1
|
Cometta S, Donose BC, Juárez-Saldivar A, Ravichandran A, Xu Y, Bock N, Dargaville TR, Rakić AD, Hutmacher DW. Unravelling the physicochemical and antimicrobial mechanisms of human serum albumin/tannic acid coatings for medical-grade polycaprolactone scaffolds. Bioact Mater 2024; 42:68-84. [PMID: 39280579 PMCID: PMC11399811 DOI: 10.1016/j.bioactmat.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Biofilm-related biomaterial infections are notoriously challenging to treat and can lead to chronic infection and persisting inflammation. To date, a large body of research can be reviewed for coatings which potentially prevent bacterial infection while promoting implant integration. Yet only a very small number has been translated from bench to bedside. This study provides an in-depth analysis of the stability, antibacterial mechanism, and biocompatibility of medical grade polycaprolactone (mPCL), coated with human serum albumin (HSA), the most abundant protein in blood plasma, and tannic acid (TA), a natural polyphenol with antibacterial properties. Molecular docking studies demonstrated that HSA and TA interact mainly through hydrogen-bonding, ionic and hydrophobic interactions, leading to smooth and regular assemblies. In vitro bacteria adhesion testing showed that coated scaffolds maintained their antimicrobial properties over 3 days by significantly reducing S. aureus colonization and biofilm formation. Notably, amplitude modulation-frequency modulation (AMFM) based viscoelasticity mapping and transmission electron microscopy (TEM) data suggested that HSA/TA-coatings cause morphological and mechanical changes on the outer cell membrane of S. aureus leading to membrane disruption and cell death while proving non-toxic to human primary cells. These results support this antibiotic-free approach as an effective and biocompatible strategy to prevent biofilm-related biomaterial infections.
Collapse
Affiliation(s)
- Silvia Cometta
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Bogdan C Donose
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alfredo Juárez-Saldivar
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, 88740, Mexico
| | - Akhilandeshwari Ravichandran
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Yanan Xu
- Central Analytical Research Facility (CARF), Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Nathalie Bock
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Tim R Dargaville
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Aleksandar D Rakić
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dietmar W Hutmacher
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Translational Research Institute, Woolloongabba, QLD, 4102, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| |
Collapse
|
2
|
Wu XY, Liu QY, Jiang S, Pan ZY, Dong JH, Chen BH, Li JH, Liu YS, Liu Y, He L. Copper(II) aromatic heterocyclic complexes of Gatifloxacin with multi-targeting capabilities for antibacterial therapy and combating antibiotic resistance. Bioorg Chem 2024; 153:107938. [PMID: 39520787 DOI: 10.1016/j.bioorg.2024.107938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
In recent years, the pace of novel antibiotic development has been relatively slow, intensifying the urgency of the antibiotic resistance issue. Consequently, scientists have turned their attention to enhancing antibiotic activity by coordinating antibiotics with metal elements. This study designs and synthesizes three novel antibacterial copper complexes based on Gatifloxacin. These complexes exhibit potent antibacterial activity, notably Cu-1, with a minimum inhibitory concentration (MIC) of only 0.063 μg/mL against Staphylococcus aureus (S.aureus), demonstrating potent bacteriostatic capabilities. Further investigations unveil the antibacterial mechanisms of complex Cu-1, revealing its ability not only to suppress the activities of DNA gyrase and topoisomerases IV, but also to effectively inhibit biofilm formation and disrupt the integrity of cell membrane. This multi-targeting action contributes to mitigating the risk of bacterial resistance emergence. Additionally, synergy between Cu-1 and conventional antibiotics is confirmed through checkerboard assays, offering novel strategies for antibacterial therapy. In vivo experiments using a murine model of S.aureus infection demonstrate the significant antibacterial efficacy of Cu-1, providing robust support for its potential in treating S.aureus infections. This study demonstrates that the coordination complexes formed by copper, Gatifloxacin and suitable aromatic heterocyclic ligands exhibit multi-targeting characteristics against bacteria, offering a new direction for combating antibiotic resistance in antibacterial therapy.
