1
|
Lv F, Miao J, Wang Z, Hu J, Orejon D. Polyanionic Electrolyte Ionization Desalination Empowers Continuous Solar Evaporation Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410290. [PMID: 39690819 DOI: 10.1002/adma.202410290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Solar evaporation contributes to sustainable and environmentally friendly production of fresh water from seawater and wastewater. However, poor salt resistance and high degree of corrosion of traditional evaporators in brine make their implementation in real applications scarce. To overcome such deficiency, a polyanionic electrolyte functionalization strategy empowering excellent uniform desalination performance over extended periods of time is exploited. This 3D superhydrophilic graphene oxide solar evaporator design ensures stable water supply by the enhanced self-driving liquid capillarity and absorption at the evaporation interface as well as efficient vapor diffusion. Meanwhile, the polyanionic electrolyte functionalization implemented via layer-by-layer static deposition of polystyrene sodium sulfonate effectively regulates/minimizes the flux of salt ions by exploiting the Donnan equilibrium effect, which eventually hinders local salt crystallization during long-term operation. Stable evaporation rates in line with the literature of up to 1.68 kg m-2 h-1 are achieved for up to 10 days in brine (15‰ salinity) and for up to 3 days in seawater from Hangzhou Bay in the East China Sea (9‰ salinity); while, maintaining evaporation efficiencies of ≈90%. This work demonstrates the excellent benefits of polyanionic electrolyte functionalization as salt resistance strategy for the development of high-performance solar powered seawater desalination technology and others.
Collapse
Affiliation(s)
- Fengyong Lv
- School of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jie Miao
- School of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhongyu Wang
- School of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Daniel Orejon
- School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, Edinburgh, Scotland, EH9 3FD, UK
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
2
|
Mate N, Nabeela K, Preethikumar G, Pillai S, Mobin SM. A lignin-derived carbon dot-upgraded bacterial cellulose membrane as an all-in-one interfacial evaporator for solar-driven water purification. MATERIALS HORIZONS 2024; 11:5114-5122. [PMID: 39120441 DOI: 10.1039/d4mh00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Solar-driven interfacial evaporation has emerged as an efficient approach for wastewater treatment and seawater desalination. New trends demand adaptive technology to develop photothermal membranes with multifunctional features. Herein, we report a robust multi-purpose near-infrared (NIR)-active hydrogel composite (c-BC@N-LCD) from broad-spectrum active nitrogen-doped lignin-derived carbon dots (N-LCDs) covalently cross-linked with a bacterial cellulose (BC) matrix. BC provides adequate porosity and hydrophilicity required for easy water transport while managing heat loss. A commendable evaporation rate (ER) of 2.2 kg m-2 h-1 under one sun (1 kW m-2) is achieved by c-BC@N-LCD. The developed hydrogel system is also found to be efficient for desalination (∼2.1 kg m-2 h-1) and for remediating various pollutants (heavy metal ions, dyes, and pharmaceuticals) from feed water. The efficacy of the membrane remains unaltered by different grades of water, and hence can be adoptable for economically stressed communities living in water-polluted regions as well as those residing in coastal areas.
Collapse
Affiliation(s)
- Nirmiti Mate
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Kallayi Nabeela
- Centre for Advanced Electronics (CAE), Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Gopika Preethikumar
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695 019, India
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695 019, India.
| | - Saju Pillai
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695 019, India
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695 019, India.
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
- Centre for Advanced Electronics (CAE), Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
3
|
Ge Y, Wang L, Su Z, Ivan MNAS, Wang C, Han K, Tsang YH, Xu S, Bai G. Efficient Solar-Driven Interfacial Water Evaporator using Hydrogel Modified Carbon-Based Biomass with Abundant Microchannels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309780. [PMID: 38433392 DOI: 10.1002/smll.202309780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/03/2024] [Indexed: 03/05/2024]
Abstract
The conventional sea water desalination technologies are not yet adopted worldwide, especially in the third world countries due to their high capital cost as well as large energy requirement. To solve this issue in a sustainable way an interfacial solar water evaporation device is designed and proposed in this article using the branches of Prunus serrulata (PB). The PB has abundant microchannels and shows excellent photothermal conversion capability after carbonization. Moreover, the easy access to raw materials and the facile fabrication process makes the solar water evaporating device very cost effective for seawater desalination application. Experiments show that in the presence of the fabricated evaporator the evaporation rate of water can reach 3.5 kg m-2 h-1 under 1 sun, which is superior to many similar experimental devices. In addition, its advantages, such as effective sewage purification capability, low cost, and environmental friendliness, make this evaporator highly competitive in the extensive promotion of this technology and can be considered as a new sustainable solution for seawater desalination with great application potential and prospects.
Collapse
Affiliation(s)
- Yumeng Ge
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Le Wang
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Zewen Su
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Md Nahian Al Subri Ivan
- Department of Applied Physics and Photonics Research Institute, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Congcong Wang
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Keyu Han
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Yuen Hong Tsang
- Department of Applied Physics and Photonics Research Institute, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Shiqing Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Gongxun Bai
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| |
Collapse
|
4
|
Tian Y, Jiang Y, Zhu R, Yang X, Wu D, Wang X, Yu J, Li Y, Gao T, Li F. Solar-Driven Multistage Device Integrating Dropwise Condensation and Guided Water Transport for Efficient Freshwater and Salt Collection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7335-7345. [PMID: 38626301 DOI: 10.1021/acs.est.3c10450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Interfacial solar vapor generation (ISVG) is an emerging technology to alleviate the global freshwater crisis. However, high-cost, low freshwater collection rate, and salt-blockage issues significantly hinder the practical application of solar-driven desalination devices based on ISVG. Herein, with a low-cost copper plate (CP), nonwoven fabric (NWF), and insulating ethylene-vinyl acetate foam (EVA foam), a multistage device is elaborately fabricated for highly efficient simultaneous freshwater and salt collection. In the designed solar-driven device, a superhydrophobic copper plate (SH-CP) serves as the condensation layer, facilitating rapid mass and heat transfer through dropwise condensation. Moreover, the hydrophilic NWF is designed with rational hydrophobic zones and specific high-salinity solution outlets (Design-NWF) to act as the water evaporation layer and facilitate directional salt collection. As a result, the multistage evaporator with eight stages exhibits a high water collection rate of 2.25 kg m-2 h-1 under 1 sun irradiation. In addition, the desalination device based on the eight-stage evaporator obtains a water collection rate of 13.44 kg m-2 and a salt collection rate of 1.77 kg m-2 per day under natural irradiation. More importantly, it can maintain a steady production for 15 days without obvious performance decay. This bifunctional multistage device provides a feasible and efficient approach for simultaneous desalination and solute collection.
