1
|
Du K, Zhang D, Wu X, Shi P, Zhang S. Hierarchical electrodes with superior cycling performance using porous material based on cellulose nanofiber as flexible substrate. Carbohydr Polym 2024; 345:122590. [PMID: 39227126 DOI: 10.1016/j.carbpol.2024.122590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
The development and application of flexible electrodes with extended cycle life have long been a focal point in the field of energy research. In this study, positively charged polyethylene imine (PEI) and conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with negative charge were alternately deposited onto a cellulose nanofiber (CNF) porous material utilizing pressure gradient-assisted layer-by-layer (LbL) self-assembly technology. The flexible substrate, characterized by a three-dimensional porous structure reinforced with stiff CNF, not only facilitated high charge storage but also enhanced the electrode's cycling life by reducing the volume changes of PEDOT:PSS. Furthermore, the exceptional wettability of PEI by the electrolyte could promote efficient charge transport within the electrode. The electrode with 10 PEI/PEDOT:PSS bilayer exhibits a capacitance of 63.71 F g-1 at the scan rate of 5 mV s-1 and a remarkable capacitance retention of 128 % after 3000 charge-discharge cycles. The investigation into the nanoscale layers of the LbL multilayer structure indicated that the exceptional cyclic performance was primarily attributed to the spatial constraints imposed by the rigid porous substrate layered structure on the deformation of PEDOT:PSS. This work is expected to make a significant contribution to the development of electrodes with high charge storage capacity and ultra-long cycling life.
Collapse
Affiliation(s)
- Keke Du
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Dongyan Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xiaofeng Wu
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Pengcheng Shi
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Li M, Pu J, Cao Q, Zhao W, Gao Y, Meng T, Chen J, Guan C. Recent advances in hydrogel-based flexible strain sensors for harsh environment applications. Chem Sci 2024:d4sc05295a. [PMID: 39430943 PMCID: PMC11488682 DOI: 10.1039/d4sc05295a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Flexible strain sensors are broadly investigated in electronic skins and human-machine interaction due to their light weight, high sensitivity, and wide sensing range. Hydrogels with unique three-dimensional network structures are widely used in flexible strain sensors for their exceptional flexibility and adaptability to mechanical deformation. However, hydrogels often suffer from damage, hardening, and collapse under harsh conditions, such as extreme temperatures and humidity levels, which lead to sensor performance degradation or even failure. In addition, the failure mechanism in extreme environments remains unclear. In this review, the performance degradation and failure mechanism of hydrogel flexible strain sensors under various harsh conditions are examined. Subsequently, strategies towards the environmental tolerance of hydrogel flexible strain sensors are summarized. Finally, the current challenges of hydrogel flexible strain sensors in harsh environments are discussed, along with potential directions for future development and applications.
Collapse
Affiliation(s)
- Miaoyu Li
- Institute of Flexible Electronics and Intelligent Textile, Xi'an Polytechnic University Xi'an 710048 P. R. China
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 P. R. China
| | - Jie Pu
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Qinghe Cao
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Wenbo Zhao
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Yong Gao
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Ting Meng
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Jipeng Chen
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Cao Guan
- Institute of Flexible Electronics and Intelligent Textile, Xi'an Polytechnic University Xi'an 710048 P. R. China
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
3
|
Du K, Shi P, Zhang D, Xiao Y, Zhang S. Polydopamine-Anchored Cellulose Nanofiber Flexible Aerogel with High Charge Transfer as a Substrate for Conductive Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30314-30323. [PMID: 38809660 DOI: 10.1021/acsami.4c06367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In order to obtain a flexible aerogel substrate for conductive materials used in the electrode, polydopamine-anchored cellulose nanofiber (PDA@CNF) was introduced into a polyethylene imine-poly(vinyl alcohol) (PEI-PVA) cross-linking network which used 4-formylphenylboronic acid (4FPBA) as bridge. The incorporation of rigid CNF as a structural scaffold effectively improved the pore architecture of the aerogel, potentially providing substantial advantages for the infiltration and deposition of conductive materials. Additionally, the outstanding stability and flexibility exhibited by the aerogel in aqueous solutions suggest its significant potential for applications in flexible electrodes. Furthermore, electrochemical experiments showed that the rapid pathway formed between PDA and PEI could enhance the charge-transfer rate within the aerogel substrate. It is anticipated that such an enhancement would significantly benefit the electrochemical attributes of the electrode. Inspired by mussels, our introduced PDA-anchored rigid CNF into flexible polymer networks to fabricate aerogel substrates for electrode materials. This study would contribute to the development and utilization of flexible electrodes while reducing carbon footprint in energy production and conversion processes.
