1
|
Piotrowski P, Buza M, Nowaczyński R, Kongsuwan N, Surma HB, Osewski P, Gajc M, Strzep A, Ryba-Romanowski W, Hess O, Pawlak DA. Ultrafast photoluminescence and multiscale light amplification in nanoplasmonic cavity glass. Nat Commun 2024; 15:3309. [PMID: 38632272 PMCID: PMC11024168 DOI: 10.1038/s41467-024-47539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
Interactions between plasmons and exciton nanoemitters in plexcitonic systems lead to fast and intense luminescence, desirable in optoelectonic devices, ultrafast optical switches and quantum information science. While luminescence enhancement through exciton-plasmon coupling has thus far been mostly demonstrated in micro- and nanoscale structures, analogous demonstrations in bulk materials have been largely neglected. Here we present a bulk nanocomposite glass doped with cadmium telluride quantum dots (CdTe QDs) and silver nanoparticles, nAg, which act as exciton and plasmon sources, respectively. This glass exhibits ultranarrow, FWHM = 13 nm, and ultrafast, 90 ps, amplified photoluminescence (PL), λem≅503 nm, at room temperature under continuous-wave excitation, λexc = 405 nm. Numerical simulations confirm that the observed improvement in emission is a result of a multiscale light enhancement owing to the ensemble of QD-populated plasmonic nanocavities in the material. Power-dependent measurements indicate that >100 mW coherent light amplification occurs. These types of bulk plasmon-exciton composites could be designed comprising a plethora of components/functionalities, including emitters (QDs, rare earth and transition metal ions) and nanoplasmonic elements (Ag/Au/TCO, spherical/anisotropic/miscellaneous), to achieve targeted applications.
Collapse
Affiliation(s)
- Piotr Piotrowski
- Centre of Excellence ENSEMBLE3 sp. z o.o, Wolczynska 133, Warsaw, Poland.
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, Poland.
| | - Marta Buza
- (Formerly at) Institute of Electronic Materials Technology, Wolczynska 133, Warsaw, Poland
| | - Rafał Nowaczyński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, Poland
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw, Poland
| | - Nuttawut Kongsuwan
- Quantum Technology Foundation (Thailand), 98 Soi Ari, Bangkok, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand
| | - Hańcza B Surma
- Centre of Excellence ENSEMBLE3 sp. z o.o, Wolczynska 133, Warsaw, Poland
- (Formerly at) Institute of Electronic Materials Technology, Wolczynska 133, Warsaw, Poland
| | - Paweł Osewski
- (Formerly at) Institute of Electronic Materials Technology, Wolczynska 133, Warsaw, Poland
| | - Marcin Gajc
- (Formerly at) Institute of Electronic Materials Technology, Wolczynska 133, Warsaw, Poland
| | - Adam Strzep
- Institute of Low Temperature and Structure Research PAS, Okolna 2, Wroclaw, Poland
| | | | - Ortwin Hess
- School of Physics and CRANN Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Dorota A Pawlak
- Centre of Excellence ENSEMBLE3 sp. z o.o, Wolczynska 133, Warsaw, Poland.
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, Poland.
- (Formerly at) Institute of Electronic Materials Technology, Wolczynska 133, Warsaw, Poland.
| |
Collapse
|
2
|
Rathnakumar S, Bhaskar S, Sivaramakrishnan V, Kambhampati NSV, Srinivasan V, Ramamurthy SS. Tecoma stans Floral Extract-Based Biosynthesis for Enhanced Surface Plasmon-Coupled Emission and a Preliminary Study on Fluoroimmunoassay. Anal Chem 2024; 96:4005-4012. [PMID: 38415592 DOI: 10.1021/acs.analchem.3c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
We demonstrate the synthesis of biogenic supported silver spiked star architectures and their application to increase the electromagnetic field intensity at its tips that enhance plasmon-coupled emission. Tecoma stans floral extract has been used to synthesize silver nanocubes and spiked stars. We observe ∼445-fold and ∼680-fold enhancements in spacer and cavity configurations, respectively, in the SPCE platform. The hotspot intensity and Purcell factor are evaluated by carrying out finite-difference time-domain (FDTD) simulations. Time-based studies are presented to modulate the sharpness of the edges wherein an increase in the tip sharpness with the increase in reaction time up to 5 h is observed. The unique morphology of the silver architectures allowed us to utilize them in biosensing application. A SPCE-based fluoroimmunoassay was performed, achieving a 1.9 pg/mL limit of detection of TNF-α cytokine. This combination of anisotropic architectures, SPCE and immunoassay prove to be a powerful platform for the ultrasensitive detection of biomarkers in surface-bound assays.
Collapse
Affiliation(s)
- Sriram Rathnakumar
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi, 515134, Andhra Pradesh, India
| | - Seemesh Bhaskar
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Venketesh Sivaramakrishnan
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi, 515134, Andhra Pradesh, India
| | - Naga Sai Visweswar Kambhampati
- Department of Chemistry, STAR Laboratory, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi, 515134, Andhra Pradesh, India
| | - Venkatesh Srinivasan
- Department of Chemistry, STAR Laboratory, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi, 515134, Andhra Pradesh, India
| | - Sai Sathish Ramamurthy
- Department of Chemistry, STAR Laboratory, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi, 515134, Andhra Pradesh, India
| |
Collapse
|
3
|
Wang Y, Luo C, Lou X, Li F, Huang Y, Xia F. Fluorescent Selectivity-Enhanced FRET Based on 3D Photonic Crystals for Multianalyte Sensing. Anal Chem 2024; 96:1630-1639. [PMID: 38217493 DOI: 10.1021/acs.analchem.3c04547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Fluorescence resonance energy transfer (FRET) finds widespread utility in biochemical sensing, single-molecule experiments, cell physiology, and various other domains due to its inherent simplicity and high sensitivity. Nevertheless, the efficiency of energy transfer between the FRET donor and acceptor is significantly contingent on the local photonic environment, a factor that limits its application in complex systems or multianalyte detections. Here, a fluorescent selectivity-enhanced acridine orange (AO)-aflatoxins (AFs) FRET system based on a range of 3D topological photonic crystals (PCs) was developed with the aim of enhancing the selectivity and discrimination capabilities of FRET. By exploring the angle-dependent characteristics of the photonic stopband, the stopband distribution across different 3D topological PCs pixels was investigated. This approach led to selective fluorescence enhancement in PCs that matched the stopbands, enabling the successful discrimination of six distinct aflatoxins and facilitating complex multianalysis of moldy food samples. In particular, the stopband, which was strategically positioned within the blue-purple structural color range, exhibited a strong alignment with the fluorescence peaks of both the FRET donor and acceptor. This alignment allowed the 3D three-pointed star PCs to be effectively employed for the identification of mixed samples containing six distinct aflatoxins as well as the detection of real aflatoxin samples present in moldy potatoes, bread, oats, and peanuts. Impressively, this approach achieved a remarkable accuracy rate of 100%. This innovative strategy not only presents a novel avenue for developing a multitarget discrimination analysis system but also offers a convenient pretreatment method for the quantitative detection of various aflatoxins.