Collapse
Affiliation(s)
- Yankuan Tian
- Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Yifei Jiang
- Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Ruishu Zhu
- Innovation Center for Textile Science & Technology, Donghua University, Shanghai 201620, People's Republic of China
| | - Xin Yang
- Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Dequn Wu
- Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Xueli Wang
- Innovation Center for Textile Science & Technology, Donghua University, Shanghai 201620, People's Republic of China
| | - Jianyong Yu
- Innovation Center for Textile Science & Technology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yiju Li
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Tingting Gao
- Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Faxue Li
- Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
5
|
Xue Q, Xiao P, Gu J, Wang W, Yan L, Chen T. Superhydrophobic sand evaporator with core-shell structure for long-term salt-resistant solar desalination. WATER RESEARCH 2024; 253:121290. [PMID: 38367377 DOI: 10.1016/j.watres.2024.121290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Solar-driven water evaporation, as an environmentally benign pathway, provides an opportunity for alleviating global clean water scarcity. However, the rapidly generated interfacial steam and localized heating could cause increased salt concentration and accumulation, deteriorating the evaporation performance and long-term stability. Herein, a novel superhydrophobic sand solar (FPPSD) evaporator with a core-shell structure was proposed through interface functionalization for continuous photothermal desalination. The collective behavior essence of the sand aggregate gave itself micron-scale self-organized pores and configurable shapes, generating desirable capillary force and supplying effective water-pumping channels. More importantly, combining the dopamine, polypyrrole (PPy), and 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTS) through π-π conjugation and multiple hydrogen bonding effects gave the FPPSD evaporator with stable superhydrophobic property and highly efficient photothermal conversion capability. Therefore, the FPPSD evaporator showed a continuous and stable photothermal performance even after 96 h continuous evaporation under 3-sun irradiation for 10 wt% saline solution, among the best values in the reported works of literature, demonstrating its excellent salt-resistance stability. Furthermore, this novel FPPSD evaporator displayed outstanding environmental stability that kept its initial water transport capacity even after being treated under harsh conditions for 30 days. With excellent salt-resistance ability and stable environmental stability, the FPPSD evaporator will provide an attractive platform for sustainable solar-driven water management.
Collapse
Affiliation(s)
- Qingyang Xue
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
| | - Peng Xiao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
| | - Jincui Gu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China.
| | - Wenqin Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Luke Yan
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang' an University, Xi'an 710064, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China.
| |
Collapse
|
6
|
Qin Z, Yin S, She P, Kong L, Yang X, Sun H. Cotton Cloth@ Polydimethylsiloxane -Graphene Flakes- Titanium Dioxide Composite Membrane for Wastewater Purification. J Colloid Interface Sci 2024; 654:1251-1259. [PMID: 37907004 DOI: 10.1016/j.jcis.2023.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Interfacial solar steam generation (ISSG) has been regarded as a simple and highly-efficient method for wastewater purification. Herein, we prepared a superhydrophobic composite membrane, in which polydimethylsiloxane employed as binders to pack graphite flakes and titanium dioxide tightly onto cotton cloth (defined as cotton cloth@PDMS-C-P25). Benefiting from its powerful photothermal effects, cotton cloth@PDMS-C-P25 exhibited high evaporation flux of 1.86 kg m-2 h-1 and 1.73 kg m-2 h-1 for pure water and seawater, respectively. Meanwhile, the prepared composite membrane fulfilled the targets of sewage purification set by its photocatalytic properties, which demonstrated a degradation rate of 66.1 % for Rhodamine B (RhB), and antibacterial efficiency of over 99.99 % for Escherichia coli (E. coli). Furthermore, cotton cloth@PDMS-C-P25 surface was endowed with superhydrophobic and low-adhesion characteristics mainly owing to the synergy of multiscale structure and low surface energy matter, which contribute to the anti-adhesion effect of 97.9 % for E. coli at a high concentration of 107 colony forming units (CFUs). In this work, the cost-effective, environmentally friendly, long-term stable, and superhydrophobic solar-absorber holds a potential prospect for wastewater treatment and desalination in a typical pollution-induced water shortage area.
Collapse
Affiliation(s)
- Zhen Qin
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Liang Kong
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Xiangyu Yang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Hang Sun
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China.
| |
Collapse
|
7
|
Chaw Pattnayak B, Krishna VS, Sahu BK, Mohapatra S. Reusable Floating Spherical Hydrogel Evaporator for Solar Desalination with Salt Mitigation and Contaminant Elimination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18663-18671. [PMID: 38063076 DOI: 10.1021/acs.langmuir.3c03174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The generation of clean and drinkable fresh water from seawater and contaminated water holds great potential to mitigate water scarcity. Herein, a floating spherical hydrogel evaporator (SHE) is designed to achieve sunlight-driven desalination, self-salt cleaning, and removal of environmental contaminants. The spherical lightweight polystyrene is coated with a porous carbon-embedded sodium alginate/PVA/CMC photothermal hydrogel to generate a spherical hydrogel evaporator (SHE) that floats naturally. The SHE is very sensitive to the weight imbalance (500 mg) and can respond quickly to the accumulation of salt by rotation to the fresh evaporation surface, realizing excellent antisalt fouling performance. Remarkably, with energy localization by porous carbon, the spherical floating evaporator achieved a high evaporation rate of 2.65 kg m-2 h-1 with an evaporation efficiency of 98%. At the same time, SHE is also capable of adsorbing both organic contaminants and heavy metal ions through functional groups of the hydrogel, attaining 99% removal efficiency. Overall, this low-cost spherical floating evaporator may offer solution for eco-friendly and sustainable production of fresh water on a large scale.