Collapse
Affiliation(s)
- Keke Du
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Pengcheng Shi
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dongyan Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yiyan Xiao
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Li Z, Lu J, Ji T, Xue Y, Zhao L, Zhao K, Jia B, Wang B, Wang J, Zhang S, Jiang Z. Self-Healing Hydrogel Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306350. [PMID: 37987498 DOI: 10.1002/adma.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels have emerged as powerful building blocks to develop various soft bioelectronics because of their tissue-like mechanical properties, superior bio-compatibility, the ability to conduct both electrons and ions, and multiple stimuli-responsiveness. However, hydrogels are vulnerable to mechanical damage, which limits their usage in developing durable hydrogel-based bioelectronics. Self-healing hydrogels aim to endow bioelectronics with the property of repairing specific functions after mechanical failure, thus improving their durability, reliability, and longevity. This review discusses recent advances in self-healing hydrogels, from the self-healing mechanisms, material chemistry, and strategies for multiple properties improvement of hydrogel materials, to the design, fabrication, and applications of various hydrogel-based bioelectronics, including wearable physical and biochemical sensors, supercapacitors, flexible display devices, triboelectric nanogenerators (TENGs), implantable bioelectronics, etc. Furthermore, the persisting challenges hampering the development of self-healing hydrogel bioelectronics and their prospects are proposed. This review is expected to expedite the research and applications of self-healing hydrogels for various self-healing bioelectronics.
Collapse
Affiliation(s)
- Zhikang Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jijian Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Ji
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kang Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Boqing Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxiang Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
5
|
Chandrasekar J, Venkatesan M, Sun TW, Hsu YC, Huang YH, Chen WW, Chen MH, Tsai ML, Chen JY, Lin JH, Zhou Y, Kuo CC. Recent progress in self-healable energy harvesting and storage devices - a future direction for reliable and safe electronics. MATERIALS HORIZONS 2024; 11:1395-1413. [PMID: 38282534 DOI: 10.1039/d3mh01519j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Electronic devices with multiple features bring in comfort to the way we live. However, repeated use causes physical as well as chemical degradation reducing their lifetime. The self-healing ability is the most crucial property of natural systems for survival in unexpected situations and variable environments. However, this self-repair property is not possessed by the conventional electronic devices designed today. To expand their lifetime and make them reliable by restoring their mechanical, functional, and electrical properties, self-healing materials are a great go-to option to create robust devices. In this review the intriguing self-healing polymers and fascinating mechanism of self-healable energy harvesting devices such as triboelectric nanogenerators (TENG) and storage devices like supercapacitors and batteries from the aspect of electrodes and electrolytes in the past five years are reviewed. The current challenges, strategies, and perspectives for a smart and sustainable future are also discussed.
Collapse
Affiliation(s)
- Jayashree Chandrasekar
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Manikandan Venkatesan
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Ting-Wang Sun
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Yung-Chi Hsu
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Hang Huang
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Wen Chen
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Mei-Hsin Chen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan.
| | - Meng-Lin Tsai
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jung-Yao Chen
- Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan
| | - Ja-Hon Lin
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan.
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Chi-Ching Kuo
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
6
|
Zhao W, Zhou H, Li W, Chen M, Zhou M, Zhao L. An Environment-Tolerant Ion-Conducting Double-Network Composite Hydrogel for High-Performance Flexible Electronic Devices. NANO-MICRO LETTERS 2024; 16:99. [PMID: 38285132 PMCID: PMC10825113 DOI: 10.1007/s40820-023-01311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/30/2024]
Abstract
High-performance ion-conducting hydrogels (ICHs) are vital for developing flexible electronic devices. However, the robustness and ion-conducting behavior of ICHs deteriorate at extreme temperatures, hampering their use in soft electronics. To resolve these issues, a method involving freeze-thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network (DN) ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol) (PMP DN ICH) system. The well-designed ICH exhibits outstanding ionic conductivity (63.89 mS cm-1 at 25 °C), excellent temperature resistance (- 60-80 °C), prolonged stability (30 d at ambient temperature), high oxidation resistance, remarkable antibacterial activity, decent mechanical performance, and adhesion. Additionally, the ICH performs effectively in a flexible wireless strain sensor, thermal sensor, all-solid-state supercapacitor, and single-electrode triboelectric nanogenerator, thereby highlighting its viability in constructing soft electronic devices. The highly integrated gel structure endows these flexible electronic devices with stable, reliable signal output performance. In particular, the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm-2 (current density, 1 mA cm-2) and excellent environmental adaptability. This study paves the way for the design and fabrication of high-performance multifunctional/flexible ICHs for wearable sensing, energy-storage, and energy-harvesting applications.