Collapse
Affiliation(s)
- Yanyan Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Cihui Luo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Fengyu Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Jinan University, Guangzhou 510632, China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
4
|
Pei H, Peng W, Zhang J, Zhao J, Qi J, Yu C, Li J, Wei Y. Surface-enhanced photoluminescence and Raman spectroscopy of single molecule confined in coupled Au bowtie nanoantenna. NANOTECHNOLOGY 2024; 35:155201. [PMID: 38176065 DOI: 10.1088/1361-6528/ad1afd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Optical nanoantennas possess broad applications in the fields of photodetection, environmental science, biosensing and nonlinear optics, owing to their remarkable ability to enhance and confine the optical field at the nanoscale. In this article, we present a theoretical investigation of surface-enhanced photoluminescence spectroscopy for single molecules confined within novel Au bowtie nanoantenna, covering a wavelength range from the visible to near-infrared spectral regions. We employ the finite element method to quantitatively study the optical enhancement properties of the plasmonic field, quantum yield, Raman scattering and fluorescence. Additionally, we systematically examine the contribution of nonlocal dielectric response in the gap mode to the quantum yield, aiming to gain a better understanding of the fluorescence enhancement mechanism. Our results demonstrate that altering the configuration of the nanoantenna has a significant impact on plasmonic sensitivity. The nonlocal dielectric response plays a crucial role in reducing the quantum yield and corresponding fluorescence intensity when the gap distance is less than 3 nm. However, a substantial excitation field can effectively overcome fluorescence quenching and enhance the fluorescence intensity. By optimizing nanoantenna configuration, the maximum enhancement of surface-enhanced Raman can be turned to 9 and 10 magnitude orders in the visible and near-infrared regions, and 3 and 4 magnitude orders for fluorescence enhancement, respectively. The maximum spatial resolutions of 0.8 nm and 1.5 nm for Raman and fluorescence are also achieved, respectively. Our calculated results not only provide theoretical guidance for the design and application of new nanoantennas, but also contribute to expanding the range of surface-enhanced Raman and fluorescence technology from the visible to the near-infrared region.
Collapse
Affiliation(s)
- Huan Pei
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Weifeng Peng
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Jiale Zhang
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Jiaxin Zhao
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Jialu Qi
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Changjian Yu
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Jing Li
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Yong Wei
- School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| |
Collapse
|
5
|
Silva HRD, Barbosa KM, Alsaiari RA, Silva GN, Junior JLOM, Cangussu ASR, Barros SBA, Costa LSD, dos Santos Junior JR, De Moura CVR, Alsaiari M, de Oliveira VV, Pereira AKDS, Santos LSS, Rahim A. Gold Nanoparticle-Loaded Silica Nanospheres for Sensitive and Selective Electrochemical Detection of Bisphenol A. ACS OMEGA 2023; 8:39023-39034. [PMID: 37901482 PMCID: PMC10600914 DOI: 10.1021/acsomega.3c03607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023]
Abstract
In this work, silica nanospheres were used as support for gold nanoparticles and applied for bisphenol A electrochemical detection. The development of new silica-supported materials has attracted increasing attention in the scientific world. One approach of interest is using silica nanospheres as support for gold nanoparticles. These materials have a variety of applications in several areas, such as electrochemical sensors. The obtained materials were characterized by solid-state UV-vis spectroscopy, electron microscopy, X-ray diffraction, and electrochemical techniques. The electrode modified with AuSiO2700/CHI/Pt was applied as an electrochemical sensor for BPA, presenting an oxidation potential of 0.842 V and a higher peak current among the tested materials. The AuSiO2700/CHI/Pt electrode showed a logarithmic response for the detection of BPA in the range of 1-1000 nmol L-1, with a calculated detection limit of 7.75 nmol L-1 and a quantification limit of 25.8 nmol L-1. Thus, the electrode AuSiO2700/CHI/Pt was presented as a promising alternative to an electrochemical sensor in the detection of BPA.
Collapse
Affiliation(s)
| | - Keleen M. Barbosa
- Universidade
Federal do Tocantins, Campus de Gurupi, Gurupi 77001-090, Tocantins, Brazil
| | - Raiedhah A. Alsaiari
- Department
of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
| | - Gabriela Nunes Silva
- Universidade
Federal do Tocantins, Campus de Gurupi, Gurupi 77001-090, Tocantins, Brazil
| | | | | | | | - Luelc S. da Costa
- National
Nanotechnology Laboratory (LNNano), National Center for Research in
Energy and Materials (CNPEM), Campinas CEP: 13083-970, São
Paulo, Brazil
| | | | | | - Mabkhoot Alsaiari
- Department
of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
| | | | - Anna K. dos S. Pereira
- Universidade
Federal do Tocantins, Campus de Gurupi, Gurupi 77001-090, Tocantins, Brazil
| | - Lucas Samuel S. Santos
- Universidade
Federal do Tocantins, Campus de Gurupi, Gurupi 77001-090, Tocantins, Brazil
| | - Abdur Rahim
- Department
of Chemistry, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| |
Collapse
|
6
|
Kumar D, Rakshit JK, Biswas U, Bhatnagar A, Nayak C. Photonic-crystal-based high-performance ring resonator using a topological interface state: design and analysis. APPLIED OPTICS 2023; 62:4281-4287. [PMID: 37706919 DOI: 10.1364/ao.486832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/10/2023] [Indexed: 09/15/2023]
Abstract
We propose a photonic crystal ring resonator for the enhancement of quality factor that supports two-dimensionally bounded topological edge states. Crystal parameters are obtained through finite-difference time-domain numerical simulation to get the enhanced quality factor using the topological properties of the photonic crystal. Topological edge states are created when two regions with dissimilar band topologies come together at an interface and are contained within a slab of dielectric material. These edge states can move along sharp edges without backscattering. The transmission dropout issue arises whenever the quality factor is enhanced in a conventional photonic system and is eliminated remarkably by employing the present approach. Such nanoscale photonic crystal structures promote robust interactions between quantum emitters and photonic edge states.
Collapse
|
7
|
Cheerala VSK, Ganesh KM, Bhaskar S, Ramamurthy SS, Neelakantan SC. Smartphone-Based Attomolar Cyanide Ion Sensing Using Au-Graphene Oxide Cryosoret Nanoassembly and Benzoxazolium-Based Fluorophore in a Surface Plasmon-Coupled Enhanced Fluorescence Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37228180 DOI: 10.1021/acs.langmuir.3c00801] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photoplasmonic platforms are being demonstrated as excellent means for bridging nanochemistry and biosensing approaches at advanced interfaces, thereby augmenting the sensitivity and quantification of the desired analytes. Although resonantly coupled electromagnetic waves at the surface plasmon-coupled emission (SPCE) interface are investigated with myriad nanomaterials in order to boost the detection limits, rhodamine moieties are ubiquitously used as SPCE reporter molecules in spite of their well-known limitations. In order to overcome this constraint, in this work, a benzoxazolium-based fluorescent molecule, (E)-2-(4-(dimethylamino)styryl)-3-methylbenzo[d]oxazol-3-ium iodide (DSBO), was synthesized to selectively detect the cyanide (CN-) ions in water samples. To this end, the sensitivity of the fabricated SPCE substrates is tested in spacer, cavity, and extended cavity nanointerfaces to rationalize the configurational robustness. The performance of the sensor is further improved with the careful engineering of gold (Au)-graphene oxide (GO) cryosoret nanoassemblies fabricated via an adiabatic cooling technology. The unique dequenching (turn-on) of the quenched (turn-off) fluorescent signal is demonstrated with the hybridized metal-π plasmon synergistic coupling in the nanovoids and nanocavities assisting delocalized Bragg and localized Mie plasmons. The spectro-plasmonic analysis yielded highly directional, polarized (>95%), and enhanced emission attributes with an attomolar limit of detection of 10 aM of CN- ions with high linearity (R2 = 0.996) and excellent reliability, in addition to an exceptional correlation with the theoretically obtained TFclac simulations. The CN- ion sensing is experimentally validated with the smartphone-based cost-effective SPCE detection technology to render the device amenable to resource-limited settings. We believe that the unique fluorophore-cryosoret nanoassemblage presented here encourages development of frugal, unconventional, and highly desirable strategies for the selective quantitation of environmentally and physiologically relevant analytes at trace concentrations for use in point-of-care diagnostics.
