1
|
Chen Y, Yue X, Tang Y, Zhu Q, Yu W, Luo M, Huang Y, Wen L, Li F. Thrombin Nanochannel Logic Gate Inspired by BioMemory. Anal Chem 2025; 97:3220-3226. [PMID: 39620937 DOI: 10.1021/acs.analchem.4c02983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
The process of "reading" and "writing" in biomemory involves the transmission of electrical signals between neurons, with ligand-gated ion channels assuming a key role. The solid-state nanochannels exhibit certain similarities with neurons. Information transmission can be achieved by controlling the flow of ions within nanochannels, rendering them potentially suitable for simulating neuron behavior. Herein, thrombin (Thr) was chosen as the target protein, and a functionalized nanochannel sensing system was successfully constructed using DNA aptamers, enabling a highly sensitive Thr response with a detection limit of 0.221 fM. Simultaneously, based on Watson-Crick base pairing and programmable chain displacement reactions, controlled release and cyclic response of the target molecule were further achieved. This mechanism elucidates the rules governing specific input-output relationships, innovatively linking them with memory storage and recognition through the Thr-nanochannel logic gate, thereby realizing the reading of biomemory at the hardware level. In summary, the biological hybrid nanofluidic control device of this invention converts molecular events into electrical signals, providing potential avenues for establishing connections between the mechanisms of biomemory and solid-state nanochannel biosensing and recognition in the future.
Collapse
Affiliation(s)
- Yonghuan Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Xinru Yue
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Yongtao Tang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Qi Zhu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Weihua Yu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Mengfan Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fengyu Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
- College of Chemistry, Zhengzhou University, 450001 Zhengzhou, China
| |
Collapse
|
2
|
Liu X, Sun C, Ye X, Zhu X, Hu C, Tan H, He S, Shao M, Li RW. Neuromorphic Nanoionics for Human-Machine Interaction: From Materials to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311472. [PMID: 38421081 DOI: 10.1002/adma.202311472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Human-machine interaction (HMI) technology has undergone significant advancements in recent years, enabling seamless communication between humans and machines. Its expansion has extended into various emerging domains, including human healthcare, machine perception, and biointerfaces, thereby magnifying the demand for advanced intelligent technologies. Neuromorphic computing, a paradigm rooted in nanoionic devices that emulate the operations and architecture of the human brain, has emerged as a powerful tool for highly efficient information processing. This paper delivers a comprehensive review of recent developments in nanoionic device-based neuromorphic computing technologies and their pivotal role in shaping the next-generation of HMI. Through a detailed examination of fundamental mechanisms and behaviors, the paper explores the ability of nanoionic memristors and ion-gated transistors to emulate the intricate functions of neurons and synapses. Crucial performance metrics, such as reliability, energy efficiency, flexibility, and biocompatibility, are rigorously evaluated. Potential applications, challenges, and opportunities of using the neuromorphic computing technologies in emerging HMI technologies, are discussed and outlooked, shedding light on the fusion of humans with machines.
Collapse
Affiliation(s)
- Xuerong Liu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaoyu Ye
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaojian Zhu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Cong Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Hongwei Tan
- Department of Applied Physics, Aalto University, Aalto, FI-00076, Finland
| | - Shang He
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Mengjie Shao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
3
|
Sharma S, Pandey M, Nagamatsu S, Tanaka H, Takashima K, Nakamura M, Pandey SS. High-Density, Nonvolatile, Flexible Multilevel Organic Memristor Using Multilayered Polymer Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22282-22293. [PMID: 38644562 PMCID: PMC11082853 DOI: 10.1021/acsami.4c03111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Nonvolatile organic memristors have emerged as promising candidates for next-generation electronics, emphasizing the need for vertical device fabrication to attain a high density. Herein, we present a comprehensive investigation of high-performance organic memristors, fabricated in crossbar architecture with PTB7/Al-AlOx-nanocluster/PTB7 embedded between Al electrodes. PTB7 films were fabricated using the Unidirectional Floating Film Transfer Method, enabling independent uniform film fabrication in the Layer-by-Layer (LbL) configuration without disturbing underlying films. We examined the charge transport mechanism of our memristors using the Hubbard model highlighting the role of Al-AlOx-nanoclusters in switching-on the devices, due to the accumulation of bipolarons in the semiconducting layer. By varying the number of LbL films in the device architecture, the resistance of resistive states was systematically altered, enabling the fabrication of novel multilevel memristors. These multilevel devices exhibited excellent performance metrics, including enhanced memory density, high on-off ratio (>108), remarkable memory retention (>105 s), high endurance (87 on-off cycles), and rapid switching (∼100 ns). Furthermore, flexible memristors were fabricated, demonstrating consistent performance even under bending conditions, with a radius of 2.78 mm for >104 bending cycles. This study not only demonstrates the fundamental understanding of charge transport in organic memristors but also introduces novel device architectures with significant implications for high-density flexible applications.