Collapse
Affiliation(s)
- Wenchao Zhao
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Haifeng Zhou
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Wenkang Li
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Manlin Chen
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Min Zhou
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Long Zhao
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
7
|
Jaroenthai N, Srikhao N, Kasemsiri P, Okhawilai M, Theerakulpisut S, Uyama H, Chindaprasirt P. Optimization of rapid self-healing and self-adhesive gluten/guar gum crosslinked gel for strain sensors and electronic devices. Int J Biol Macromol 2023; 253:127401. [PMID: 37827400 DOI: 10.1016/j.ijbiomac.2023.127401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
In this study, a smart strain sensor based on gluten/guar gum (GG) copolymer containing a combination of additives was developed. The mix proportions of strain sensors were designed using Taguchi method coupled with Grey relational analysis. L16 orthogonal array with three factors, viz. tannic acid (TA), glycerol and sodium chloride (NaCl) at four-levels each was optimized. The addition of TA substantially enhanced tensile strength, self-adhesion ability and conductivity. The self-adhesion ability could also be improved by adding NaCl in range of 0-5 wt%. The presence of glycerol in strain sensors could reduce the self-healing time which was found in the range of 28.75-150 s. In addition, the incorporation of glycerol into gel also improved stretchability of strain sensors. The best mix proportion of strain sensor was found to be 3.75 wt% TA, 30 vol% glycerol and 5 wt% NaCl. The best mixture of stain sensor showed the highest gauge factor (GF) of 0.61 % at a stretchability of 665 % and rapid self-healing at 70 s. This strain sensor could be applied to monitor human limb movements in a wide temperature range from -20 °C to 50 °C. Furthermore, the obtained gel was successfully used as electronic devices and self-powered sensors.
Collapse
Affiliation(s)
- Nattakan Jaroenthai
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natwat Srikhao
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pornnapa Kasemsiri
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somnuk Theerakulpisut
- Energy Management and Conservation Office, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Prinya Chindaprasirt
- Sustainable Infrastructure Research and Development Center, Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand; Academy of Science, Royal Society of Thailand, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
8
|
Wu M, Mao S, Liu X, Liu Y, Cong P, Lv J, Tian H, Zhao Y. Strong tissue adhesive polyelectrolyte complex powders based on low molecular weight chitosan for acute hemorrhage control. Int J Biol Macromol 2023; 248:125755. [PMID: 37429337 DOI: 10.1016/j.ijbiomac.2023.125755] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Self-gelling and bioadhesive powders offered promising effective hemostats to suit irregularly shaped, complex and non-compressible wounds for clinical applications. In the current study, chitosan based polyelectrolyte complex coacervate were simply prepared by mixing high concentrations (10 %) of low molecular weight chitosan (CS) and polyacrylic acid (PAA) solutions. Obtained by lyophilization, the physical cross-linked polyelectrolyte complex powders would form a gel within 5 s upon hydration, which demonstrated excellent mechanical properties, significant antibacterial activities, strong and lasting adhesion on wet tissues in physiological environment. In vitro blood clotting assays showed that the CS/PAA powders could remarkably aggregate blood cells and accelerate blood clotting process. As studied by diverse hemorrhage models, including rat tail, liver and heart injuries and dog incision, CS/PAA powders significantly facilitated the decrease of blood loss as well as hemostatic time by creating robust physical barriers and promoting blood clot formation on the bleeding sites. These outstanding properties in terms of easy preparation, rapid self-gelling, strong wet adhesion, effective hemostasis and shape-adaptability endowed CS/PAA polyelectrolyte complex powders with great potential in managing acute hemorrhage of non-compressible trauma.
Collapse
Affiliation(s)
- Mi Wu
- Jihua Laboratory, Foshan, Guangdong 528200, China
| | - Shun Mao
- Shenyang Medical College, Shenyang 110034, China
| | - Xu Liu
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Yunen Liu
- Shenyang Medical College, Shenyang 110034, China.
| | - Peifang Cong
- Shenyang Medical College, Shenyang 110034, China
| | - Jianhua Lv
- Jihua Laboratory, Foshan, Guangdong 528200, China
| | - Huaqin Tian
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, China.
| | - Yan Zhao
- Jihua Laboratory, Foshan, Guangdong 528200, China.
| |
Collapse
|
9
|
Qin G, Wang Y, He W, Zhang D, Yu X, Gong F, Yu H, Yu X, Yang J, Chen Q. An electrode universal and self-healable integrated supercapacitor fabricated by physical adsorption based on mussel-inspired highly adhesive gel electrolyte. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Hou W, Yu X, Li Y, Wei Y, Ren J. Ultrafast Self-Healing, Highly Stretchable, Adhesive, and Transparent Hydrogel by Polymer Cluster Enhanced Double Networks for Both Strain Sensors and Environmental Remediation Application. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57387-57398. [PMID: 36512607 DOI: 10.1021/acsami.2c17773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Stretchable, healable, biocompatible, and conductive hydrogels are one of the promising candidates for both wearable electronics and environmental remediation applications. To date, the design of hydrogels that integrate ultrafast self-healing with high efficiency (seconds), high stretchability, and biocompatibility and reversibility into one system is not an easy task. Herein, we demonstrate a general oxidation approach to accelerate the hydrogelation of hPEI-based double network gels via the generation of fluorescent polymer clusters at room temperature or triggered by the heating-cooling process. The resulting ohPEI hydrogel has the merit of biocompatibility over most reported hPEI hydrogels for strain sensors. It shows a high conductivity (1.3 S/m), an ultrafast self-healing ability (<3 s, 98% healing efficiency within 60 s), a high stretchability (∼1850 and ∼7000% in deformation), and reversible adhesivity on various material surfaces. The excellent performance of the hydrogel is ascribed to the cooperative and hierarchical interactions of four types of dynamic combinations, including the reversible borate bond, hydrogen bonding, electrostatic interaction, and polymer cluster interactions. The reversible fabrication process by the one-spot method (just by simple mixing of the components) and superior properties of the hydrogel make it an ideal candidate for a wearable strain sensor to monitor human motions and physiological activities. Moreover, it is also a good hydrogel absorbent for phase separation absorption of volatile organic compounds with a high capacity (for acetone: 4.75 g g-1), reusability, and an easy handling process.