Collapse
Affiliation(s)
- Vijay Sai Krishna Cheerala
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Brindavan Campus, Kadugodi, Bengaluru 560067, India
| | - Kalathur Mohan Ganesh
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi, Anantapur 515134, Andhra Pradesh, India
| | - Seemesh Bhaskar
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sai Sathish Ramamurthy
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi, Anantapur 515134, Andhra Pradesh, India
| | - Sundaresan Chittor Neelakantan
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Brindavan Campus, Kadugodi, Bengaluru 560067, India
| |
Collapse
|
8
|
He Z, Li F, Zuo P, Tian H. Principles and Applications of Resonance Energy Transfer Involving Noble Metallic Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3083. [PMID: 37109920 PMCID: PMC10145016 DOI: 10.3390/ma16083083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Over the past several years, resonance energy transfer involving noble metallic nanoparticles has received considerable attention. The aim of this review is to cover advances in resonance energy transfer, widely exploited in biological structures and dynamics. Due to the presence of surface plasmons, strong surface plasmon resonance absorption and local electric field enhancement are generated near noble metallic nanoparticles, and the resulting energy transfer shows potential applications in microlasers, quantum information storage devices and micro-/nanoprocessing. In this review, we present the basic principle of the characteristics of noble metallic nanoparticles, as well as the representative progress in resonance energy transfer involving noble metallic nanoparticles, such as fluorescence resonance energy transfer, nanometal surface energy transfer, plasmon-induced resonance energy transfer, metal-enhanced fluorescence, surface-enhanced Raman scattering and cascade energy transfer. We end this review with an outlook on the development and applications of the transfer process. This will offer theoretical guidance for further optical methods in distance distribution analysis and microscopic detection.
Collapse
Affiliation(s)
- Zhicong He
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
- School of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Intelligent Transportation Technology and Device, Hubei Polytechnic University, Huangshi 435003, China
| | - Fang Li
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
| | - Pei Zuo
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
| | - Hong Tian
- School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|
9
|
Ferreira R, Morawski FM, Pessanha EC, de Lima SLS, da Costa DS, Ribeiro GAC, Vaz J, Mouta R, Tanaka AA, Liu L, da Silva MIP, Tofanello A, Vitorino HA, da Silva AGM, Garcia MAS. Facile Gram-Scale Synthesis of NiO Nanoflowers for Highly Selective and Sensitive Electrocatalytic Detection of Hydrazine. ACS OMEGA 2023; 8:11978-11986. [PMID: 37033825 PMCID: PMC10077530 DOI: 10.1021/acsomega.2c07638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/07/2023] [Indexed: 06/01/2023]
Abstract
The design and development of efficient and electrocatalytic sensitive nickel oxide nanomaterials have attracted attention as they are considered cost-effective, stable, and abundant electrocatalytic sensors. However, although innumerable electrocatalysts have been reported, their large-scale production with the same activity and sensitivity remains challenging. In this study, we report a simple protocol for the gram-scale synthesis of uniform NiO nanoflowers (approximately 1.75 g) via a hydrothermal method for highly selective and sensitive electrocatalytic detection of hydrazine. The resultant material was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. For the production of the modified electrode, NiO nanoflowers were dispersed in Nafion and drop-cast onto the surface of a glassy carbon electrode (NiO NF/GCE). By cyclic voltammetry, it was possible to observe the excellent performance of the modified electrode toward hydrazine oxidation in alkaline media, providing an oxidation overpotential of only +0.08 V vs Ag/AgCl. In these conditions, the peak current response increased linearly with hydrazine concentration ranging from 0.99 to 98.13 μmol L-1. The electrocatalytic sensor showed a high sensitivity value of 0.10866 μA L μmol-1. The limits of detection and quantification were 0.026 and 0.0898 μmol L-1, respectively. Considering these results, NiO nanoflowers can be regarded as promising surfaces for the electrochemical determination of hydrazine, providing interesting features to explore in the electrocatalytic sensor field.