Collapse
Affiliation(s)
- Shubham Sharma
- Graduate
School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Manish Pandey
- Department
of Electronics and Communication Engineering, Indian Institute of Technology, Durg,Bhilai, Chattisgarh 491001, India
| | - Shuichi Nagamatsu
- Department
of Computer Science and Electronics, Kyushu
Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan
| | - Hirofumi Tanaka
- Department
of Human Intelligence Systems, Kyushu Institute
of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Kazuto Takashima
- Graduate
School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Masakazu Nakamura
- Division
of Materials Science, Nara Institute of
Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shyam S. Pandey
- Graduate
School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| |
Collapse
|
4
|
Griffin K, Redmond G. Volatile Memristive Devices with Analog Resistance Switching Based on Self-Assembled Squaraine Microtubes as Synaptic Emulators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2539-2553. [PMID: 38174356 PMCID: PMC10797587 DOI: 10.1021/acsami.3c13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
In this work, the discovery of volatile memristive devices that exhibit analog resistive switching (RS) and synaptic emulation based on squaraine materials is presented. Specifically, organic microtubes (MTs) based on 2,4-bis[(4-(N,N-diisobutyl)-2-6-hydroxyphenyl]squaraine (SQ) are prepared by evaporation-induced self-assembly (EISA). The MTs are ca. 2 μm in diameter (aspect ratio: 10-130). While powder X-ray diffraction data for MTs identify monoclinic and orthorhombic polymorphs, optical data report the monoclinic phase with energetic disorder. By favorable energetic alignment of the Au work function with the SQ HOMO energy, unipolar (hole-only) symmetric metal-insulator-metal devices are formed by EISA of MT meshes on interdigitated electrodes. The DC I-V characteristics acquired exhibit pinched hysteretic I-V loops, indicative of memristive behavior. Analysis indicates Ohmic transport at low bias with carrier extraction by thermionic emission. At high bias, space-charge-limited conduction in the presence of traps distributed in energy, enhanced by a Poole-Frenkel effect and with carrier extraction by Fowler-Nordheim tunneling, is observed. These data indicate purely electronic conduction. I-V hysteresis attenuates at smaller voltage windows, suggesting that carrier trapping/detrapping underpins the hysteresis. By applying triangular voltage waveforms, device conductance gradually increases sweep-on-sweep, with wait-time-erase or voltage-erase options. Using square waveforms, repeated erase-write-read of multiple distinct conductance states is achieved. Such analog RS behavior is consistent with trap filling/emptying effects. By waveform design, volatile conductance states may also be written so that successive conductance states exhibit identical current levels, indicating forgetting of previously written states and mimicking the forgetting curve. Finally, advanced synaptic functions, i.e., excitatory postsynaptic current, paired-pulse facilitation, pulse-dependent plasticity, and a transition from short- to long-term memory driven by post-tetanic potentiation, are demonstrated.