Collapse
Affiliation(s)
- Wenshuo Hou
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Xudong Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Yajuan Li
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Yi Wei
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Jujie Ren
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| |
Collapse
|
11
|
Li Y, Gong Q, Han L, Liu X, Yang Y, Chen C, Qian C, Han Q. Carboxymethyl cellulose assisted polyaniline in conductive hydrogels for high-performance self-powered strain sensors. Carbohydr Polym 2022; 298:120060. [DOI: 10.1016/j.carbpol.2022.120060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 12/01/2022]
|
12
|
Peng K, Zhang J, Yang J, Lin L, Gan Q, Yang Z, Chen Y, Feng C. Green Conductive Hydrogel Electrolyte with Self-Healing Ability and Temperature Adaptability for Flexible Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39404-39419. [PMID: 35981091 DOI: 10.1021/acsami.2c11973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conductive hydrogels (CHs) are ideal electrolyte materials for the preparation of flexible supercapacitors (FSCs) due to their excellent electrochemical properties, mechanical properties, and deformation restorability. However, most of the reported CHs are prepared by the chemical crosslinking of synthetic polymers and thus usually display the disadvantages of poor self-healing abilities and nonadaptability at environmental temperatures, which greatly limits their application. To overcome these problems, in the present work, we constructed a sodium alginate-borax/gelatin double-network conductive hydrogel (CH) by a dynamic crosslinking between sodium alginate (SA) and borax via borate bonds and hydrogen bonding between amino acids in gelatin and SA chains. The CH displays an excellent elongation of 305.7% and fast self-healing behavior in 60 s. Furthermore, a phase-change material (PCM), Na2SO4·10H2O, was introduced into the CH, which, combined with the nucleation effect of borax, improved the ionic conductivity and temperature adaptability of the CH. The flexible supercapacitor (FSC) assembled with the obtained CH as the electrolyte exhibits a high specific capacitance of 185.3 F·g-1 at a current density of 0.25 A·g-1 and good stability with 84% capacitance retention after 10 000 cycles and excellent temperature tolerance with a resistance variation of 2.11 Ω in the temperature range of -20-60 °C. This green CH shows great application potential as an electrolyte for FSCs, and the preparation method can be potentially expanded to the fabrication of self-repairing FSCs with good temperature adaptabilities.
Collapse
Affiliation(s)
- Kelin Peng
- Beijing Institute of Technology, Beijing 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, P. R. China
| | - Jinghua Zhang
- Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jueying Yang
- Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lizhi Lin
- Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Qiang Gan
- Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ziming Yang
- Beijing Institute of Technology, Beijing 100081, P. R. China
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, P. R. China
| | - Yu Chen
- Beijing Institute of Technology, Beijing 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, P. R. China
| | - Changgen Feng
- Beijing Institute of Technology, Beijing 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, P. R. China
| |
Collapse
|
13
|
Zheng H, Guan R, Liu Q, Ou K, Li DS, Fang J, Fu Q, Sun Y. A flexible supercapacitor with high capacitance retention at an ultra-low temperature of -65.0°C. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Converting soy protein isolate into biomass-based polymer electrolyte by grafting modification for high-performance supercapacitors. Int J Biol Macromol 2022; 209:268-278. [DOI: 10.1016/j.ijbiomac.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022]
|
15
|
Jiang Y, Ou J, Luo Z, Chen Y, Wu Z, Wu H, Fu X, Luo S, Huang Y. High Capacitive Antimonene/CNT/PANI Free-Standing Electrodes for Flexible Supercapacitor Engaged with Self-Healing Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201377. [PMID: 35603958 DOI: 10.1002/smll.202201377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/21/2022] [Indexed: 06/15/2023]
Abstract
In virtue of the high electrochemical activity and inherent flexibility, polyaniline (PANI) is an ideal electrode material for flexible supercapacitors (SCs). However, in practical applications, the inevitable agglomeration of PANI leads to low capacitance, poor rate performance, and cycling stability. Here, antimonene (Sb) nanosheets with ultrathin thickness, excellent mechanical strength, and flexibility are introduced into the carbon nanotube (CNT) framework for PANI electrodeposition via simple vacuum filtration, which enables the continuous and uniform growth of PANI. The resultant free-standing Sb/CNT/PANI electrode can thus exhibit a high specific capacitance of 578.57 F g-1 together with a high rate capability. Besides, thanks to the introduction of Sb nanosheets, the agglomeration of PANI during the electrodeposition is improved, which correspondingly alleviates the structural deterioration of PANI during repeated charge/discharge. Thus, the flexible SC assembled by Sb/CNT/PANI electrodes demonstrates both an impressive specific capacitance of 416 F g-1 and outstanding cycling stability over 12 000 cycles. Moreover, this SC device can have a practical self-healing function by employing self-healable polyurethane. The facile strategy reported herein sheds light on the design of high-performance flexible SCs, catering to the needs of portable and wearable electronics.
