1
|
Wan X, Xiao Z, Tian Y, Chen M, Liu F, Wang D, Liu Y, Bartolo PJDS, Yan C, Shi Y, Zhao RR, Qi HJ, Zhou K. Recent Advances in 4D Printing of Advanced Materials and Structures for Functional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312263. [PMID: 38439193 DOI: 10.1002/adma.202312263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Indexed: 03/06/2024]
Abstract
4D printing has attracted tremendous worldwide attention during the past decade. This technology enables the shape, property, or functionality of printed structures to change with time in response to diverse external stimuli, making the original static structures alive. The revolutionary 4D-printing technology offers remarkable benefits in controlling geometric and functional reconfiguration, thereby showcasing immense potential across diverse fields, including biomedical engineering, electronics, robotics, and photonics. Here, a comprehensive review of the latest achievements in 4D printing using various types of materials and different additive manufacturing techniques is presented. The state-of-the-art strategies implemented in harnessing various 4D-printed structures are highlighted, which involve materials design, stimuli, functionalities, and applications. The machine learning approach explored for 4D printing is also discussed. Finally, the perspectives on the current challenges and future trends toward further development in 4D printing are summarized.
Collapse
Affiliation(s)
- Xue Wan
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhongmin Xiao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yujia Tian
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Feng Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Dong Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Paulo Jorge Da Silva Bartolo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hang Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
2
|
Wang D, Zhao B, Li X, Dong L, Zhang M, Zou J, Gu G. Dexterous electrical-driven soft robots with reconfigurable chiral-lattice foot design. Nat Commun 2023; 14:5067. [PMID: 37604806 PMCID: PMC10442442 DOI: 10.1038/s41467-023-40626-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
Dexterous locomotion, such as immediate direction change during fast movement or shape reconfiguration to perform diverse tasks, are essential animal survival strategies which have not been achieved in existing soft robots. Here, we present a kind of small-scale dexterous soft robot, consisting of an active dielectric elastomer artificial muscle and reconfigurable chiral-lattice foot, that enables immediate and reversible forward, backward and circular direction changes during fast movement under single voltage input. Our electric-driven soft robot with the structural design can be combined with smart materials to realize multimodal functions via shape reconfigurations under the external stimulus. We experimentally demonstrate that our dexterous soft robots can reach arbitrary points in a plane, form complex trajectories, or lower the height to pass through a narrow tunnel. The proposed structural design and shape reconfigurability may pave the way for next-generation autonomous soft robots with dexterous locomotion.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China.
- Meta Robotics Institute, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Baowen Zhao
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xinlei Li
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Le Dong
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Mengjie Zhang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jiang Zou
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Guoying Gu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China.
- Meta Robotics Institute, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
3
|
Yuan Z, Guo Q, Jin D, Zhang P, Yang W. Biohybrid Soft Robots Powered by Myocyte: Current Progress and Future Perspectives. MICROMACHINES 2023; 14:1643. [PMID: 37630179 PMCID: PMC10456826 DOI: 10.3390/mi14081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Myocyte-driven robots, a type of biological actuator that combines myocytes with abiotic systems, have gained significant attention due to their high energy efficiency, sensitivity, biocompatibility, and self-healing capabilities. These robots have a unique advantage in simulating the structure and function of human tissues and organs. This review covers the research progress in this field, detailing the benefits of myocyte-driven robots over traditional methods, the materials used in their fabrication (including myocytes and extracellular materials), and their properties and manufacturing techniques. Additionally, the review explores various control methods, robot structures, and motion types. Lastly, the potential applications and key challenges faced by myocyte-driven robots are discussed and summarized.
Collapse
Affiliation(s)
- Zheng Yuan
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (Z.Y.); (Q.G.)
| | - Qinghao Guo
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (Z.Y.); (Q.G.)
| | - Delu Jin
- School of Human Ities and Social Science, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Peifan Zhang
- Control Science and Engineering, Naval Aviation University, Yantai 264001, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (Z.Y.); (Q.G.)
| |
Collapse
|
4
|
Li F, Zhang Q, Shi H, Liu Z. A Modified Three-Dimensional Negative-Poisson-Ratio Metal Metamaterial Lattice Structure. MATERIALS 2022; 15:ma15113752. [PMID: 35683059 PMCID: PMC9181437 DOI: 10.3390/ma15113752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022]
Abstract
Mechanical metamaterials are of interest to researchers because of their unique mechanical properties, including a negative Poisson structure. Here, we study a three-dimensional (3D) negative-Poisson-ratio (NPR) metal metamaterial lattice structure by adding a star structure to the traditional 3D concave structure, thus designing three different angles with a modified NPR structure and control structure. We further study the mechanical properties via finite element numerical simulations and show that the stability and stiffness of the modified structures are improved relative to the control structure; the stability decreases with increasing star body angle. The star angle has the best relative energy absorption effect at 70.9°. The experimental model is made by selective laser melting (SLM) technology (3D printing), and the compression experiment verification used an MTS universal compressor. The experimental results are consistent with the changing trend in finite element simulation.
Collapse
Affiliation(s)
- Fangyi Li
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China; (Q.Z.); (H.S.)
- Correspondence: (F.L.); (Z.L.)
| | - Qiang Zhang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China; (Q.Z.); (H.S.)
| | - Huimin Shi
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China; (Q.Z.); (H.S.)
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zheng Liu
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China; (Q.Z.); (H.S.)