Collapse
Affiliation(s)
- Karl Griffin
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gareth Redmond
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
Sunny MM, Thamankar R. Spike rate dependent synaptic characteristics in lamellar, multilayered alpha-MoO 3 based two-terminal devices - efficient way to control the synaptic amplification. RSC Adv 2024; 14:2518-2528. [PMID: 38226148 PMCID: PMC10788777 DOI: 10.1039/d3ra07757h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
Brain-inspired computing systems require a rich variety of neuromorphic devices using multi-functional materials operating at room temperature. Artificial synapses which can be operated using optical and electrical stimuli are in high demand. In this regard, layered materials have attracted a lot of attention due to their tunable energy gap and exotic properties. In the current study, we report the growth of layered MoO3 using the chemical vapor deposition (CVD) technique. MoO3 has an energy gap of 3.22 eV and grows with a large aspect ratio, as seen through optical and scanning electron microscopy. We used transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy for complete characterisation. The two-terminal devices using platinum (Pt/MoO3/Pt) exhibit superior memory with the high-resistance state (HRS) and low-resistance state (LRS) differing by a large resistance (∼MΩ). The devices also show excellent synaptic characteristics. Both optical and electrical pulses can be utilised to stimulate the synapse. Consistent learning (potentiation) and forgetting (depression) curves are measured. Transition from long term depression to long term potentiation can be achieved using the spike frequency dependent pulsing scheme. We have found that the amplification of postsynaptic current can be tuned using such frequency dependent spikes. This will help us to design neuromorphic devices with the required synaptic amplification.
Collapse
Affiliation(s)
- Meenu Maria Sunny
- Department of Physics, Vellore Institute of Technology Vellore TN India
- Centre for Functional Materials, Vellore Institute of Technology Vellore TN India
| | - R Thamankar
- Centre for Functional Materials, Vellore Institute of Technology Vellore TN India
| |
Collapse
|
6
|
Diao Y, Zhang Y, Li Y, Jiang J. Metal-Oxide Heterojunction: From Material Process to Neuromorphic Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:9779. [PMID: 38139625 PMCID: PMC10747618 DOI: 10.3390/s23249779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
As technologies like the Internet, artificial intelligence, and big data evolve at a rapid pace, computer architecture is transitioning from compute-intensive to memory-intensive. However, traditional von Neumann architectures encounter bottlenecks in addressing modern computational challenges. The emulation of the behaviors of a synapse at the device level by ionic/electronic devices has shown promising potential in future neural-inspired and compact artificial intelligence systems. To address these issues, this review thoroughly investigates the recent progress in metal-oxide heterostructures for neuromorphic applications. These heterostructures not only offer low power consumption and high stability but also possess optimized electrical characteristics via interface engineering. The paper first outlines various synthesis methods for metal oxides and then summarizes the neuromorphic devices using these materials and their heterostructures. More importantly, we review the emerging multifunctional applications, including neuromorphic vision, touch, and pain systems. Finally, we summarize the future prospects of neuromorphic devices with metal-oxide heterostructures and list the current challenges while offering potential solutions. This review provides insights into the design and construction of metal-oxide devices and their applications for neuromorphic systems.
Collapse
Affiliation(s)
| | | | | | - Jie Jiang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, 932 South Lushan Road, Changsha 410083, China
| |
Collapse
|
7
|
Guo T, Ge J, Jiao Y, Teng Y, Sun B, Huang W, Asgarimoghaddam H, Musselman KP, Fang Y, Zhou YN, Wu YA. Intelligent matter endows reconfigurable temperature and humidity sensations for in-sensor computing. MATERIALS HORIZONS 2023; 10:1030-1041. [PMID: 36692087 DOI: 10.1039/d2mh01491b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Data-centric tactics with in-sensor computing go beyond the conventional computing-centric tactic that is suffering from processing latency and excessive energy consumption. The multifunctional intelligent matter with dynamic smart responses to environmental variations paves the way to implement data-centric tactics with high computing efficiency. However, intelligent matter with humidity and temperature sensitivity has not been reported. In this work, a design is demonstrated based on a single memristive device to achieve reconfigurable temperature and humidity sensations. Opposite temperature sensations at the low resistance state (LRS) and high resistance state (HRS) were observed for low-level sensory data processing. Integrated devices mimicking intelligent electronic skin (e-skin) can work in three modes to adapt to different scenarios. Additionally, the device acts as a humidity-sensory artificial synapse that can implement high-level cognitive in-sensor computing. The intelligent matter with reconfigurable temperature and humidity sensations is promising for energy-efficient artificial intelligence (AI) systems.