Collapse
Affiliation(s)
- Yue Jiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jinfa Ou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zichang Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Key Laboratory of Distributed Energy Systems of Guangdong Province, Department of Energy and Chemical Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yonghui Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zihuan Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Heng Wu
- School of Automation, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaobo Fu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Key Laboratory of Distributed Energy Systems of Guangdong Province, Department of Energy and Chemical Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Shaojuan Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yang Huang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
16
|
Shahi S, Roghani-Mamaqani H, Talebi S, Mardani H. Chemical stimuli-induced reversible bond cleavage in covalently crosslinked hydrogels. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Peng W, Han L, Gao Y, Gong Z, Lu T, Xu X, Xu M, Yamauchi Y, Pan L. Flexible organohydrogel ionic skin with Ultra-Low temperature freezing resistance and Ultra-Durable moisture retention. J Colloid Interface Sci 2022; 608:396-404. [PMID: 34626985 DOI: 10.1016/j.jcis.2021.09.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/11/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
HYPOTHESIS One prevailing method to construct excellent temperature tolerance/long-lasting moisture hydrogels is to couple the original hydrogel networks with freezing-tolerant/moisture retaining agents, including ionic liquids, inorganic salts, zwitterionic osmolytes, and polyhydric alcohols. Among them, organohydrogels have shed new light on the development of ionic skins with long-term usability and stable sensing performance at subzero temperatures due to their long-lasting water retention and anti-freezing capability. EXPERIMENTS We report a dual network organohydrogel by doping conductive ZnSO4 into the double network hydrogel of polyvinyl alcohol-polyacrylamide (PVA-PAM) with subsequent immersing in a mixed solvent of ethylene glycol (EG) and H2O. The anti-freezing and moisture retaining abilities of the PVA/PAM/Zn/EG (PPZE) organohydrogel were studied and the sensing performances of the PPZE organohydrogel-based ionic skin were investigated. FINDINGS The organohydrogel exhibits a high conductivity (0.44 S m-1), excellent fatigue resistance and exceptional moisture retaining ability with more than 99.3% of the initial weight retention after 31 days storage at ambient temperature. Importantly, the PPZE organohydrogel-based ionic skin shows an ultra-low temperature anti-freezing ability and remains flexibility and sensing capability with a high sensitivity (signal response time ∼ 0.23 s) even at -50 °C. The PPZE organohydrogel demonstrates a tremendous potential in artificial skin and health monitoring.
Collapse
Affiliation(s)
- Wenwu Peng
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Lu Han
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yang Gao
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiwei Gong
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xingtao Xu
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Min Xu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
18
|
Qin T, Liao W, Yu L, Zhu J, Wu M, Peng Q, Han L, Zeng H. Recent progress in conductive self‐healing hydrogels for flexible sensors. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tao Qin
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Wenchao Liao
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Li Yu
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Junhui Zhu
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Meng Wu
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Qiongyao Peng
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Linbo Han
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Hongbo Zeng
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| |
Collapse
|
19
|
Liu Y, Xu D, Ding Y, Lv X, Huang T, Yuan B, Jiang L, Sun X, Yao Y, Tang J. A conductive polyacrylamide hydrogel enabled by dispersion-enhanced MXene@chitosan assembly for highly stretchable and sensitive wearable skin. J Mater Chem B 2021; 9:8862-8870. [PMID: 34671799 DOI: 10.1039/d1tb01798e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
MXene is recognized as an ideal material for sensitive wearable strain sensors because of its unique advantages of conductivity, hydrophilicity and mechanical properties. However, conventional hydrogel sensors utilizing MXene as a conductive material inevitably encounter the excessive accumulation of MXene nanosheets during the process of synthesis, which limits the electron transmission, reduces the conductivity, and concurrently weakens the mechanical capability and sensitivity of sensors. Herein, we construct a dispersion-enhanced MXene hydrogel (DEMH) through a chitosan-induced self-assembly strategy for the first time. Charge transfer is carried out through the flow of a material or a collection of material microstructures, and thus the highly interconnected 3D MXene@Chitosan network provides fast transport channels for electrons, and the DEMH exhibits excellent conductivity and sensibility simultaneously. Besides, the electrostatic self-assembly between MXene and chitosan, and the supramolecular interactions between MXene, chitosan and polyacrylamide chain segment result in excellent mechanical strength (of up to 1900%) and flexibility of DEMH. Furthermore, the introduction of chitosan which possesses a high density of positively charged groups and MXene with semiconducting properties also endows sensor versatility, such as self-adhesion properties and antibacterial activity. This work develops a simple and cut-price strategy for combining MXene unaggregated into a hydrogel as a sensor with high conductivity, sensibility and flexibility. A simple and inexpensive strategy for avoiding self-stacking of two-dimensional conductive materials is proposed, which paves the way for a broad range of applications in electronic skin, human motion detection and intelligent devices.