Collapse
Affiliation(s)
- Bibek Chaw Pattnayak
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - V Saimohana Krishna
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Bikash K Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sasmita Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
- Centre for Nanomaterials, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
8
|
Fu L, Huang Z, Zhou X, Deng L, Liao M, Chen S, Wang H, Wang L. Waste tissue-based bilayer solar evaporator for efficient solar photothermal generation of clean water. ENVIRONMENTAL TECHNOLOGY 2023; 44:4188-4198. [PMID: 35608968 DOI: 10.1080/09593330.2022.2082326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Solar photothermal water evaporation technology has attracted attention owing to its promising applications in wastewater treatment and desalination for producing clean water. However, high-performance solar evaporators are still limited by the complex manufacturing process, less flexibility, intolerance to salt, high cost, and low water evaporation efficiency.In this study, composite fibre paper composed of waste tissue paper, aramid nanofibers, and polyaniline was prepared to produce clean water. The evaporator was designed to pump water through a cotton wick to the composite paper, which reduced heat loss and avoided the deposition of salt on the surface. The use of waste tissue paper solves the problem of waste disposal, increases the commercial value of waste tissue, and reduces production costs. The composite fibre paper exhibited broad-band light absorption of an average of 96%. The average evaporation rate of the solar evaporator was 1.43 kg m-2 h-1, and the photothermal conversion efficiency was 98.33% under 1 sun illumination. This solar evaporator is easily fabricated and is cost-effective, demonstrating the enormous potential for real-world wastewater treatment and desalination to produce clean water.
Collapse
Affiliation(s)
- Lu Fu
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Zhiyu Huang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Xiang Zhou
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Liumi Deng
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Meng Liao
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Shaohua Chen
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Hua Wang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Luoxin Wang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| |
Collapse
|
9
|
Zhu L, Tian L, Jiang S, Han L, Liang Y, Li Q, Chen S. Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling. Chem Soc Rev 2023; 52:7389-7460. [PMID: 37743823 DOI: 10.1039/d3cs00500c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Photothermal regulation concerning solar harvesting and repelling has recently attracted significant interest due to the fast-growing research focus in the areas of solar heating for evaporation, photocatalysis, motion, and electricity generation, as well as passive cooling for cooling textiles and smart buildings. The parallel development of photothermal regulation strategies through both material and system designs has further improved the overall solar utilization efficiency for heating/cooling. In this review, we will review the latest progress in photothermal regulation, including solar heating and passive cooling, and their manipulating strategies. The underlying mechanisms and criteria of highly efficient photothermal regulation in terms of optical absorption/reflection, thermal conversion, transfer, and emission properties corresponding to the extensive catalog of nanostructured materials are discussed. The rational material and structural designs with spectral selectivity for improving the photothermal regulation performance are then highlighted. We finally present the recent significant developments of applications of photothermal regulation in clean energy and environmental areas and give a brief perspective on the current challenges and future development of controlled solar energy utilization.
Collapse
Affiliation(s)
- Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Liang Tian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Siyi Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Lihua Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Yunzheng Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| |
Collapse
|
10
|
Wei D, Cao X, Ma M, Zhao Z, Zhang J, Dong X, Wang C. Superhydrophilic Interconnected Biomass-Based Absorbers Toward High-Speed Evaporation for Solar Steam Generation. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300046. [PMID: 37745828 PMCID: PMC10517294 DOI: 10.1002/gch2.202300046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/30/2023] [Indexed: 09/26/2023]
Abstract
Taking abundant and sustainable solar energy as the only energy source, solar-powered interface evaporation has been regarded as a promising method to alleviate the pressure of freshwater shortage. However, the uptake of clean water from brine is constantly accompanied by evaporation of water and condensation of vapor, which inevitably generates salt solid, preventing further continuous and stable evaporation. The most direct method is to fabricate a photothermal material with salt self-resistance by using the reflux of salt ions. Here, a superhydrophilic interconnected biomass carbon absorber (SBCA) is prepared by freeze-drying and carbonization, realizing strong liquid pumping, and self-blocking salt. In combination with superior broadband light absorption (94.91%), high porosity (95.9%), superhydrophilicity, and excellent thermal localization, an evaporation device with excellent evaporation rate (2.45 kg m-2 h-1 under 1 kW m-2) is successfully proposed. In the meantime, the porous skeleton and rapid water transport can enhance the diffusion of salt ions and slow down the rate of salt deposition. As a result, no salt deposition is found on the SBCA surface after continuous irradiation at 1 kW m-2 for 15 h. The design can provide a convenient and low-cost efficient strategy for solar steam generators to address clean water acquisition.
Collapse
Affiliation(s)
- Dan Wei
- School of Materials Science and EngineeringShaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Xiaoyu Cao
- School of Materials Science and EngineeringShaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Miaomiao Ma
- School of Materials Science and EngineeringShaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Zexiang Zhao
- School of Materials Science and EngineeringShaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Jing Zhang
- School of Materials Science and EngineeringShaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Xinyu Dong
- School of Materials Science and EngineeringShaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Chengbing Wang
- School of Materials Science and EngineeringShaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and TechnologyXi'anShaanxi710021China
| |
Collapse
|
11
|
Guo XJ, Wang X, Xue CH, Liu BY, Wu YG, Zhang D, Deng FQ, An QF, Pu YP. Salt-blocking three-dimensional Janus evaporator with superwettability gradient for efficient and stable solar desalination. J Colloid Interface Sci 2023; 644:157-166. [PMID: 37105039 DOI: 10.1016/j.jcis.2023.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Solar interfacial steam power generation is a prospective method for seawater desalination. In this work, a salt-blocking three-dimensional (3D) Janus evaporator with a superhydrophobic to superhydrophilic gradient was fabricated by spraying a composite dispersion of multi-walled carbon nanotubes/polydimethylsiloxane (CNTs/PDMS) onto the top side of a polyurethane (PU) foam and polyvinyl alcohol (PVA) solution onto the bottom side. The CNTs/PDMS composite dispersion with nanostructured CNTs and low surface energy PDMS combined with the porous structure of the PU foam rendered the top side superhydrophobic. Therefore, a layer suitable for photothermal conversion was obtained. The hydrophilic PVA combined with the porous structure of the foam rendered the bottom side superhydrophilic, facilitating water absorption and transportation. The asymmetric wettability gradient of the CNTs/PDMS-PU-PVA as a 3D evaporator caused the evaporation rate and transportation speed of water to reach a balance, and the salt was quickly dissolved at the superhydrophilic interface. This 3D salt-resistant Janus evaporator achieved an evaporation rate of 2.26 kg m-2 h-1 under 1 kW m-2 illumination.
