantly speed up the crude oil recovery process, and the adsorption capacity is as high as about 45 g/g. Finally, the oil adsorption method of the three-dimensional adsorbent is demonstrated, which provides a new idea for the subsequent development of advanced oil spill adsorbent. PPB@PU sponge exhibits good superhydrophobic/lipophilicity and mechanical stability PPB@PU sponge has outstanding photothermal conversion and thermal conductivity PPB@PU sponge can efficiently recover heavy oil for large-scale oil spill cleanup
Collapse
Affiliation(s)
- Xingwang Wu
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shuhui Li
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jianying Huang
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- Fujian Science & Technology Innovation Laboratory for Chemical Engineering of China, Quanzhou 362114, P. R. China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore
| | - Weilong Cai
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- Fujian Science & Technology Innovation Laboratory for Chemical Engineering of China, Quanzhou 362114, P. R. China
| | - Yuekun Lai
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- Fujian Science & Technology Innovation Laboratory for Chemical Engineering of China, Quanzhou 362114, P. R. China
- Corresponding author
| |
Collapse
|
30
|
Niu H, Li J, Wang X, Luo F, Qiang Z, Ren J. Solar-Assisted, Fast, and In Situ Recovery of Crude Oil Spill by a Superhydrophobic and Photothermal Sponge. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21175-21185. [PMID: 33793199 DOI: 10.1021/acsami.1c00452] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Development of a functional sorbent for effective crude oil absorption is essential to address large-scale spilling incidents. Herein, we demonstrate a facile method for preparing a superhydrophobic and photothermal PDMS/CuS/PDA@MF sponge through sequential depositions of PDA, CuS nanoparticles, and a PDMS layer onto a melamine sponge. The optimized composite sponge exhibits a superhydrophobic surface property, high absorption capacity for oils, robust recycling, and excellent photothermal conversion performance. Under sunlight irradiation, the sponge can be rapidly heat up for effectively reducing the viscosity of the surrounding crude oil in order to enhance its fluidity. As a result, uptake of crude oil can be achieved continuously at approximately 5.3 g/min using a peristaltic pump. Overall, we believe that a simple fabrication method from low-cost reagents and excellent crude oil remediation performance render the PDMS/CuS/PDA@MF sponge as an excellent sorbent candidate for remediating crude oil spill.
Collapse
Affiliation(s)
- Haifeng Niu
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianbo Li
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Xuefang Wang
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Fuhong Luo
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
31
|
Chen H, Wu SL, Wang HL, Wu QY, Yang HC. Photothermal Devices for Sustainable Uses Beyond Desalination. ACTA ACUST UNITED AC 2021. [DOI: 10.1002/aesr.202000056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Honglei Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai 519082 China
| | - Shao-Lin Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai 519082 China
| | - Hua-Li Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai 519082 China
| | - Qing-Yun Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai 519082 China
| | - Hao-Cheng Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai 519082 China
| |
Collapse
|
32
|
Wu M, Huang S, Liu T, Wu J, Agarwal S, Greiner A, Xu Z. Compressible Carbon Sponges from Delignified Wood for Fast Cleanup and Enhanced Recovery of Crude Oil Spills by Joule Heat and Photothermal Effect. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202006806] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ming‐Bang Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Sheng Huang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Ting‐Yu Liu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Jian Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Seema Agarwal
- Macromolecular Chemistry and Bavarian Polymer Institute University of Bayreuth Universitatsstrasse 30 Bayreuth 95440 Germany
| | - Andreas Greiner
- Macromolecular Chemistry and Bavarian Polymer Institute University of Bayreuth Universitatsstrasse 30 Bayreuth 95440 Germany
| | - Zhi‐Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
33
|
Zhang N, Qi Y, Zhang Y, Luo J, Cui P, Jiang W. A Review on Oil/Water Mixture Separation Material. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02524] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ning Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Yunfei Qi
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Yana Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| | - Jialiang Luo
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| | - Ping Cui
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Wei Jiang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| |
Collapse
|