Collapse
Affiliation(s)
- Yaqing Liu
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Daren Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| | - Yi Ding
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Xiaoxiao Lv
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Tingting Huang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Bolei Yuan
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Xueying Sun
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Yuanqing Yao
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
20
|
Zhang Q, Hou X, Liu X, Xie X, Duan L, Lü W, Gao G. Nucleotide-Tackified Organohydrogel Electrolyte for Environmentally Self-Adaptive Flexible Supercapacitor with Robust Electrolyte/Electrode Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103091. [PMID: 34643034 DOI: 10.1002/smll.202103091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Hydrogel electrolytes have attracted enormous attention in flexible and safe supercapacitors. However, the interfacial contact problem between hydrogel electrolyte and electrodes, and the environmental instability are the key factors restricting the development of hydrogel-based supercapacitors. Here, a nucleotide-tackified adhesive organohydrogel electrolyte is successfully constructed and exhibits freezing resistance and water-holding ability based on the water/glycerol binary solvent system. Adenosine monophosphate enables the organohydrogels to possess outstanding adhesion and mechanical robustness. The robust adhesion can ensure close contact between the organohydrogel electrolyte and electrodes for constructing an all-in-one supercapacitor with low interfacial contact resistance. Impressively, the integrated organohydrogel-based supercapacitors display an areal specific capacitance of 163.6 mF cm-2 . Besides, the supercapacitors feature prominent environmental stability with capacitance retention of 90.6% after 5000 charging/discharging cycles at -20 °C. Furthermore, based on the strong interfacial adhesion, the supercapacitors present excellent electrochemical stability without delamination/displacement between electrolyte and electrodes even under severe deformations such as bending and twisting. It is anticipated that this work will provide an encouraging way for developing flexible energy storage devices with electrochemical stability and environmental adaptability.
Collapse
Affiliation(s)
- Qin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Xulin Hou
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Xin Liu
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Xuan Xie
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Lijie Duan
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Wei Lü
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| |
Collapse
|
21
|
Kadumudi FB, Hasany M, Pierchala MK, Jahanshahi M, Taebnia N, Mehrali M, Mitu CF, Shahbazi MA, Zsurzsan TG, Knott A, Andresen TL, Dolatshahi-Pirouz A. The Manufacture of Unbreakable Bionics via Multifunctional and Self-Healing Silk-Graphene Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100047. [PMID: 34247417 DOI: 10.1002/adma.202100047] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Indexed: 06/13/2023]
Abstract
Biomaterials capable of transmitting signals over longer distances than those in rigid electronics can open new opportunities for humanity by mimicking the way tissues propagate information. For seamless mirroring of the human body, they also have to display conformability to its curvilinear architecture, as well as, reproducing native-like mechanical and electrical properties combined with the ability to self-heal on demand like native organs and tissues. Along these lines, a multifunctional composite is developed by mixing silk fibroin and reduced graphene oxide. The material is coined "CareGum" and capitalizes on a phenolic glue to facilitate sacrificial and hierarchical hydrogen bonds. The hierarchal bonding scheme gives rise to high mechanical toughness, record-breaking elongation capacity of ≈25 000%, excellent conformability to arbitrary and complex surfaces, 3D printability, a tenfold increase in electrical conductivity, and a fourfold increase in Young's modulus compared to its pristine counterpart. By taking advantage of these unique properties, a durable and self-healing bionic glove is developed for hand gesture sensing and sign translation. Indeed, CareGum is a new advanced material with promising applications in fields like cyborganics, bionics, soft robotics, human-machine interfaces, 3D-printed electronics, and flexible bioelectronics.