Collapse
Affiliation(s)
- Xiao-Jing Guo
- College of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xing Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chao-Hua Xue
- College of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Bing-Ying Liu
- College of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yong-Gang Wu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Duo Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fu-Quan Deng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiu-Feng An
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yong-Ping Pu
- College of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
12
|
Ai L, Xu Y, Qin S, Luo Y, Wei W, Wang X, Jiang J. Facile fabrication of Ni 5P 4-NiMoO x nanorod arrays with synergistic thermal management for efficient interfacial solar steam generation and water purification. J Colloid Interface Sci 2023; 634:22-31. [PMID: 36528968 DOI: 10.1016/j.jcis.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Interfacial steam generation by harnessing renewable solar energy has been recognized as a sustainable solution to global freshwater crisis. A promising evaporator with key components of high spectral absorption, efficient thermal management and adequate water transport is highly desired. In the present study, an integrated design for three-in-one functionality is achieved by simply loading Ni5P4-NiMoOx (P-NMO) on a macroporous nickel foam (NF) carrier. In situ embedding broadband Ni5P4 absorber into insulating NiMoOx enables efficient photothermal conversion and heat localization. Benefiting from proper thermal management and abundant water transmission, P-NMO/NF exhibits the excellent performance for interfacial steam generation with a high evaporation rate of 1.49 kg m-2h-1 and evaporation efficiency of 93.0 % under one sun irradiation. Furthermore, the obtained P-NMO/NF is proven to be applicable for high-efficiency freshwater production in seawater desalination and wastewater purification, showing great potential for practical solar evaporator under natural environmental conditions.
Collapse
Affiliation(s)
- Lunhong Ai
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Ying Xu
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Shan Qin
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Yang Luo
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Wei Wei
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xinzhi Wang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jing Jiang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| |
Collapse
|
13
|
Fabrication and Application of Ag, Black TiO2 and Nitrogen-Doped 3D Reduced Graphene Oxide (3D Black TiO2/Ag/N@rGO) Evaporator for Efficient Steam Generation. Catalysts 2023. [DOI: 10.3390/catal13030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The scarcity of fresh water, which is aggravated by rapid economic development and population growth, is a major threat to the modern world. Solar-driven interfacial desalination and steam generation is a promising strategy that localizes heat at the air-water interface through appropriate thermal management and demonstrates efficient photothermal performance. In the current study, Ag, black TiO2, and nitrogen-doped 3D reduced graphene oxide (3D black TiO2/Ag/N@rGO) hierarchical evaporator was fabricated, and its morphology, elemental composition, porosity, broadband solar absorption potential, photothermal performance, and interfacial desalination potential were assessed. The 3D solar evaporator showed efficient solar absorption over the entire broadband UV-visible near-infrared (UV-Vis NIR) region and demonstrated 99% photothermal conversion efficiency and potential freshwater generation of 1.43 kg·m−2 h−1. The specific surface area and porosity analyses demonstrated an ultrahigh specific surface area, high pore volume, and a mesoporous structure, with a predominant pore diameter of 4 nm. The strong photothermal performance can be attributed to the nitrogen doping of the rGO, which boosted the electrocatalytic and photothermal activity of the graphene through the activation of the excess free-flowing π electrons of the sp2 configuration of the graphene; the broadband solar absorption potential of the black TiO2; and the localized surface plasmon resonance effect of the AgNPs, which induced hot electron generation and enhanced photothermal conversion. Hence, the high photothermal conversion efficiency attained can be attributed to the synergistic photothermal performances of the individual components and the high interfacial surface area, abundant heat, and mass transfer microcavities of the 3D hierarchical porous solar absorber, offering multiple reflections of light and enhanced solar absorption. The study highlights the promising potential of the 3D evaporator for real-word interfacial desalination of seawater, helping to solve the water shortage problem sustainably.
Collapse
|
14
|
Zhu YJ. Fire-Resistant Paper Based on Ultralong Hydroxyapatite Nanowires. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:86-90. [PMID: 35339193 DOI: 10.2174/1872210516666220325153220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/11/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
15
|
Aizudin M, Alias NH, Ng YXA, Mahmod Fadzuli MH, Ang SC, Ng YX, Poolamuri Pottammel R, Yang F, Ang EH. Membranes prepared from graphene-based nanomaterials for water purification: a mini-review. NANOSCALE 2022; 14:17871-17886. [PMID: 36468603 DOI: 10.1039/d2nr05328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Graphene-based nanomaterials (GBnMs) are currently regarded as a critical building block for the fabrication of membranes for water purification due to their advantageous properties such as easy surface modification of functional groups, adjustable interlayer pore channels for solvent transportation, robust mechanical properties, and superior photothermal capabilities. By combining graphene derivatives with other emerging materials, heteroatom doping and rational design of a three-dimensional network can enhance water transportation and evaporation rates through channels of GBnM laminates and such layered structures have been applied in various water purification technologies. Herein, this mini-review summarizes recent progress in the synthesis of GBnMs and their applications in water treatment technologies, specifically, nanofiltration (NF) and solar desalination (SD). Finally, personal perspectives on the challenges and future directions of this promising nanomaterial are also provided.