Collapse
Affiliation(s)
- Rayse
M. Ferreira
- Departamento
de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 - Vila
Bacanga, 65080-805 São Luís, MA, Brazil
| | - Franciele M. Morawski
- Departamento
de Química, Universidade Federal
de Santa Catarina (UFSC), Eng. Agronômico Andrei Cristian Ferreira, s/n - Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Emanuel C. Pessanha
- Departamento
de Engenharia Química e de Materiais - DEQM, Pontifícia Universidade Católica do Rio de Janeiro
(PUC-Rio), R. Marquês de São Vicente, 225 - Gávea, 22453-900 Rio de Janeiro, RJ, Brazil
| | - Scarllett L. S. de Lima
- Departamento
de Engenharia Química e de Materiais - DEQM, Pontifícia Universidade Católica do Rio de Janeiro
(PUC-Rio), R. Marquês de São Vicente, 225 - Gávea, 22453-900 Rio de Janeiro, RJ, Brazil
| | - Diana S. da Costa
- Departamento
de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 - Vila
Bacanga, 65080-805 São Luís, MA, Brazil
| | - Geyse A. C. Ribeiro
- Departamento
de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 - Vila
Bacanga, 65080-805 São Luís, MA, Brazil
| | - João Vaz
- Departamento
de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 - Vila
Bacanga, 65080-805 São Luís, MA, Brazil
| | - Rodolpho Mouta
- Departamento
de Física, Universidade Federal do
Ceará (UFC), Av. Mister Hull, s/n − Pici, 60455-760 Fortaleza, CE, Brazil
| | - Auro A. Tanaka
- Departamento
de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 - Vila
Bacanga, 65080-805 São Luís, MA, Brazil
| | - Liying Liu
- Centro
Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150 - Urca, 22290-180 Rio de Janeiro, RJ, Brazil
| | - Maria I. P. da Silva
- Departamento
de Engenharia Química e de Materiais - DEQM, Pontifícia Universidade Católica do Rio de Janeiro
(PUC-Rio), R. Marquês de São Vicente, 225 - Gávea, 22453-900 Rio de Janeiro, RJ, Brazil
| | - Aryane Tofanello
- Center for
Natural and Human Sciences (CCNH), Universidade
Federal do ABC (UFABC), Av. dos Estados, 5001, - Bangú, 09210-170 Santo André, SP, Brazil
| | - Hector A. Vitorino
- Centro
de Investigación en Biodiversidad para la Salud, Universidad Privada Norbert Wiener, Jirón Larrabure y Unanue 110, Lima 15108, Perú
| | - Anderson G. M. da Silva
- Departamento
de Engenharia Química e de Materiais - DEQM, Pontifícia Universidade Católica do Rio de Janeiro
(PUC-Rio), R. Marquês de São Vicente, 225 - Gávea, 22453-900 Rio de Janeiro, RJ, Brazil
| | - Marco A. S. Garcia
- Departamento
de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 - Vila
Bacanga, 65080-805 São Luís, MA, Brazil
| |
Collapse
|
10
|
Alawajji RA, Alsudani ZAN, Biris AS, Kannarpady GK. Biosensor Design for the Detection of Circulating Tumor Cells Using the Quartz Crystal Resonator Technique. BIOSENSORS 2023; 13:bios13040433. [PMID: 37185508 PMCID: PMC10136100 DOI: 10.3390/bios13040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
A new mass-sensitive biosensing approach for detecting circulating tumor cells (CTCs) using a quartz crystal resonator (QCR) has been developed. A mathematical model was used to design a ring electrode-based QCR to eliminate the Gaussian spatial distribution of frequency response in the first harmonic mode, a characteristic of QCRs, without compromising the sensitivity of frequency response. An ink-dot method was used to validate the ring electrode fabricated based on our model. Furthermore, the ring electrode QCR was experimentally tested for its ability to capture circulating tumor cells, and the results were compared with a commercially available QCR with a keyhole electrode. An indirect method of surface immobilization technique was employed via modification of the SiO2 surface of the ring electrode using a silane, protein, and anti-EpCAM. The ring electrode successfully demonstrated eliminating the spatial nonuniformity of frequency response for three cancer cell lines, i.e., MCF-7, PANC-1, and PC-3, compared with the keyhole QCR, which showed nonuniform spatial response for the same cancer cell lines. These results are promising for developing QCR-based biosensors for the early detection of cancer cells, with the potential for point-of-care diagnosis for cancer screening.
Collapse
Affiliation(s)
- Raad A Alawajji
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
- Department of Physics, College of Science, University of Basrah, Basrah 61004, Iraq
| | - Zeid A Nima Alsudani
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Alexandrus S Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Ganesh K Kannarpady
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| |
Collapse
|
11
|
Xiong Y, Shepherd S, Tibbs J, Bacon A, Liu W, Akin LD, Ayupova T, Bhaskar S, Cunningham BT. Photonic Crystal Enhanced Fluorescence: A Review on Design Strategies and Applications. MICROMACHINES 2023; 14:668. [PMID: 36985075 PMCID: PMC10059769 DOI: 10.3390/mi14030668] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 05/25/2023]
Abstract
Nanoscale fluorescence emitters are efficient for measuring biomolecular interactions, but their utility for applications requiring single-unit observations is constrained by the need for large numerical aperture objectives, fluorescence intermittency, and poor photon collection efficiency resulting from omnidirectional emission. Photonic crystal (PC) structures hold promise to address the aforementioned challenges in fluorescence enhancement. In this review, we provide a broad overview of PCs by explaining their structures, design strategies, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-enhanced fluorescence-based biosensors incorporated with emerging technologies, including nucleic acids sensing, protein detection, and steroid monitoring. Finally, we discuss current challenges associated with PC-enhanced fluorescence and provide an outlook for fluorescence enhancement with photonic-plasmonics coupling and their promise for point-of-care biosensing as well monitoring analytes of biological and environmental relevance. The review presents the transdisciplinary applications of PCs in the broad arena of fluorescence spectroscopy with broad applications in photo-plasmonics, life science research, materials chemistry, cancer diagnostics, and internet of things.
Collapse
Affiliation(s)
- Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
| | - Skye Shepherd
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Tibbs
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amanda Bacon
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weinan Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
| | - Lucas D. Akin
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Takhmina Ayupova
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Seemesh Bhaskar
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA
| | - Brian T. Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA
- Cancer Center at Illinois, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Wu X, Luo H, Liu HL, Ma R, Xu B. Manipulation of the photoluminescence of lead halide perovskite quantum dots with mechanically reconfigurable 3D photonic crystals. OPTICS LETTERS 2023; 48:1415-1418. [PMID: 36946941 DOI: 10.1364/ol.484835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Reconfigurable 3D photonic crystals (3DPCs) are promising for dynamic emission devices, owing to their unique properties. Here, we integrated the perovskite quantum dot film together with 3D reconfigurable photonic crystals (PCs) to form quantum dot/photonic crystal heterostructures and investigated their interactions at their interfaces. The photonic bandgaps of the presented 3DPCs can be dynamically tuned by heating and applying external mechanical forces, and they can be stably fixed in the intermediate states. By tuning the photonic bandgaps of the 3DPCs, a maximum photoluminescence (PL) enhancement of 11 times that of CsPb(I/Br)3 quantum dots has been achieved. It has been revealed that the combined effects of increased density of photon states and the greatly confined and enhanced electric field on the upper surface of 3DPCs contribute to the enhanced Purcell effect, which in turn leads to the enhanced photoluminescence.
Collapse
|
13
|
Bhaskar S. Biosensing Technologies: A Focus Review on Recent Advancements in Surface Plasmon Coupled Emission. MICROMACHINES 2023; 14:mi14030574. [PMID: 36984981 PMCID: PMC10054051 DOI: 10.3390/mi14030574] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 05/14/2023]
Abstract
In the past decade, novel nano-engineering protocols have been actively synergized with fluorescence spectroscopic techniques to yield higher intensity from radiating dipoles, through the process termed plasmon-enhanced fluorescence (PEF). Consequently, the limit of detection of analytes of interest has been dramatically improvised on account of higher sensitivity rendered by augmented fluorescence signals. Recently, metallic thin films sustaining surface plasmon polaritons (SPPs) have been creatively hybridized with such PEF platforms to realize a substantial upsurge in the global collection efficiency in a judicious technology termed surface plasmon-coupled emission (SPCE). While the process parameters and conditions to realize optimum coupling efficiency between the radiating dipoles and the plasmon polaritons in SPCE framework have been extensively discussed, the utility of disruptive nano-engineering over the SPCE platform and analogous interfaces such as 'ferroplasmon-on-mirror (FPoM)' as well as an alternative technology termed 'photonic crystal-coupled emission (PCCE)' have been seldom reviewed. In light of these observations, in this focus review, the myriad nano-engineering protocols developed over the SPCE, FPoM and PCCE platform are succinctly captured, presenting an emphasis on the recently developed cryosoret nano-assembly technology for photo-plasmonic hotspot generation (first to fourth). These technologies and associated sensing platforms are expected to ameliorate the current biosensing modalities with better understanding of the biophysicochemical processes and related outcomes at advanced micro-nano-interfaces. This review is hence envisaged to present a broad overview of the latest developments in SPCE substrate design and development for interdisciplinary applications that are of relevance in environmental as well as biological heath monitoring.