Collapse
Affiliation(s)
- Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Masoud Hasany
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | | | | | - Nayere Taebnia
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Mehdi Mehrali
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
- Department of Mechanical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Cristian Florian Mitu
- Department of Electrical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Tiberiu-Gabriel Zsurzsan
- Department of Electrical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Arnold Knott
- Department of Electrical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| |
Collapse
|
22
|
Polyaniline electropolymerized within template of vertically ordered polyvinyl alcohol as electrodes of flexible supercapacitors with long cycle life. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Zhang Y, Mei HX, Cao Y, Yan XH, Yan J, Gao HL, Luo HW, Wang SW, Jia XD, Kachalova L, Yang J, Xue SC, Zhou CG, Wang LX, Gui YH. Recent advances and challenges of electrode materials for flexible supercapacitors. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213910] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Huang J, Liu Y, Yang Y, Zhou Z, Mao J, Wu T, Liu J, Cai Q, Peng C, Xu Y, Zeng B, Luo W, Chen G, Yuan C, Dai L. Electrically programmable adhesive hydrogels for climbing robots. Sci Robot 2021; 6:6/53/eabe1858. [PMID: 34043565 DOI: 10.1126/scirobotics.abe1858] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Although there have been notable advances in adhesive materials, the ability to program attaching and detaching behavior in these materials remains a challenge. Here, we report a borate ester polymer hydrogel that can rapidly switch between adhesive and nonadhesive states in response to a mild electrical stimulus (voltages between 3.0 and 4.5 V). This behavior is achieved by controlling the exposure and shielding of the catechol group through water electrolysis-induced reversible cleavage and reformation of the borate ester moiety. By switching the electric field direction, the hydrogel can repeatedly attach to and detach from various surfaces with a response time as low as 1 s. This programmable attaching/detaching strategy provides an alternative approach for robot climbing. The hydrogel is simply pasted onto the moving parts of climbing robots without complicated engineering and morphological designs. Using our hydrogel as feet and wheels, the tethered walking robots and wheeled robots can climb on both vertical and inverted conductive substrates (i.e., moving upside down) such as stainless steel and copper. Our study establishes an effective route for the design of smart polymer adhesives that are applicable in intelligent devices and an electrochemical strategy to regulate the adhesion.
Collapse
Affiliation(s)
- Junwen Huang
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.,Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yu Liu
- School of Aerospace Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yuxin Yang
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhijun Zhou
- School of Aerospace Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jie Mao
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.,Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Tong Wu
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jun Liu
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Qipeng Cai
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chaohua Peng
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yiting Xu
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.,Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Birong Zeng
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.,Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Weiang Luo
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.,Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Guorong Chen
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.,Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Conghui Yuan
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China. .,Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Lizong Dai
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China. .,Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
25
|
Yu M, Ji X, Ran F. Chemically building interpenetrating polymeric networks of Bi-crosslinked hydrogel macromolecules for membrane supercapacitors. Carbohydr Polym 2021; 255:117346. [DOI: 10.1016/j.carbpol.2020.117346] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
|
26
|
Wang H, Deng Y, Qiu J, Wu J, Zhang K, Shao J, Yan L. In Situ Formation of "Dimethyl Sulfoxide/Water-in-Salt"-Based Chitosan Hydrogel Electrolyte for Advanced All-Solid-State Supercapacitors. CHEMSUSCHEM 2021; 14:632-641. [PMID: 33047843 DOI: 10.1002/cssc.202002236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Biodegradable hydrogel electrolytes are particularly attractive in the fabrication of all-solid-state supercapacitors due to environmental benignity and avoiding of leakage. The introduction of "water-in-salt" (WIS) electrolytes into hydrogels will further broaden the electrochemical stability window of aqueous supercapacitors significantly. Meanwhile, the addition of an organic co-solvent can effectively overcome the inevitable salt precipitation and extend the temperature adaptability. Herein, an in situ cross-linking approach was demonstrated without any extra binder to obtain a "dimethyl sulfoxide/water-in-salt"-based (DWIS) chitosan hydrogel electrolyte. Interestingly, the addition of 4-7 mol L-1 of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salts not only conforms to the criterion of WIS, but also promoted the successful gelation through the supramolecular complexation between Li+ -solvated complexes and chitosan chains. A hydrogel-based all-solid-state supercapacitor was fabricated using the DWIS chitosan hydrogel as the electrolyte and separator while nitrogen-doped graphene hydrogel (NG) was used as the electrode. The optimized supercapacitor with a wide operating voltage of 2.1 V showed a high specific capacitance of 107.6 F g-1 at 1 A g-1 , remarkable capacitance retention of 80.1 % after 5000 cycles, a superior energy density of 62.9 Wh kg-1 at a power density of 1025.5 W kg-1 , and excellent temperature stability in the range of -20 to 70 °C. These findings suggest that the as-prepared hydrogel electrolyte holds great potential in the practical application of high-performance solid-state energy storage devices.