Collapse
Affiliation(s)
- Tao Guo
- Department of Mechanical and Mechatronics Engineering, and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Jiawei Ge
- Department of Mechanical and Mechatronics Engineering, and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
- College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yixuan Jiao
- Department of Mechanical and Mechatronics Engineering, and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Youchao Teng
- Department of Mechanical and Mechatronics Engineering, and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Bai Sun
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Wen Huang
- New Energy Technology Engineering Laboratory of Jiangsu Province, School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Hatameh Asgarimoghaddam
- Department of Mechanical and Mechatronics Engineering, and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Kevin P Musselman
- Department of Mechanical and Mechatronics Engineering, and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Yin Fang
- School of Chemical and Biomedical engineering, Nanyang Technological University, Singapore
| | - Y Norman Zhou
- Department of Mechanical and Mechatronics Engineering, and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
8
|
Zhu S, Sun B, Zhou G, Guo T, Ke C, Chen Y, Yang F, Zhang Y, Shao J, Zhao Y. In-Depth Physical Mechanism Analysis and Wearable Applications of HfO x-Based Flexible Memristors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5420-5431. [PMID: 36688622 DOI: 10.1021/acsami.2c16569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Since memristors as an emerging nonlinear electronic component have been considered the most promising candidate for integrating nonvolatile memory and advanced computing technology, the in-depth reveal of the memristive mechanism and the realization of hardware fabrication have facilitated their wide applications in next-generation artificial intelligence. Flexible memristors have shown great promising prospects in wearable electronics and artificial electronic skin (e-skin), but in-depth research on the physical mechanism is still lacking. Here, a flexible memristive device with a Ag/HfOx/Ti/PET crossbar structure was fabricated, and a remarkable analog switching characteristic similar to synaptic behavior was observed. Through detailed data fitting and in-depth physical mechanism analysis, it is confirmed that the analog switching characteristics of the device are mainly caused by carrier tunneling. Furthermore, the memristive properties of the Ag/HfOx/Ag/PET device can be attributed to the conductive filaments formed by the redox reaction of the active metal Ag. Finally, the interfacial barrier is extracted by the Arrhenius diagram and the energy band diagram, which is drawn to clearly demonstrate the conduction mechanism of charge trapping in the device. Therefore, the HfOx-based flexible memristor with analog switching behavior and stable memory performance lays the foundation for cutting-edge applications in wearable electronics and smart e-skin.
Collapse
Affiliation(s)
- Shouhui Zhu
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan610031, China
- Superconductivity and New Energy R&D Center, Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Southwest Jiaotong University, Chengdu610031, China
| | - Bai Sun
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi710049, China
| | - Guangdong Zhou
- College of Artificial Intelligence, Brain-inspired Computing & Intelligent Control of Chongqing Key Lab, Southwest University, Chongqing400715, China
| | - Tao Guo
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| | - Chuan Ke
- Superconductivity and New Energy R&D Center, Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Southwest Jiaotong University, Chengdu610031, China
| | - Yuanzheng Chen
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan610031, China
| | - Feng Yang
- Superconductivity and New Energy R&D Center, Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Southwest Jiaotong University, Chengdu610031, China
| | - Yong Zhang
- Superconductivity and New Energy R&D Center, Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Southwest Jiaotong University, Chengdu610031, China
| | - Jinyou Shao
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi710049, China
| | - Yong Zhao
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan610031, China
- Superconductivity and New Energy R&D Center, Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Southwest Jiaotong University, Chengdu610031, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fujian Normal University, Fuzhou, Fujian350117, China
| |
Collapse
|
9
|
Ha H, Pyo J, Lee Y, Kim S. Non-Volatile Memory and Synaptic Characteristics of TiN/CeO x/Pt RRAM Devices. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9087. [PMID: 36556891 PMCID: PMC9786700 DOI: 10.3390/ma15249087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
In this study, we investigate the synaptic characteristics and the non-volatile memory characteristics of TiN/CeOx/Pt RRAM devices for a neuromorphic system. The thickness and chemical properties of the CeOx are confirmed through TEM, EDS, and XPS analysis. A lot of oxygen vacancies (ions) in CeOx film enhance resistive switching. The stable bipolar resistive switching characteristics, endurance cycling (>100 cycles), and non-volatile properties in the retention test (>10,000 s) are assessed through DC sweep. The filamentary switching model and Schottky emission-based conduction model are presented for TiN/CeOx/Pt RRAM devices in the LRS and HRS. The compliance current (1~5 mA) and reset stop voltage (−1.3~−2.2 V) are used in the set and reset processes, respectively, to implement multi-level cell (MLC) in DC sweep mode. Based on neural activity, a neuromorphic system is performed by electrical stimulation. Accordingly, the pulse responses achieve longer endurance cycling (>10,000 cycles), MLC (potentiation and depression), spike-timing dependent plasticity (STDP), and excitatory postsynaptic current (EPSC) to mimic synapse using TiN/CeOx/Pt RRAM devices.