Collapse
Affiliation(s)
- Seemesh Bhaskar
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Luminous Self-Assembled Fibers of Azopyridines and Quantum Dots Enabled by Synergy of Halogen Bond and Alkyl Chain Interactions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238165. [PMID: 36500259 PMCID: PMC9739974 DOI: 10.3390/molecules27238165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Herein, a simple approach for the fabrication of luminous self-assembled fibers based on halogen-bonded azopyridine complexes and oleic acid-modified quantum dots (QDs) is reported. The QDs uniformly align on the edge of the self-assembled fibers through the formation of van der Waals force between the alkyl chain of oleic acid on the QD surface and the alkyl chain of the halogen-bonded complexes, 15Br or 15I. Furthermore, the intermolecular interaction mechanism was elucidated by using Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and density functional theory (DFT) calculations. This approach results in retention of the fluorescence properties of the QDs in the fibers. In addition, the bromine-bonded fibers can be assembled into tailored directional fibers upon evaporation of the solvent (tetrahydrofuran) when using capillaries via the capillary force. Interestingly, the mesogenic properties of the halogen-bonded complexes are preserved in the easily prepared halogen-bonded fluorescent fibers; this provides new insight into the design of functional self-assembly materials.
Collapse
|
15
|
Bhaskar S, Rai A, Ganesh KM, Reddy R, Reddy N, Ramamurthy SS. Sericin-Based Bio-Inspired Nano-Engineering of Heterometallic AgAu Nanocubes for Attomolar Mefenamic Acid Sensing in the Mobile Phone-Based Surface Plasmon-Coupled Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12035-12049. [PMID: 36122249 DOI: 10.1021/acs.langmuir.2c01894] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Engineering photo-plasmonic platforms with heterometallic nanohybrids are of paramount significance for realizing augmented sensitivity in fluorescence-based analytical detection. Although myriad nanomaterials with versatile functionalities have been explored in this regard in the surface plasmon-coupled emission (SPCE) interface, light harvesting using nano-antennas synthesized via sustainable bio-inspired routes still remains a high priority in current research. Our study provides a rational design for in situ fabrication of nanoparticles of silver, gold, and their plasmonic hybrids using biocompatible, non-hazardous sericin protein (obtained Bombyx mori) as the reducing and capping agent. The one-pot, user-eco-friendly technology demonstrated here utilizes UV irradiation to promote the photo-induced electron transfer mechanism, thereby yielding nanomaterials of tunable optoelectronic functionalities. The resulting homometallic and heterometallic nanohybrids with robust localized surface plasmon resonances (LSPR) showed strong light-confining attributes when interfaced with the propagating surface plasmon polaritons (SPPs) of the SPCE platform, thereby yielding tunable, highly directional, polarized, and amplified fluorescence emission. The experimentally obtained emission profiles displayed an excellent correlation with the theoretically obtained dispersion diagrams validating the spectro-plasmonic results. The abundant hotspots from AgAu nanocubes presented in excess of 1300-fold dequenched fluorescence enhancement and were utilized for cost-effective and real-time mobile phone-based sensing of biologically relevant mefenamic acid at an attomolar limit of detection. We believe that this superior biosensing performance accomplished using the frugal bioinspired nano-engineering at hybrid interfaces would open new doors for developing nanofabrication protocols with the quintessential awareness of the principles of green nanotechnology, consequently eliminating hazardous chemicals and solvents in the development of point-of-care diagnostic tools.
Collapse
Affiliation(s)
- Seemesh Bhaskar
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Aayush Rai
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
| | - Kalathur Mohan Ganesh
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
| | - Roopa Reddy
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Thathaguni Post, Bengaluru 560109, India
| | - Narendra Reddy
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Thathaguni Post, Bengaluru 560109, India
| | - Sai Sathish Ramamurthy
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
| |
Collapse
|
16
|
Sahu S, Ghosh KK. Selective detection of tartaric acid using amino acid interlinked silver nanoparticles as a colorimetric probe. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3323-3334. [PMID: 35969181 DOI: 10.1039/d2ay01088g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A variety of biomolecules with different functional groups play critical roles in almost all the processes occurring in living cells. Interaction of metallic nanoparticles (NPs) with various biomolecules generates a layer of molecules on their surface, and this biomolecular rich layer formed on the NP surface is described as a "biomolecular corona". The physicochemical properties of the NPs, including size, adsorption affinity, and charge on the particles' surfaces are the major factors influencing the characteristics of this corona. The formation of various biomolecular corona has been studied well, whereas the amino acid corona is relatively new by exploring their stability. In the present study, a novel formation of an amino acid corona with a fundamental interaction mechanism for a selective detection procedure using a colorimetric platform has been proposed. Herein, amino acid-coated silver NPs (AgNPs) have been used as a template with spectroscopic (steady state UV-Vis, FTIR) and imaging (HR-TEM, DLS) techniques. Our findings demonstrated that among different amino acid coronas, glutathione (GSH) stabilized AgNPs show a rapid reaction with tartaric acid. The extent and thermodynamics of the formed complex between the GSH/AgNPs and tartaric acid have also been studied and this suggested that the complex formed is spontaneous and energy releasing in nature.
Collapse
Affiliation(s)
- Sushama Sahu
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India.
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India.
| |
Collapse
|
17
|
Xiong Y, Huang Q, Canady TD, Barya P, Liu S, Arogundade OH, Race CM, Che C, Wang X, Zhou L, Wang X, Kohli M, Smith AM, Cunningham BT. Photonic crystal enhanced fluorescence emission and blinking suppression for single quantum dot digital resolution biosensing. Nat Commun 2022; 13:4647. [PMID: 35941132 PMCID: PMC9360002 DOI: 10.1038/s41467-022-32387-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/29/2022] [Indexed: 12/21/2022] Open
Abstract
While nanoscale quantum emitters are effective tags for measuring biomolecular interactions, their utilities for applications that demand single-unit observations are limited by the requirements for large numerical aperture (NA) objectives, fluorescence intermittency, and poor photon collection efficiency resulted from omnidirectional emission. Here, we report a nearly 3000-fold signal enhancement achieved through multiplicative effects of enhanced excitation, highly directional extraction, quantum efficiency improvement, and blinking suppression through a photonic crystal (PC) surface. The approach achieves single quantum dot (QD) sensitivity with high signal-to-noise ratio, even when using a low-NA lens and an inexpensive optical setup. The blinking suppression capability of the PC improves the QDs on-time from 15% to 85% ameliorating signal intermittency. We developed an assay for cancer-associated miRNA biomarkers with single-molecule resolution, single-base mutation selectivity, and 10-attomolar detection limit. Additionally, we observed differential surface motion trajectories of QDs when their surface attachment stringency is altered by changing a single base in a cancer-specific miRNA sequence.