Collapse
Affiliation(s)
- Hongfei Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Yongqi Deng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Jun Qiu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Juan Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Kefu Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Jingwen Shao
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P.R. China
| |
Collapse
|
27
|
Zhang H, Yue M, Wang T, Wang J, Wu X, Yang S. Conductive hydrogel-based flexible strain sensors with superior chemical stability and stretchability for mechanical sensing in corrosive solvents. NEW J CHEM 2021. [DOI: 10.1039/d0nj05880g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Wearable flexible sensors face many harsh environments in practical applications.
Collapse
Affiliation(s)
- Hong Zhang
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory for Utility of Environmental-Friendly Composite Materials and Biomass in University of Gansu Province
- Lanzhou 730030
- China
| | - Mingqiang Yue
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory for Utility of Environmental-Friendly Composite Materials and Biomass in University of Gansu Province
- Lanzhou 730030
- China
| | - Tingting Wang
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory for Utility of Environmental-Friendly Composite Materials and Biomass in University of Gansu Province
- Lanzhou 730030
- China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
| | - Jinqing Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences
| | - Xianzhang Wu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences
| | - Shengrong Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences
| |
Collapse
|
28
|
Xie T, Vogt BD. A Virtual Special Issue on Self-Healing Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49277-49280. [PMID: 33143431 DOI: 10.1021/acsami.0c18104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
29
|
Han X, Li M, Fan Z, Zhang Y, Zhang H, Li Q. PVA/Agar Interpenetrating Network Hydrogel with Fast Healing, High Strength, Antifreeze, and Water Retention. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000237] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xin Han
- Department of Chemistry, School of Science North University of China Taiyuan 030051 China
| | - Mengyu Li
- State Key Laboratory of Tribology, Department of Mechanical Engineering Tsinghua University Beijing 100084 China
| | - Zewen Fan
- Department of Chemistry, School of Science North University of China Taiyuan 030051 China
| | - Yu Zhang
- Department of Chemistry, School of Science North University of China Taiyuan 030051 China
| | - Huihui Zhang
- Department of Chemistry, School of Science North University of China Taiyuan 030051 China
| | - Qiaoling Li
- Department of Chemistry, School of Science North University of China Taiyuan 030051 China
| |
Collapse
|
30
|
Zhou G, Yang L, Li W, Chen C, Liu Q. A Regenerable Hydrogel Electrolyte for Flexible Supercapacitors. iScience 2020; 23:101502. [PMID: 32916631 PMCID: PMC7490843 DOI: 10.1016/j.isci.2020.101502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Easy regenerability of core components such as electrode and electrolyte is highly required in advanced electrochemical devices. This work reports a reliable, regenerable, and stretchable hydrogel electrolyte based on ionic bonds between polyacrylic acid (PAA) and polyallylamine (PAH). PAA-PAH electrolyte (1M LiCl addition) exhibits high ionic conductivity (0.050 S·cm-1) and excellent mechanical property (fracture strain of 1,688%). Notably, the electrolyte can be regenerated to any desired shape under mild conditions and remains 96% and 90% of the initial ionic conductivity after the first and second regeneration, respectively. PAA-PAH/LiCl-based supercapacitor exhibits nearly 100% capacitance retention upon rolling, stretching, and 5,000 charge-discharge cycles, whereas the regenerated device holds 97.6% capacitance of the initial device and 90.9% after 5,000 cycles. This low-cost, high-efficiency, and regenerable hydrogel electrolyte reveals very promising use in solid-state/flexible supercapacitors and possibly becomes a standard commercial hydrogel electrolyte for sustainable electrochemical energy devices.
Collapse
Affiliation(s)
- Guanbing Zhou
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Leyi Yang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Weijun Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chongyi Chen
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Qiao Liu
- Institute of Materials, Ningbo University of Technology, Ningbo 315016, China
| |
Collapse
|
31
|
Abstract
The advanced electrochemical properties, such as high energy density, fast charge–discharge rates, excellent cyclic stability, and specific capacitance, make supercapacitor a fascinating electronic device. During recent decades, a significant amount of research has been dedicated to enhancing the electrochemical performance of the supercapacitors through the development of novel electrode materials. In addition to highlighting the charge storage mechanism of the three main categories of supercapacitors, including the electric double-layer capacitors (EDLCs), pseudocapacitors, and the hybrid supercapacitors, this review describes the insights of the recent electrode materials (including, carbon-based materials, metal oxide/hydroxide-based materials, and conducting polymer-based materials, 2D materials). The nanocomposites offer larger SSA, shorter ion/electron diffusion paths, thus improving the specific capacitance of supercapacitors (SCs). Besides, the incorporation of the redox-active small molecules and bio-derived functional groups displayed a significant effect on the electrochemical properties of electrode materials. These advanced properties provide a vast range of potential for the electrode materials to be utilized in different applications such as in wearable/portable/electronic devices such as all-solid-state supercapacitors, transparent/flexible supercapacitors, and asymmetric hybrid supercapacitors.
Collapse
|