Collapse
Affiliation(s)
- Marliyana Aizudin
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Nur Hashimah Alias
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Yun Xin Angel Ng
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Muhammad Haikal Mahmod Fadzuli
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Seng Chuan Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Yi Xun Ng
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | | | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhejiang 212003, China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| |
Collapse
|
16
|
Onggowarsito C, Feng A, Mao S, Nguyen LN, Xu J, Fu Q. Water Harvesting Strategies through Solar Steam Generator Systems. CHEMSUSCHEM 2022; 15:e202201543. [PMID: 36163592 PMCID: PMC10098618 DOI: 10.1002/cssc.202201543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/25/2022] [Indexed: 05/27/2023]
Abstract
Solar steam generator (SSG) systems have attracted increasing attention, owing to its simple manufacturing, material abundance, cost-effectiveness, and environmentally friendly freshwater production. This system relies on photothermic materials and water absorbing substrates for a clean continuous distillation process. To optimize this process, there are factors that are needed to be considered such as selection of solar absorber and water absorbent materials, followed by micro/macro-structural system design for efficient water evaporation, floating, and filtration capability. In this contribution, we highlight the general interfacial SSG concept, review and compare recent progresses of different SSG systems, as well as discuss important factors on performance optimization. Furthermore, unaddressed challenges such as SSG's cost to performance ratio, filtration of untreatable micropollutants/microorganisms, and the need of standardization testing will be discussed to further advance future SSG studies.
Collapse
Affiliation(s)
- Casey Onggowarsito
- Centre for Technology in Water and WastewaterSchool of Civil and Environmental EngineeringUniversity of Technology Sydney15 BroadwayUltimoNSW 2007Australia
| | - An Feng
- Centre for Technology in Water and WastewaterSchool of Civil and Environmental EngineeringUniversity of Technology Sydney15 BroadwayUltimoNSW 2007Australia
| | - Shudi Mao
- Centre for Technology in Water and WastewaterSchool of Civil and Environmental EngineeringUniversity of Technology Sydney15 BroadwayUltimoNSW 2007Australia
| | - Luong Ngoc Nguyen
- Centre for Technology in Water and WastewaterSchool of Civil and Environmental EngineeringUniversity of Technology Sydney15 BroadwayUltimoNSW 2007Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular DesignSchool of Chemical EngineeringUNSW InstitutionSydneyNSW 2052Australia
| | - Qiang Fu
- Centre for Technology in Water and WastewaterSchool of Civil and Environmental EngineeringUniversity of Technology Sydney15 BroadwayUltimoNSW 2007Australia
| |
Collapse
|
17
|
Wang B, Tao S. Synthesis of Micro-/Nanohydroxyapatite Assisted by the Taylor-Couette Flow Reactor. ACS OMEGA 2022; 7:44057-44064. [PMID: 36506160 PMCID: PMC9730316 DOI: 10.1021/acsomega.2c05491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Hydroxyapatite (HAP) has received increasing attention as an essential chemical product with good biocompatibility and adsorption properties. Generally, amorphous calcium phosphate (ACP) was generated first in the reactor and transformed into HAP after a period of crystallization. In this work, a series of Taylor-Couette flow reactors with different inner diameters were designed to assist in synthesizing HAP micro-/nanocrystals. ACP was obtained in a Taylor-Couette flow reactor at Re = 247 and successfully transformed into needle-like HAP crystals with a length of about 200 nm and a uniform particle size distribution after crystallization transformation. The yield of a single reactor can reach 2.16 kg per day. The finite element analysis results and time-space diagram of flow pattern variation showed that the Taylor-Couette flow reactor could improve the mixing behavior and the flow field distribution. The Taylor-Couette flow reactor provides a valuable reference for synthesizing inorganic micro-/nanomaterials.
Collapse
Affiliation(s)
- Boyin Wang
- Department
of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Shengyang Tao
- Frontiers
Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian116024, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian116024, China
- Department
of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
18
|
Lu XL, Shao JC, Chi HZ, Zhang W, Qin H. Self-Assembly of a Graphene Oxide Liquid Crystal for Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47549-47559. [PMID: 36219449 DOI: 10.1021/acsami.2c11290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Adsorbents, especially those with high removal efficiency, long life, and multi-purpose capabilities, are the most crucial components in an adsorption system. By taking advantage of the liquid-like mobility and crystal-like ordering of liquid crystal materials, a liquid crystal induction method is developed and applied to construct three-dimensional graphene-based adsorbents featuring excellent shape adaptability, a distinctive pore structure, and abundant surface functional groups. When the monoliths are used for water restoration, the large amount of residual oxygen-containing groups is more susceptible to electrophilic attack, thus contributing to cation adsorption (up to 705.4 mg g-1 for methylene blue), while the connected microvoids between the aligned graphene oxide sheets facilitate mass transfer, e.g., the high adsorption capacity for organic pollutants (196.2 g g-1 for ethylene glycol) and the high evaporation rate for water (4.01 kg m-2 h-1). This work gives a practical method for producing high-performance graphene-based functional materials for those applications that are sensitive to surface and mass transfer properties.
Collapse
Affiliation(s)
- Xin Liang Lu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Jia Cheng Shao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Hong Zhong Chi
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Wen Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Haiying Qin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
19
|
Wu Y, Huang H, Zhou W, You C, Ye H, Chen J, Zang S, Yun J, Chen X, Wang L, Yuan Z. High-Porosity Lamellar Films Prepared by a Multistage Assembly Strategy for Efficient Photothermal Water Evaporation and Power Generation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29099-29110. [PMID: 35713882 DOI: 10.1021/acsami.2c05125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The frame structure combined with water- and heat-transfer capabilities fully satisfies the requirements of photothermal conversion materials in seawater evaporation applications. Meanwhile, it must integrate the characteristics of a high photothermal conversion rate, thermal management, and water transportation. Herein, lamellar porous films were successfully designed and synthesized by a simple ultrasonic-assisted vacuum filtration method. In this process, polystyrene sulfonate@carbon nanotubes/reduced graphene oxide (PSS@CNT/rGO) lamellar films were constructed by the one-dimensional synthesis of PSS@CNT self-assembled at the molecular scale and the two-dimensional matrix material rGO. It is worth noting that the lamellar film exhibits a high specific surface area (285.5 m2·g-1), which is reflected in its abundant nanopores. Among them, the porous network system composed of nanochannels can provide efficient water supply and steam-transfer ability and strengthen the heat insulation performance of thermal localization, which is beneficial to photothermal evaporation. The obtained PSS@CNT/rGO lamellar films achieved a condensed water yield of 1.825 kg·m-2·h-1 under 1 sun illumination (1 kW·m-2), and their solar-vapor conversion efficiency was 97.1%. Simultaneously, the interaction between the water flow and the carbon material interface was also used to generate additional electric energy output. The maximum open-circuit voltage of 0.46 V was generated at both termini of the PSS@CNT/rGO lamellar film, which successfully realized the multieffect utilization of energy. These results show that the multistage assembly strategy is a facile and effective means for the development of an efficient evaporation photothermal film, which offers significant value in the field of photothermal seawater evaporation and power generation.