Collapse
Affiliation(s)
| | | | | | - Sungjun Kim
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
10
|
Park S, Spetzler B, Ivanov T, Ziegler M. Multilayer redox-based HfO x/Al 2O 3/TiO 2 memristive structures for neuromorphic computing. Sci Rep 2022; 12:18266. [PMID: 36309573 PMCID: PMC9617901 DOI: 10.1038/s41598-022-22907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/20/2022] [Indexed: 12/31/2022] Open
Abstract
Redox-based memristive devices have shown great potential for application in neuromorphic computing systems. However, the demands on the device characteristics depend on the implemented computational scheme and unifying the desired properties in one stable device is still challenging. Understanding how and to what extend the device characteristics can be tuned and stabilized is crucial for developing application specific designs. Here, we present memristive devices with a functional trilayer of HfOx/Al2O3/TiO2 tailored by the stoichiometry of HfOx (x = 1.8, 2) and the operating conditions. The device properties are experimentally analyzed, and a physics-based device model is developed to provide a microscopic interpretation and explain the role of the Al2O3 layer for a stable performance. Our results demonstrate that the resistive switching mechanism can be tuned from area type to filament type in the same device, which is well explained by the model: the Al2O3 layer stabilizes the area-type switching mechanism by controlling the formation of oxygen vacancies at the Al2O3/HfOx interface with an estimated formation energy of ≈ 1.65 ± 0.05 eV. Such stabilized area-type devices combine multi-level analog switching, linear resistance change, and long retention times (≈ 107-108 s) without external current compliance and initial electroforming cycles. This combination is a significant improvement compared to previous bilayer devices and makes the devices potentially interesting for future integration into memristive circuits for neuromorphic applications.
Collapse
Affiliation(s)
- Seongae Park
- Micro- and Nanoelectronic Systems, Institute of Micro and Nanotechnologies MacroNano, Technische Universität Ilmenau, Ilmenau, Germany
| | - Benjamin Spetzler
- Micro- and Nanoelectronic Systems, Institute of Micro and Nanotechnologies MacroNano, Technische Universität Ilmenau, Ilmenau, Germany.
| | - Tzvetan Ivanov
- Micro- and Nanoelectronic Systems, Institute of Micro and Nanotechnologies MacroNano, Technische Universität Ilmenau, Ilmenau, Germany
| | - Martin Ziegler
- Micro- and Nanoelectronic Systems, Institute of Micro and Nanotechnologies MacroNano, Technische Universität Ilmenau, Ilmenau, Germany
| |
Collapse
|
11
|
Sun B, Ngai JHL, Zhou G, Zhou Y, Li Y. Voltage-Controlled Conversion from CDS to MDS in an Azobenzene-Based Organic Memristor for Information Storage and Logic Operations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41304-41315. [PMID: 36041038 DOI: 10.1021/acsami.2c12850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For organic memristors, non-zero-crossing current-voltage (I-V) curves are often observed, which can be attributed to capacitive effects. If the conversion between the capacitance-dominated state (CDS) and the memristance-dominated state (MDS) can be realized in a controllable manner, more device functions can be obtained. In this work, a two-terminal memristor using a common organic dye, azobenzene (AZB), as the active layer was prepared. It is found that as the applied voltage gradually increases, the device can transition from CDS to MDS. In the low voltage range (<1 V), the device is in CDS, and the capacitance is significantly increased by ∼104 compared to the theoretical value. In the high voltage range (>1 V), the device is in MDS, achieving an HRS (high resistance state)/LRS (low resistance state) resistance ratio of ∼104, and the logic operations are achieved. Through the analysis of the I-V curve, energy diagram of the materials, and computer simulation results, the mechanisms of CDS, MDS, and their conversion are proposed. This work provides an in-depth understanding of the working mechanism of organic memristors and demonstrates the potential of AZB-based organic memristors for information storage and logic display applications.