Collapse
Affiliation(s)
- Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Qinglan Huang
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Taylor D Canady
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Priyash Barya
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shengyan Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Opeyemi H Arogundade
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Caitlin M Race
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Congnyu Che
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xiaojing Wang
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lifeng Zhou
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xing Wang
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Manish Kohli
- Department of Oncology, Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA
| | - Andrew M Smith
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carle Illinois College of Medicine, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Urbana, IL, 61801, USA
| | - Brian T Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
18
|
Aslam I, Fron E, Roeffaers MBJ. Label-free detection and size estimation of combustion-derived carbonaceous particles in a microfluidic approach. NANOSCALE ADVANCES 2022; 4:3272-3281. [PMID: 36132818 PMCID: PMC9419628 DOI: 10.1039/d2na00262k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 05/27/2023]
Abstract
Detection and size estimation of combustion-derived carbonaceous particles (CDCPs) are important to understand their toxicity. Size determination of individual nano- and microparticles (NMPs) based on scattered light is a straightforward method. However, detection and sizing of CDCPs in biological samples based on scattering alone are not possible due to the compositional heterogeneity of NMPs present in biological samples. Label-free identification of CDCPs based on unique white light (WL) emission, using femtosecond (fs) pulsed near-infrared (NIR) lasers, has emerged as a reliable method even in complex biological samples. However, size estimation of CDCPs in biological samples using label-free techniques is still lacking. Here we report the development of a dual-channel multiphoton flow cytometry (DCMPFC) setup for label-free identification and size-determination of CDCPs in suspensions. Scattering intensity calibration with reference polystyrene (PS) nanoparticles (NPs) and Mie Theory allow us to determine the sizes of CDCPs in aqueous suspensions. Further, the relationship between particle sizes and WL emission intensity was determined, and the sizes of CDCPs in urine samples could also be estimated. This approach is believed to open new opportunities for the quantification and size determination of CDCPs, originating from exposure to air pollution, in liquid biopsies. This is an important step in determining the CDCP exposure of individual persons.
Collapse
Affiliation(s)
- Imran Aslam
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions, Department of Microbial and Molecular Systems, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Eduard Fron
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Maarten B J Roeffaers
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions, Department of Microbial and Molecular Systems, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
19
|
Skanda S, Bharadwaj PSJ, Datta Darshan VM, Sivaramakrishnan V, Vijayakumar BS. Proficient mycogenic synthesis of silver nanoparticles by soil derived fungus Aspergillus melleus SSS-10 with cytotoxic and antibacterial potency. J Microbiol Methods 2022; 199:106517. [PMID: 35697186 DOI: 10.1016/j.mimet.2022.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
The present study aimed at evaluating the extracellular synthesis of silver nanoparticles by soil fungus Aspergillus melleus SSS-10 for antibacterial and cytotoxic activity. In this study, the formation of silver nanoparticles (AgNPs) was estimated by the colour change in cell free extract from pale yellow to golden yellow after 24 h of the reaction. UV-Vis study showed the absorbance maxima at 410 nm. Tauc plot analysis revealed the band gap energy as 2.34 eV. Dynamic Light Scattering (DLS) data revealed polydisperse anisotropic silver nanoparticles with average hydrodynamic diameter of 92.006 nm. Zeta potential of - 19.6 mV provided evidence of stable silver nanoparticles. X-ray diffraction (XRD) analysis revealed four prominent Bragg peaks corresponding to (111), (200), (220) and (311) planes characteristic of silver (Ag) in FCC structural configuration. Average crystallite size was found to be 87.3 nm from Scherrer equation. Scanning Electron Microscope (SEM) analysis revealed irregular morphology of silver nanoparticles. EDS analysis displayed characteristic energy peaks of silver from 2.72 keV to 3.52 keV confirming the presence of silver nanoparticles. Biosynthesized AgNPs exhibited strong cytotoxic potential on MG-63 cells. AgNPs also showed antibacterial activity against both Staphylococcus aureus and Escherichia coli. In conclusion, this study provides a platform to explore the utility of fungal mediated silver nanoparticles synthesized for various pharmaceutical and cosmeceutical applications.
Collapse
Affiliation(s)
- S Skanda
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi 515134, Andhra Pradesh, India.
| | - P S J Bharadwaj
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi 515134, Andhra Pradesh, India.
| | - V M Datta Darshan
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi 515134, Andhra Pradesh, India.
| | - Venketesh Sivaramakrishnan
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi 515134, Andhra Pradesh, India.
| | - B S Vijayakumar
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi 515134, Andhra Pradesh, India.
| |
Collapse
|
20
|
Gayathri R, Suchand Sandeep CS, Gummaluri VS, Asik RM, Padmanabhan P, Gulyás B, Vijayan C, Murukeshan VM. Plasmonic random laser enabled artefact-free wide-field fluorescence bioimaging: uncovering finer cellular features. NANOSCALE ADVANCES 2022; 4:2278-2287. [PMID: 36133703 PMCID: PMC9417316 DOI: 10.1039/d1na00866h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/31/2022] [Indexed: 06/16/2023]
Abstract
Narrow bandwidth, high brightness, and spectral tunability are the unique properties of lasers that make them extremely desirable for fluorescence imaging applications. However, due to the high spatial coherence, conventional lasers are often incompatible for wide-field fluorescence imaging. The presence of parasitic artefacts under coherent illumination causes uneven excitation of fluorophores, which has a critical impact on the reliability, resolution, and efficiency of fluorescence imaging. Here, we demonstrate artefact-free wide-field fluorescence imaging with a bright and low threshold silver nanorod based plasmonic random laser, offering the capability to image finer cellular features with sub-micrometer resolution even in highly diffusive biological samples. A spatial resolution of 454 nm and up to 23% enhancement in the image contrast in comparison to conventional laser illumination are attained. Based on the results presented in this paper, random lasers, with their laser-like properties and spatial incoherence are envisioned to be the next-generation sources for developing highly efficient wide-field fluorescence imaging systems having high spatial and temporal resolution for real-time, in vivo bioimaging.
Collapse
Affiliation(s)
- R Gayathri
- Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
- Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| | - C S Suchand Sandeep
- Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - V S Gummaluri
- Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - R Mohamed Asik
- Cognitive Neuroimaging Centre (CONIC), Nanyang Technological University 59 Nanyang Drive 636921 Singapore
- Department of Animal Science, Bharathidasan University Tiruchirappalli 620024 India
| | - Parasuraman Padmanabhan
- Cognitive Neuroimaging Centre (CONIC), Nanyang Technological University 59 Nanyang Drive 636921 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University 608232 Singapore
| | - Balázs Gulyás
- Cognitive Neuroimaging Centre (CONIC), Nanyang Technological University 59 Nanyang Drive 636921 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University 608232 Singapore
- Department of Clinical Neuroscience, Karolinska Institute 17176 Stockholm Sweden
| | - C Vijayan
- Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| | - V M Murukeshan
- Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| |
Collapse
|
21
|
Banerjee J, Mandal S, Pradhan M. Polarization-Multiplexed Incoherent Broadband Surface Plasmon Resonance: A New Analytical Strategy for Plasmonic Sensing. Anal Chem 2022; 94:6689-6694. [PMID: 35476390 DOI: 10.1021/acs.analchem.1c05252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface plasmon resonance (SPR) is an interfacial phenomenon, and the plasmonic sensors are based on the optical excitation of the collective oscillations of free electrons at a metal-dielectric interface. Here, we present the new development of an incoherent broadband (IBB)-SPR probe combining the wavelength interrogation technique with polarization-multiplexing (PM). The performance characteristics of the so-called PMIBB-SPR strategy was validated for the detection of nonenzymatic aqueous urea samples as a representative example for plasmonic sensing with an excellent wavelength and phase sensitivities of 0.1363 nm/mM and 10.34597 mM/deg, respectively. We further explored the missing link between plasmonic polariton resonance (PPR) and polarization modulation via the measurements of the Stokes parameters of the reflected light. This deepens our understanding of the fundamentals of polarization-multiplexed SPR phenomenon at the interface. This study thus paves the way to develop a new-generation analytical technique with the aim of tracking various real-time chemical and biological molecular interactions occurring at the interfaces.