Collapse
Affiliation(s)
- Yiting Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongqiang Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiming Zhou
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chuanting You
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huilan Ye
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jia Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuo Zang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juhua Yun
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinqi Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liwei Wang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Zhanhui Yuan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
20
|
Arunkumar T, Sathyamurthy R, Denkenberger D, Lee SJ. Solar distillation meets the real world: a review of solar stills purifying real wastewater and seawater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22860-22884. [PMID: 35060059 DOI: 10.1007/s11356-022-18720-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Solar energy-driven evaporation-based freshwater production is one of the sustainable ways to purify contaminated/salty water. Recent advances in solar absorbers' assemblies, design modifications, and integrations with heating sources improved the rate of freshwater productivity. However, the type of feed water affects the evaporation rate in a solar desalination system (SDS). Many studies used tap water with added contaminants to test the performance of a SDS and studied the water quality improvement. As a typical result, pH, total dissolved solids (TDS), and electrical conductivity (µS/cm) are reduced after solar evaporation. The performance of SDSs for real wastewaters are also important to understand, e.g., the reduction of high organic pollutants after solar evaporation. In this aspect, the main objective of the present work is to review solar distillation of real wastewaters and seawater by using SDSs. Further, the mechanism of a solar distiller with heat transfer principles, parameters affecting evaporation process, real wastewaters and seawaters purified in a solar distillation system, improvement of various parameters before and after solar evaporation, pathways of handling wastewaters, challenges, and future perspectives are discussed. Conclusively, SDSs are found to remove pollutants effectively after solar evaporation. The evaporation rate is relatively slower due to high concentration of pollutants that reduce vapor pressure. The COD removal of various real wastewaters, including sludge, kitchen, textile, palm oil, petroleum, water plant, and municipal wastewaters, was 98.13%, 97.85%, 96.84%, 96.71%, 87.99%, 86.99%, and 85.67%, respectively. The reduction rate of salt concentration in real seawater after evaporation in the solar distiller was 99.99%.
Collapse
Affiliation(s)
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, , Coimbatore, 641407, Tamil Nadu, India
| | - David Denkenberger
- Mechanical Engineering and the Alaska Center for Energy and Power, University of Alaska Fairbanks, Alaska, USA
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
21
|
Zhang H, Liu H, Chen S, Zhao X, Yang F, Tian X. Preparation of Three-dimensional Graphene-based Sponge as Photo-thermal Conversion Material to Desalinate Seawater. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1500-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Li R, Zhou C, Yang L, Li J, Zhang G, Tian J, Wu W. Multifunctional cotton with PANI-Ag NPs heterojunction for solar-driven water evaporation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127367. [PMID: 34736217 DOI: 10.1016/j.jhazmat.2021.127367] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Water evaporation using photothermal materials is a cost-effective and sustainable technology for alleviating the world's freshwater crisis, but oil contaminants and organic pollutants exist in the original water sources, which severely degrade the evaporation performance and pose environmental hazards. In this paper, we demonstrate a photothermal material (multifunctional cotton) that simultaneously demonstrates oil-resistance, organic pollutant removal, and a high water evaporation rate. A Schottky heterostructure was formed between polyaniline (PANI) and Ag NPs, which improved the photothermal conversion and achieved a water evaporation rate of 1.37 kg m-2 h-1 and photothermal conversion efficiency of 84.7% under one-sun illumination (1 kW m-2). Notably, various organic pollutants in the water source were thoroughly removed by visible-light catalytic degradation and adsorption, which displayed efficiencies of 99.3% and 97%, respectively. The multifunctional cotton also possessed excellent superoleophobicity, and repelled oil contaminants and organic pollutants in water. Considering these merits, the as-prepared multifunctional cotton is an outstanding candidate for water evaporation from various sources.
Collapse
Affiliation(s)
- Ruiqi Li
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, China.
| | - Changqing Zhou
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Lixue Yang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Junqing Li
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Guoli Zhang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Jiaxiang Tian
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Wencong Wu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
23
|
Li L, Li Q, Feng Y, Chen K, Zhang J. Melamine/Silicone Hybrid Sponges with Controllable Microstructure and Wettability for Efficient Solar-Driven Interfacial Desalination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2360-2368. [PMID: 34951538 DOI: 10.1021/acsami.1c20734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solar-driven interfacial evaporation (SIE) has received extensive attention as a very promising desalination technique to solve the fresh water shortage crisis. However, evaporation rate decline and salt-fouling during long-term SIE seriously hinder applications of solar evaporators. Here, we report the preparation of melamine/silicone (MS) hybrid sponges with controllable microstructure and wettability for efficient SIE by further combination with carbon nanotubes (CNTs). The MS sponges are synthesized by hydrolytic condensation and phase separation of two silanes in the melamine sponge. The microstructure and wettability of the MS sponges are highly controllable by the silanes concentration. The CNTs@MS solar evaporators have a unique three-tier hierarchical macro-/micro-/nanostructure, very low thermal conductivity as well as a superhydrophilic hull and a superhydrophobic nucleus. Consequently, the CNTs@MS solar evaporators show a highly stable evaporation rate of ∼1.75 kg m-2 h-1 without any salt precipitation during a long-term cyclic solar desalination of 3.5 wt % NaCl solution under 1 sun illumination. Furthermore, salt precipitation is completely hindered even during SIE of 20 wt % NaCl solution under 1 sun. The CNTs@MS solar evaporators are very promising for practical SIE because of their excellent performance and simple preparation method.