Collapse
Affiliation(s)
- Bai Sun
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Jenner H L Ngai
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Security and Disruptive Technologies, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Guangdong Zhou
- School of Artificial Intelligence, Southwest University, Chongqing 400715, China
| | - Yongzan Zhou
- Department of Mechanics and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yuning Li
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
12
|
Xu J, Zhao X, Zhao X, Wang Z, Tang Q, Xu H, Liu Y. Memristors with Biomaterials for Biorealistic Neuromorphic Applications. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jiaqi Xu
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Xiaoning Zhao
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Xiaoli Zhao
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Zhongqiang Wang
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Qingxin Tang
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Haiyang Xu
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Yichun Liu
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| |
Collapse
|
13
|
Bai H, Wu J, Su X, Peng H, Li Z, Yang D, Zhang Q, Uher C, Tang X. Electroresistance in multipolar antiferroelectric Cu 2Se semiconductor. Nat Commun 2021; 12:7207. [PMID: 34893623 PMCID: PMC8664818 DOI: 10.1038/s41467-021-27531-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022] Open
Abstract
Electric field-induced changes in the electrical resistance of a material are considered essential and enabling processes for future efficient large-scale computations. However, the underlying physical mechanisms of electroresistance are currently remain largely unknown. Herein, an electrically reversible resistance change has been observed in the thermoelectric α-Cu2Se. The spontaneous electric dipoles formed by Cu+ ions displaced from their positions at the centers of Se-tetrahedrons in the ordered α-Cu2Se phase are examined, and α-Cu2Se phase is identified to be a multipolar antiferroelectric semiconductor. When exposed to the applied voltage, a reversible switching of crystalline domains aligned parallel to the polar axis results in an observed reversible resistance change. The study expands on opportunities for semiconductors with localized polar symmetry as the hardware basis for future computational architectures.
Collapse
Affiliation(s)
- Hui Bai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China
- Nanostructure Research Center, Wuhan University of Technology, 430070, Wuhan, China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China.
- Nanostructure Research Center, Wuhan University of Technology, 430070, Wuhan, China.
| | - Xianli Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China.
| | - Haoyang Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China
- Nanostructure Research Center, Wuhan University of Technology, 430070, Wuhan, China
| | - Zhi Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China
| | - Dongwang Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China
| | - Qingjie Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China
| | - Ctirad Uher
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xinfeng Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China.
| |
Collapse
|
14
|
Sun B, Zhou G, Sun L, Zhao H, Chen Y, Yang F, Zhao Y, Song Q. ABO 3 multiferroic perovskite materials for memristive memory and neuromorphic computing. NANOSCALE HORIZONS 2021; 6:939-970. [PMID: 34652346 DOI: 10.1039/d1nh00292a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The unique electron spin, transfer, polarization and magnetoelectric coupling characteristics of ABO3 multiferroic perovskite materials make them promising candidates for application in multifunctional nanoelectronic devices. Reversible ferroelectric polarization, controllable defect concentration and domain wall movement originated from the ABO3 multiferroic perovskite materials promotes its memristive effect, which further highlights data storage, information processing and neuromorphic computing in diverse artificial intelligence applications. In particular, ion doping, electrode selection, and interface modulation have been demonstrated in ABO3-based memristive devices for ultrahigh data storage, ultrafast information processing, and efficient neuromorphic computing. These approaches presented today including controlling the dopant in the active layer, altering the oxygen vacancy distribution, modulating the diffusion depth of ions, and constructing the interface-dependent band structure were believed to be efficient methods for obtaining unique resistive switching (RS) behavior for various applications. In this review, internal physical dynamics, preparation technologies, and modulation methods are systemically examined as well as the progress, challenges, and possible solutions are proposed for next generation emerging ABO3-based memristive application in artificial intelligence.