Collapse
Affiliation(s)
- Jayeta Banerjee
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, JD Block, Sector III, Kolkata 700106, India
| | - Sudip Mandal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, JD Block, Sector III, Kolkata 700106, India
| | - Manik Pradhan
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, JD Block, Sector III, Kolkata 700106, India
| |
Collapse
|
22
|
Zagaglia L, Demontis V, Rossella F, Floris F. Particle swarm optimization of GaAs-AlGaAS nanowire photonic crystals as two-dimensional diffraction gratings for light trapping. NANO EXPRESS 2022. [DOI: 10.1088/2632-959x/ac61ec] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Semiconductor nanowire ordered arrays represent a class of bi-dimensional photonic crystals that can be engineered to obtain functional metamaterials. Here is proposed a novel approach, based on a particle swarm optimization algorithm, for using such a photonic crystal concept to design a semiconductor nanowire-based two-dimensional diffraction grating able to guarantee an in-plane coupling for light trapping. The method takes into account the experimental constraints associated to the bottom-up growth of nanowire arrays, by processing as input dataset all relevant geometrical and morphological features of the array, and returns as output the optimised set of parameters according to the desired electromagnetic functionality of the metamaterial. A case of study based on an array of tapered GaAs-AlGaAs core-shell nanowire heterostructures is discussed.
Collapse
|
23
|
Lu X, Yao C, Sun L, Li Z. Plasmon-enhanced biosensors for microRNA analysis and cancer diagnosis. Biosens Bioelectron 2022; 203:114041. [DOI: 10.1016/j.bios.2022.114041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
|
24
|
Li Y, Yang S. Magnetic-metals sunflower nanocomposites for significant fluorescence enhancement. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Rai B, Malmberg R, Srinivasan V, Ganesh KM, Kambhampati NSV, Andar A, Rao G, Sanjeevi CB, Venkatesan K, Ramamurthy SS. Surface Plasmon-Coupled Dual Emission Platform for Ultrafast Oxygen Monitoring after SARS-CoV-2 Infection. ACS Sens 2021; 6:4360-4368. [PMID: 34709037 DOI: 10.1021/acssensors.1c01665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The outbreak of the COVID-19 pandemic has had a major impact on the health and well-being of people with its long-term effect on lung function and oxygen uptake. In this work, we present a unique approach to augment the phosphorescence signal from phosphorescent gold(III) complexes based on a surface plasmon-coupled emission platform and use it for designing a ratiometric sensor with high sensitivity and ultrafast response time for monitoring oxygen uptake in SARS-CoV-2-recovered patients. Two monocyclometalated Au(III) complexes, one having exclusively phosphorescence emission (λPL = 578 nm) and the other having dual emission, fluorescence (λPL = 417 nm) and phosphorescence (λPL = 579 nm), were studied using the surface plasmon-coupled dual emission (SPCDE) platform for the first time, which showed 27-fold and 17-fold enhancements, respectively. The latter complex having the dual emission was then used for the fabrication of a ratiometric sensor for studying the oxygen quenching of phosphorescence emission with the fluorescence emission acting as an internal standard. Low-cost poly (methyl methacrylate) (PMMA) and biodegradable wood were used to fabricate the microfluidic chips for oxygen monitoring. The sensor showed a high sensitivity with a limit of detection ∼ 0.1%. Furthermore, real-time oxygen sensing was carried out and the response time of the sensor was calculated to be ∼0.2 s. The sensor chip was used for monitoring the oxygen uptake in SARS-CoV-2-recovered study participants, to assess their lung function post the viral infection.
Collapse
Affiliation(s)
- Bebeto Rai
- STAR Laboratory, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh 515134, India
| | - Robert Malmberg
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Venkatesh Srinivasan
- STAR Laboratory, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh 515134, India
| | - Kalathur Mohan Ganesh
- STAR Laboratory, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh 515134, India
| | - Naga Sai Visweswar Kambhampati
- STAR Laboratory, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh 515134, India
| | - Abhay Andar
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Potomac Photonics Inc., BWTech Parkway South Campus, 1450 South Rolling Road, Baltimore, Maryland 20008, United States
| | - Govind Rao
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Carani B. Sanjeevi
- STAR Laboratory, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh 515134, India
| | - Koushik Venkatesan
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- MQ Photonics Research Centre, MQ Sustainable Research Centre, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Sai Sathish Ramamurthy
- STAR Laboratory, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh 515134, India
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
26
|
Mukherjee T, Regar R, Soppina V, Kanvah S. Stress-responsive rhodamine bioconjugates for membrane-potential-independent mitochondrial live-cell imaging and tracking. Org Biomol Chem 2021; 19:10090-10096. [PMID: 34610076 DOI: 10.1039/d1ob01741a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The 'powerhouses' of cell, mitochondria have seen an upsurge of interest in investigations pertaining to the imaging and mapping of physiological processes. By utilizing sterol-modified rhodamine, we have performed the live-cell imaging of mitochondria without dependence on a membrane potential. The sterol probes are highly biocompatible, and they can track the mitochondrial live-cell dynamics in a background-free manner with improved brightness and impressive contrast. This is the first attempt to study the stress response using a direct fluorescence readout with bio-conjugates of rhodamine inside mitochondria. The results pave the way for developing different sterol markers for understanding cellular responses and function.
Collapse
Affiliation(s)
- Tarushyam Mukherjee
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| | - Ramprasad Regar
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| | - Virupakshi Soppina
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| | - Sriram Kanvah
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| |
Collapse
|
27
|
Xie KX, Liu C, Liu Q, Xiao XX, Li Z, Li MF. Multiarchitecture-Based Plasmonic-Coupled Emission Employing Gold Nanoparticles: An Efficient Fluorescence Modulation and Biosensing Platform. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11880-11886. [PMID: 34592818 DOI: 10.1021/acs.langmuir.1c01965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface plasmon-coupled emission (SPCE) is an efficient surface-enhanced fluorescence method based on the near-field coupling process of surface plasmons and fluorophores. Based on this, we developed multiple coupling structures for an SPCE system by introducing gold nanoparticles (AuNPs) with different architectures by adjusting different modification methods and configurations. By assembling AuNPs on a gold substrate through electrostatic adsorption and spin-coating, 40- and 55-fold enhancements were obtained compared to free space (FS) emission, respectively. After theoretical simulations and the optimization of experimental conditions, a novel "hot-spot" plasmonic structure, an intense electromagnetic field within the system, plasmonic properties, and the coupled process were found to be mainly responsible for the diverse enhancement effects observed. For the spin-coating deposition method, new enhancing systems with high efficiency can be easily built without complex modification. Additionally, the subsequent detection system based on the uniform modification of AuNPs through electrostatic adsorption is convenient to establish with high sensitivity and stability, which can broaden the application of SPCE in both fluorescence-based sensing and imaging. This AuNP-enhanced SPCE using an electrostatic adsorption method was designed as an immunosensor to prove feasibility.