Collapse
Affiliation(s)
- Lingxiao Li
- Center of Eco-Material and Green Chemistry, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P. R. China
| | - Qingwei Li
- Center of Eco-Material and Green Chemistry, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P. R. China
| | - Yange Feng
- Center of Eco-Material and Green Chemistry, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P. R. China
| | - Kai Chen
- Center of Eco-Material and Green Chemistry, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junping Zhang
- Center of Eco-Material and Green Chemistry, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
24
|
Wang Z, Li B, Ren J, He Y, Song P, Wang R. Construction of coral rod-like MoS2@HA nanowires hybrids for highly effective green antisepsis. J Inorg Biochem 2022; 229:111724. [DOI: 10.1016/j.jinorgbio.2022.111724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
|
25
|
Chen YQ, Zhu YJ, Wang ZY, Yu HP, Xiong ZC. A scalable, low-cost and green strategy for the synthesis of ultralong hydroxyapatite nanowires using peanut oil. CrystEngComm 2022. [DOI: 10.1039/d2ce00225f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A scalable green and low-cost synthesis of ultralong hydroxyapatite nanowires using peanut oil is reported, which can be scaled up for large-scale low-cost production of ultralong hydroxyapatite nanowires and the fire-resistant inorganic paper.
Collapse
Affiliation(s)
- Yu-Qiao Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Yi Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhi-Chao Xiong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Liu F, Xia L, Zhang L, Guo F, Zhang X, Yu Y, Yang R. Sunflower-Stalk-Based Solar-Driven Evaporator with a Confined 2D Water Channel and an Enclosed Thermal-Insulating Cellular Structure for Stable and Efficient Steam Generation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55299-55306. [PMID: 34780144 DOI: 10.1021/acsami.1c20747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Given the worsening freshwater scarcity around the world, the interfacial solar-driven steam generation for seawater desalination and wastewater treatment has attracted wide attention due to its rich energy resources, convenience, and environmental friendliness. However, challenges still remain for developing high-efficiency interfacial solar-driven steam generation devices from low-cost, readily available, and green material resources. Herein, taking advantage of the delicate composite structure of the sunflower stalk, a sunflower-stalk-based solar-driven evaporator with a confined two-dimensional (2D) water supply pathway and an enclosed thermal-insulating structure is reported. The pith of sunflower stalks is composed of well-arranged honeycomb-like parenchyma cells that endow sunflower stalks with low thermal conductivity comparable to that of synthetic plastic foam. The low-tortuosity vascular bundles in the skin can serve as a natural 2D water pathway for rapid water transportation. The benefit of these functions is that an evaporator based on a carbon-nanotube-coated sunflower stalk (C-Ss) achieves a high evaporation rate of 1.76 kg m-2 h-1 under 1 sun irradiation (1 kW m-2). The C-Ss also shows a highly stable evaporation performance, high ion rejection efficiency, and a self-cleaning ability during the actual seawater desalination process. With advantages of abundant resources, easy fabrication, and sustainability, this C-Ss-based evaporator provides a promising choice for freshwater production in developing regions.
Collapse
Affiliation(s)
- Fangqingxin Liu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Linmin Xia
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Lingyan Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Fei Guo
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Xuexia Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Yan Yu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Rilong Yang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| |
Collapse
|
27
|
Water harvesting from desert soil via interfacial solar heating under natural sunlight. J Colloid Interface Sci 2021; 607:1986-1992. [PMID: 34695747 DOI: 10.1016/j.jcis.2021.09.195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/22/2022]
Abstract
Freshwater crisis seriously challenges human survival and development, especially in arid regions. Solar-driven interfacial evaporation has recently received tremendous interest for collecting clean water, yet is only feasible in regions with available surface water. Atmospheric water harvesting is independent of surface water but requires high RH, additional energy input and complex equipment. Here, we demonstrate efficient water harvesting from desert soil in very dry regions (air RH < 10%, soil moisture content < 3%) via interfacial solar heating under natural sunlight. The water harvesting device, composed of merely a thin layer of activated carbon (for interfacial solar heating on soil surface), a commercially available polyethylene film (for vapor condensation and water transport) and a water container, could collect 1.13 kg of clean water per square meter of desert soil per day (8 h), i.e., 0.53 kg of clean water per kilogram of activated carbon per hour, under a solar flux of 0.26-0.55 kW m-2. Besides, the soil water harvesting system is very portable, low-cost and scalable. This work opens up a new sustainable approach for solving the freshwater crisis in arid and impoverished regions.
Collapse
|
28
|
Yolk-like non-stoichiometric nickel sulfide-based Janus hydrogel photothermal film for enhanced solar-driven water evaporation and multi-media purification. J Colloid Interface Sci 2021; 607:1446-1456. [PMID: 34583047 DOI: 10.1016/j.jcis.2021.09.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Abstract
Solar-driven interface water evaporation is a promising strategy for desalination and wastewater treatment. However, it remains a huge challenge to simultaneously achieve a high light-to-heat conversion efficiency (η) and multi-media evaporation applications. In this study, a highly efficient Janus hydrogel photothermal film was developed using yolk-like non-stoichiometric nickel sulfide (NiS2-x) microspheres and agar hydrogel. The NiS2-x immobilized in the agar hydrogel has full-spectrum absorption characteristics at 200-2500 nm, which can perform efficient light-to-heat conversion and regulate water transport channels. Additionally, the pure agar in the bottom can transport water effectively and avoid heat loss. By the pouring method, the Janus hydrogel film can be easily prepared into various shapes; hence, it can be adjusted depending on the environment in which it is used. The optimized Janus hydrogel film (Janus hydrogel-1) possessed good hydrophilicity and showed an excellent solar evaporation rate of 1.45 kg m-2h-1, and a high η of 97% under one-sun irradiation. Theoretical simulation results showed that the outstanding water evaporation performance of Janus hydrogel-1 was mainly due to its relatively free water transport channels. Janus hydrogel-1 can be used for water evaporation applications in various media, including seawater, heavy metal ion/organic wastewater, and domestic sewage. Our work highlights the great potential of Janus hydrogel-1 for realizing a highly effective solar energy-driven interface water evaporation and multi-media purification.