Collapse
Affiliation(s)
- Bai Sun
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
- Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Guangdong Zhou
- School of Artificial Intelligence and School of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Linfeng Sun
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Yuanzheng Chen
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Feng Yang
- Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yong Zhao
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
- Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qunliang Song
- School of Artificial Intelligence and School of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
15
|
Ding G, Yang B, Chen RS, Mo WA, Zhou K, Liu Y, Shang G, Zhai Y, Han ST, Zhou Y. Reconfigurable 2D WSe 2 -Based Memtransistor for Mimicking Homosynaptic and Heterosynaptic Plasticity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103175. [PMID: 34528382 DOI: 10.1002/smll.202103175] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The mimicking of both homosynaptic and heterosynaptic plasticity using a high-performance synaptic device is important for developing human-brain-like neuromorphic computing systems to overcome the ever-increasing challenges caused by the conventional von Neumann architecture. However, the commonly used synaptic devices (e.g., memristors and transistors) require an extra modulate terminal to mimic heterosynaptic plasticity, and their capability of synaptic plasticity simulation is limited by the low weight adjustability. In this study, a WSe2 -based memtransistor for mimicking both homosynaptic and heterosynaptic plasticity is fabricated. By applying spikes on either the drain or gate terminal, the memtransistor can mimic common homosynaptic plasticity, including spiking rate dependent plasticity, paired pulse facilitation/depression, synaptic potentiation/depression, and filtering. Benefitting from the multi-terminal input and high adjustability, the resistance state number and linearity of the memtransistor can be improved by optimizing the conditions of the two inputs. Moreover, the device can successfully mimic heterosynaptic plasticity without introducing an extra terminal and can simultaneously offer versatile reconfigurability of excitatory and inhibitory plasticity. These highly adjustable and reconfigurable characteristics offer memtransistors more freedom of choice for tuning synaptic weight, optimizing circuit design, and building artificial neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Baidong Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ruo-Si Chen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wen-Ai Mo
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yang Liu
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gang Shang
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yongbiao Zhai
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
16
|
Sun B, Guo T, Zhou G, Wu J, Chen Y, Zhou YN, Wu YA. A Battery-Like Self-Selecting Biomemristor from Earth-Abundant Natural Biomaterials. ACS APPLIED BIO MATERIALS 2021; 4:1976-1985. [PMID: 35014467 DOI: 10.1021/acsabm.1c00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using the earth-abundant natural biomaterials to manufacture functional electronic devices meets the sustainable requirement of green electronics, especially for the practical application of memristors in data storage and neuromorphic computing. However, the sneak currents flowing though the unselected cells in a large-scale cross-bar memristor array is one of the major problems which need to be tackled. The self-selecting memristors can solve the problem to develop compact and concise integrated circuits. Here, a sustainable natural biomaterial (anthocyanin, C15H11O6) extracted from plant tissue is demonstrated for ions and electron transport. The capacitive-coupled memristive behavior of as-prepared bioelectronic device can be significantly modulated by diethylmethyl(2-methoxyethyl)ammoium bis(trifluoromethylsulfonyl)imide (DEME-TFSI) ionic liquid (IL). Furthermore, graphene was inserted into biomaterial matrix to manipulate the memristive effects by graphene protonation. This results in a battery-like self-selective memristive effect. This phenomenon is explained by a physical model and density functional theory (DFT) based first-principles calculations. Finally, the self-selective behavior was applied in 0T-1R array configuration, which indicates the battery-like self-selecting biomemristor has potential applications in the brain-inspired computing, data storage systems, and high-density device integration.
Collapse
Affiliation(s)
- Bai Sun
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.,School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Tao Guo
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Guangdong Zhou
- School of Artificial Intelligence, Southwest University, Chongqing 400715, China
| | - Jinggao Wu
- Key Laboratory of Rare Earth Optoelectronic Materials & Devices, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418000, China
| | - Yuanzheng Chen
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Y Norman Zhou
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|