Collapse
Affiliation(s)
- Kai-Xin Xie
- Department of Chemistry, Taiyuan Normal University, Jin Zhong 030619, P. R. China
| | - Chang Liu
- Department of Chemistry, Taiyuan Normal University, Jin Zhong 030619, P. R. China
| | - Qian Liu
- Laboratory of Pharmacy and Chemistry, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xiu-Xian Xiao
- Department of Chemistry, Taiyuan Normal University, Jin Zhong 030619, P. R. China
| | - Zhuan Li
- Department of Chemistry, Taiyuan Normal University, Jin Zhong 030619, P. R. China
| | - Meng-Fan Li
- Department of Chemistry, Taiyuan Normal University, Jin Zhong 030619, P. R. China
| |
Collapse
|
28
|
Wang X, Dai C, Yao X, Qiao T, Chen M, Li S, Shi Z, Wang M, Huang Z, Hu X, Li Z, Zhang J, Zhang X. Asymmetric angular dependence for multicolor display based on plasmonic inclined-nanopillar array. NANOSCALE 2021; 13:7273-7278. [PMID: 33889906 DOI: 10.1039/d1nr00473e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Asymmetric multicolor displays have unique and fascinating applications in the field of artificial color engineering. However, the realization of such multicolor displays still faces challenges, due to limitations associated with nanofabrication techniques. In this work, asymmetric photonic structures were realized through inclined 2D aluminum nanopillar arrays, which demonstrate asymmetric angle-dependence as multicolor displays. It was numerically and experimentally demonstrated that the distinctive symmetry breaking leads to the plasmonic coupling effect with angle-dependence and reflection differences with the opposite observing angle. Based on this concept, several color printings were designed as prototypes, which prove the utility of the controlled asymmetric color display with varied observing angles. Our results demonstrate a simple and efficient platform for asymmetric plasmonic nanostructures, which paves the way for further study and designation in artificial color engineering.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310018, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bhaskar S, Visweswar Kambhampati NS, Ganesh KM, P MS, Srinivasan V, Ramamurthy SS. Metal-Free, Graphene Oxide-Based Tunable Soliton and Plasmon Engineering for Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17046-17061. [PMID: 33788532 DOI: 10.1021/acsami.1c01024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The quest for auxiliary plasmonic materials with lossless properties began in the past decade. In the current study, a unique plasmonic response is demonstrated from a stratified high refractive index (HRI)-graphene oxide (GO) and low refractive index (LRI)-polymethyl methacrylate (PMMA) multistack. Graphene oxide plasmon-coupled emission (GraPE) reveals the existence of strong surface states on the terminating layer of the photonic crystal (PC) framework. The chemical defects in GO thin film are conducive for unraveling plasmon hybridization within and across the multistack. We have achieved a unique assortment of metal-dielectric-metal (MDM) ensuing a zero-normal steering emission on account of solitons as well as directional GraPE. This has been theoretically established and experimentally demonstrated with a metal-free design. The angle-dependent reflectivity plots, electric field energy (EFI) profiles, and finite-difference time-domain (FDTD) analysis from the simulations strongly support plasmonic modes with giant Purcell factors (PFs). The architecture presented prospects for the replacement of metal-dependent MDM and surface plasmon-coupled emission (SPCE) technology with low cost, easy to fabricate, tunable soliton [graphene oxide plasmon-coupled soliton emission (GraSE)], and plasmon [GraPE] engineering for diverse biosensing applications. The superiority of the GraPE platform for achieving 1.95 pg mL-1 limit of detection of human IFN-γ is validated experimentally. A variety of nanoparticles encompassing metals, intermetallics, rare-earth, and low-dimensional carbon-plasmonic hybrids were used to comprehend PF and cavity hot-spot contribution resulting in 900-fold fluorescence emission enhancements on a lossless substrate, thereby opening the door to unique light-matter interactions for next-gen plasmonic and biomedical technologies.
Collapse
Affiliation(s)
- Seemesh Bhaskar
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh 515134, India
| | - Naga Sai Visweswar Kambhampati
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh 515134, India
| | - K M Ganesh
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh 515134, India
| | - Mahesh Sharma P
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh 515134, India
| | - Venkatesh Srinivasan
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh 515134, India
| | - Sai Sathish Ramamurthy
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh 515134, India
| |
Collapse
|
30
|
Xie KX, Liu Q, Song XL, Huo RP, Shi XH, Liu QL. Amplified Fluorescence by Hollow-Porous Plasmonic Assembly: A New Observation and Its Application in Multiwavelength Simultaneous Detection. Anal Chem 2021; 93:3671-3676. [PMID: 33599476 DOI: 10.1021/acs.analchem.0c05219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Surface plasmon coupled emission (SPCE) is a new analytical technique that provides increased and directional radiation based on the near-field interaction between fluorophores and surface plasmons but suffers from the limitation of insufficient sensitivity. The assembly of hollow-porous plasmonic nanoparticles could be the qualified candidate. After the introduction of gold nanocages (AuNCs), fluorescence signal enhancement was realized by factors over 150 and 600 compared with the normal SPCE and free space emission, respectively, with a fluorophore layer thickness of approximately 10 nm; hence, the unique enhancement of SPCE by the AuNCs effectively overcomes the signal quenching induced by resonance energy transfer (in normal SPCE). This enhancement was proven to be triggered by the superior wavelength match, the enhanced electromagnetic field, and new radiation channel and process induced by the AuNC assembly, which provides an opportunity to increase the detection sensitivity and establish an optimal plasmonic enhancement system. The amplified SPCE system was employed for multiwavelength simultaneous enhancement detection through the assembly of mixed hollow nanoparticles (AuNCs and gold nanoshells), which could broaden the application of SPCE in simultaneous sensing and imaging for multianalytes.
Collapse
Affiliation(s)
- Kai-Xin Xie
- Department of Chemistry, Taiyuan Normal University, Jinzhong, Shanxi 030619, PR China
| | - Qian Liu
- Laboratory of Pharmacy and Chemistry, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiu-Li Song
- Department of Chemistry, Taiyuan Normal University, Jinzhong, Shanxi 030619, PR China
| | - Rui-Ping Huo
- Department of Chemistry, Taiyuan Normal University, Jinzhong, Shanxi 030619, PR China
| | - Xiao-Hong Shi
- Department of Chemistry, Taiyuan Normal University, Jinzhong, Shanxi 030619, PR China
| | - Qiao-Ling Liu
- Department of Chemistry, Taiyuan Normal University, Jinzhong, Shanxi 030619, PR China
| |
Collapse
|