- Correspondence: (F.L.); (Z.L.)
| |
Collapse
|
5
|
Qi J, Chen Z, Jiang P, Hu W, Wang Y, Zhao Z, Cao X, Zhang S, Tao R, Li Y, Fang D. Recent Progress in Active Mechanical Metamaterials and Construction Principles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102662. [PMID: 34716676 PMCID: PMC8728820 DOI: 10.1002/advs.202102662] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/31/2021] [Indexed: 05/03/2023]
Abstract
Active mechanical metamaterials (AMMs) (or smart mechanical metamaterials) that combine the configurations of mechanical metamaterials and the active control of stimuli-responsive materials have been widely investigated in recent decades. The elaborate artificial microstructures of mechanical metamaterials and the stimulus response characteristics of smart materials both contribute to AMMs, making them achieve excellent properties beyond the conventional metamaterials. The micro and macro structures of the AMMs are designed based on structural construction principles such as, phase transition, strain mismatch, and mechanical instability. Considering the controllability and efficiency of the stimuli-responsive materials, physical fields such as, the temperature, chemicals, light, electric current, magnetic field, and pressure have been adopted as the external stimuli in practice. In this paper, the frontier works and the latest progress in AMMs from the aspects of the mechanics and materials are reviewed. The functions and engineering applications of the AMMs are also discussed. Finally, existing issues and future perspectives in this field are briefly described. This review is expected to provide the basis and inspiration for the follow-up research on AMMs.
Collapse
Affiliation(s)
- Jixiang Qi
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Zihao Chen
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Peng Jiang
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Wenxia Hu
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Yonghuan Wang
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Zeang Zhao
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Xiaofei Cao
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Shushan Zhang
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Ran Tao
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Ying Li
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Daining Fang
- Beijing Key Laboratory of Lightweight Multi‐functional Composite Materials and StructuresInstitute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
6
|
Xiong Z, Li M, Hao S, Liu Y, Cui L, Yang H, Cui C, Jiang D, Yang Y, Lei H, Zhang Y, Ren Y, Zhang X, Li J. 3D-Printing Damage-Tolerant Architected Metallic Materials with Shape Recoverability via Special Deformation Design of Constituent Material. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39915-39924. [PMID: 34396781 DOI: 10.1021/acsami.1c11226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Architected metallic materials generally suffer from a serious engineering problem of mechanical instability manifested as the emergence of localized deformation bands and collapse of strength. They usually cannot exhibit satisfactory shape recoverability due to the little recoverable strain of metallic constituent material. After yielding, the metallic constituent material usually exhibits a continuous low strain-hardening capacity, giving the local yielded regions of architecture low load resistance and easily developing into excessive deformation bands, accompanied by the collapse of strength. Here, a novel constituent material deformation design strategy has been skillfully proposed, where the low load resistance of yielded regions of the architecture can be effectively compensated by the significant self-strengthening behavior of constituent material, thus avoiding the formation of localized deformation bands and collapse of strength. To substantiate this strategy, shape-memory alloys (SMAs) are considered as suitable constituent materials for possessing both self-strengthening behavior and shape-recovery function. A 3D-printing technique was adopted to prepare various NiTi SMA architected materials with different geometric structures. It is demonstrated that all of these architected metallic materials can be stably and uniformly compressed by up to 80% without the formation of localized bands, collapse of strength, and structural failure, exhibiting ultrahigh damage tolerance. Furthermore, these SMA architected materials can display more than 98% shape recovery even after 80% deformation and excellent cycle stability during 15 cycles. This work exploits the amazing impact of constituent materials on constructing supernormal properties of architected materials and will open new avenues for developing high-performance architected metallic materials.
Collapse
Affiliation(s)
- Zhiwei Xiong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P.R. China
| | - Meng Li
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, P. R. China
| | - Shijie Hao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P.R. China
| | - Yinong Liu
- Department of Mechanical Engineering, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Lishan Cui
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P.R. China
| | - Hong Yang
- Department of Mechanical Engineering, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Chengbo Cui
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, P. R. China
| | - Daqiang Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P.R. China
| | - Ying Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P.R. China
| | - Hongshuai Lei
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yihui Zhang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Yang Ren
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Xiaoyu Zhang
- Beijing Institute of Spacecraft System Engineering, Beijing 100094, P. R. China
| | - Ju Li
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Kuang X, Roach DJ, Hamel CM, Yu K, Qi HJ. Materials, design, and fabrication of shape programmable polymers. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/2399-7532/aba1d9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Shen Z, Chen F, Zhu X, Yong KT, Gu G. Stimuli-responsive functional materials for soft robotics. J Mater Chem B 2020; 8:8972-8991. [PMID: 32901646 DOI: 10.1039/d0tb01585g] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Functional materials have spurred the advancement of soft robotics with the potential to perform safe interactions and adaptative functions in unstructured environments. The responses of functional materials under external stimuli lend themselves to programmable actuation and sensing, opening up new possibilities of robot design with built-in mechanical intelligence and unlocking new applications. Here, we review the development of stimuli-responsive functional materials particularly used for soft robotic systems. This review covers five representative types of soft stimuli-responsive functional materials, namely (i) dielectric elastomers, (ii) hydrogels, (iii) shape memory polymers, (iv) liquid crystal elastomers, and (v) magnetic materials, with focuses on their inherent material properties, working mechanisms, and design strategies for actuation and sensing. We also highlight the state-of-the-art applications of soft stimuli-responsive functional materials in locomotion robots, grippers and sensors. Finally, we summarize the current challenges and map out future trends for engineering next-generation functional materials for soft robotics.
Collapse
Affiliation(s)
- Zequn Shen
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. and State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feifei Chen
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. and State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangyang Zhu
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. and State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Guoying Gu
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. and State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|