Collapse
|
29
|
Zhu Y. Multifunctional
Fire‐Resistant
Paper Based on Ultralong Hydroxyapatite Nanowires†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ying‐Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding‐Xi Road Shanghai 200050 China
| |
Collapse
|
30
|
Wang Y, Zhao L, Zhang F, Yu K, Yang C, Jia J, Guo W, Zhao J, Qu F. Synthesis of a Co-Sn Alloy-Deposited PTFE Film for Enhanced Solar-Driven Water Evaporation via a Super-Absorbent Polymer-Based "Water Pump" Design. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26879-26890. [PMID: 34075755 DOI: 10.1021/acsami.1c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solar-driven water evaporation is a promising solution to water pollution, the energy crisis, and water shortages. However, the approach in which the photothermal film is in direct contact with bulk water for water evaporation may lead to a large amount of heat loss, thereby reducing the light-to-heat conversion efficiency (η) of the photothermal film. Here, a highly efficient solar-driven water evaporation system was developed using a Co-Sn alloy-deposited Teflon (PTFE) film (Co-Sn alloy@PTFE) and super-absorbent polymers (SAPs) supported with a floating foam substrate. The Co-Sn alloy with full-spectrum (200-2500 nm) absorption characteristics is devoted to high light-to-heat conversion, while the porous PTFE with high mechanical performance can support the Co-Sn alloy. We used density functional theory to prove that the Co-Sn alloy had a strong adhesive force with PTFE without surfactants due to the high adsorption energy between the (101) crystal plane of the Co-Sn alloy and the hydroxyl group on the PTFE film. Importantly, via the SAP-based "water pump" design, we improved the η of the Co-Sn alloy@PTFE film to 89%, mainly because the SAP not only effectively performed water transportation but also markedly reduced the heat loss of the Co-Sn alloy@PTFE film. Our work highlights the strong potential of Co-Sn alloy@PTFE-based light-to-heat conversion systems for realizing highly effective solar energy-driven water evaporation.
Collapse
Affiliation(s)
- Yuzhu Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Le Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Kai Yu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Chunyu Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Jingjing Jia
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Jingxiang Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| |
Collapse
|
31
|
Xie Z, Zhu J, Zhang L. Three-Dimensionally Structured Polypyrrole-Coated Setaria viridis Spike Composites for Efficient Solar Steam Generation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9027-9035. [PMID: 33577283 DOI: 10.1021/acsami.0c22917] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solar-driven steam generation is a promising technology for the production of freshwater from seawater and polluted water. High water evaporation rates have been achieved via the interfacial heating scheme; however, they are still limited to meet the increasing need for freshwater due to the restricted evaporation area of two-dimensionally (2D) geometrical planar photothermal membranes. Herein, a three-dimensionally (3D) structured solar evaporator is prepared via coating photothermal polypyrrole (PPy) on the spike of Setaria viridis(S. viridis) for highly efficient evaporation. Due to the enlarged evaporation area and open structure for vapor dissipation, the PPy-coated S. viridis spike solar evaporator shows a high water evaporation rate of 3.72 kg m-2 h-1 under one sun illumination. The 3D solar evaporator also demonstrates good durability and anti-salt-clogging performance for real-life applications. Furthermore, we show that the 3D solar evaporator demonstrates effective decontamination of saline water, dye-contaminated water, and corrosive water. This work can inspire new paradigms toward developing high-performance solar steaming technologies for effective water purification to address the worldwide crisis of freshwater shortage.
Collapse
Affiliation(s)
- Zhanjun Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 51800, China
| | - Jintao Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lianbin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 51800, China
| |
Collapse
|
32
|
Zhang B, Gu Q, Wang C, Gao Q, Guo J, Wong PW, Liu CT, An AK. Self-Assembled Hydrophobic/Hydrophilic Porphyrin-Ti 3C 2T x MXene Janus Membrane for Dual-Functional Enabled Photothermal Desalination. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3762-3770. [PMID: 33463155 DOI: 10.1021/acsami.0c16054] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photothermal desalination is a promising approach for seawater purification by harvesting solar energy. Titanium carbide (Ti3C2Tx MXene) membranes have been regarded as potential materials for photothermal desalination by virtue of their excellent light-to-heat conversion. However, achieving a well-balanced synergy between high evaporation rate and good salt resistance remains a significant challenge due to their limited solar absorption and inferior stability. Herein, we report a self-assembled flexible porphyrin-Ti3C2Tx MXene Janus membrane (Janus PMX membrane) for dual-functional enabled photothermal desalination. The self-assembly of porphyrin on MXene not only effectively creates a favorable hydrophobic surface but also simultaneously enables efficient solar utilization. The significant interactions and charge redistribution between MXene and porphyrin lead to a stable hydrophobic/hydrophilic Janus structure with synergistically enhanced photothermal conversion. As a result, the Janus PMX membrane demonstrates highly efficient water pumping, heat localization, vapor generation, and salt resistance during photothermal desalination. This work presents an effective and facile strategy toward advancing a well-performing MXene membrane for efficient seawater desalination.
Collapse
Affiliation(s)
- Baoping Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Qinfen Gu
- Australian Synchrotron (ANSTO), 800 Blackburn Road, Clayton 3168, Australia
| | - Cheng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Qili Gao
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Jiaxin Guo
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Chain Tsuan Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
33
|
Li Y, Wang B, Wu M, Huan W, Li J. Magnetic graphene oxide nanocomposites as an effective support for lactase immobilization with improved stability and enhanced photothermal enzymatic activity. NEW J CHEM 2021. [DOI: 10.1039/d0nj06260j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetic graphene oxide-immobilized lactase with high loading capacity, improved stabilities, and photothermal enhancement of activity has been reported.
Collapse
Affiliation(s)
- Yinglong Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass
- Zhejiang A&F University
- Lin’an
- China
| | - Buchuan Wang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass
- Zhejiang A&F University
- Lin’an
- China
| | - Minjie Wu
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass
- Zhejiang A&F University
- Lin’an
- China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass
- Zhejiang A&F University
- Lin’an
- China
| | - Jie Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass
- Zhejiang A&F University
- Lin’an
- China
| |
Collapse
|