Collapse
Affiliation(s)
- Xiao-Yin Wu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Qi-Yan Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shan Jiang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Zheng-Yin Pan
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Jia-Hao Dong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Bai-Hua Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jin-Hao Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Shu Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Liang He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Obewhere OA, Acurio-Cerda K, Sutradhar S, Dike M, Keloth R, Dishari SK. Unravel-engineer-design: a three-pronged approach to advance ionomer performance at interfaces in proton exchange membrane fuel cells. Chem Commun (Camb) 2024; 60:13114-13142. [PMID: 39356467 PMCID: PMC11560688 DOI: 10.1039/d4cc03221g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs), which use hydrogen as fuel, present an eco-friendly alternative to internal combustion engines (ICEs) for powering low-to-heavy-duty vehicles and various devices. Despite their promise, PEMFCs must meet strict cost, performance, and durability standards to reach their full potential. A key challenge lies in optimizing the electrode, where a thin ionomer layer is responsible for proton conduction and binding catalyst particles to the electrode. Enhancing ion transport within these sub-μm thick films is critical to improving the oxygen reduction reaction (ORR) at the cathodes of PEMFCs. For the past 15 years, our research has targeted this limitation through a comprehensive "Unravel - Engineer - Design" approach. We first unraveled the behavior of ionomers, gaining deeper insights into both the average and distributed proton conduction properties within sub-μm thick films and at interfaces that mimic catalyst binder layers. Next, we engineered ionomer-substrate interfaces to gain control over interfacial makeup and boost proton conductivity, essential for PEMFC efficiency. Finally, we designed novel nature-derived or nature-inspired, fluorine-free ionomers to tackle the ion transport limitations seen in state-of-the-art ionomers under thin-film confinement. Some of these ionomers even pave the way to address cost and sustainability challenges in PEMFC materials. This feature article highlights our contributions and their importance in advancing PEMFCs and other sustainable energy conversion and storage technologies.
Collapse
Affiliation(s)
| | - Karen Acurio-Cerda
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Sourav Sutradhar
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Moses Dike
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Rajesh Keloth
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| |
Collapse
|
4
|
Pan S, Zou Z, Zhou X, Wei J, Liu H, Su Z, Liao G, Huang G, Huang Z, Xu Y, Lu M, Gu R. Therapeutic impacts of GNE‑477‑loaded H 2O 2 stimulus‑responsive dodecanoic acid‑phenylborate ester‑dextran polymeric micelles on osteosarcoma. Int J Mol Med 2024; 54:69. [PMID: 38940336 PMCID: PMC11232662 DOI: 10.3892/ijmm.2024.5393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/25/2024] [Indexed: 06/29/2024] Open
Abstract
Osteosarcoma (OS) is a highly malignant primary bone neoplasm that is the leading cause of cancer‑associated death in young people. GNE‑477 belongs to the second generation of mTOR inhibitors and possesses promising potential in the treatment of OS but dose tolerance and drug toxicity limit its development and utilization. The present study aimed to prepare a novel H2O2 stimulus‑responsive dodecanoic acid (DA)‑phenylborate ester‑dextran (DA‑B‑DEX) polymeric micelle delivery system for GNE‑477 and evaluate its efficacy. The polymer micelles were characterized by morphology, size and critical micelle concentration. The GNE‑477 loaded DA‑B‑DEX (GNE‑477@DBD) tumor‑targeting drug delivery system was established and the release of GNE‑477 was measured. The cellular uptake of GNE‑477@DBD by three OS cell lines (MG‑63, U2OS and 143B cells) was analyzed utilizing a fluorescent tracer technique. The hydroxylated DA‑B was successfully grafted onto dextran at a grafting rate of 3%, suitable for forming amphiphilic micelles. Following exposure to H2O2, the DA‑B‑DEX micelles ruptured and released the drug rapidly, leading to increased uptake of GNE‑477@DBD by cells with sustained release of GNE‑477. The in vitro experiments, including MTT assay, flow cytometry, western blotting and RT‑qPCR, demonstrated that GNE‑477@DBD inhibited tumor cell viability, arrested cell cycle in G1 phase, induced apoptosis and blocked the PI3K/Akt/mTOR cascade response. In vivo, through the observation of mice tumor growth and the results of H&E staining, the GNE‑477@DBD group exhibited more positive therapeutic outcomes than the free drug group with almost no adverse effects on other organs. In conclusion, H2O2‑responsive DA‑B‑DEX presents a promising delivery system for hydrophobic anti‑tumor drugs for OS therapy.
Collapse
Affiliation(s)
- Songmu Pan
- Department of Orthopedic Surgery, The First People's Hospital of Nanning, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| | - Zhuan Zou
- Department of Orthopedic Surgery, The First People's Hospital of Nanning, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| | - Xiaofeng Zhou
- Department of Orthopedic Surgery, The First People's Hospital of Nanning, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| | - Jiyong Wei
- Department of Orthopedic Surgery, The First People's Hospital of Nanning, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| | - Huijiang Liu
- Department of Orthopedic Surgery, The First People's Hospital of Nanning, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| | - Zhongyi Su
- Department of Orthopedic Surgery, The First People's Hospital of Nanning, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| | - Gui Liao
- Department of Orthopedic Surgery, The First People's Hospital of Nanning, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| | - Guangyu Huang
- Department of Orthopedic Surgery, The First People's Hospital of Nanning, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| | - Zonggui Huang
- Department of Orthopedic Surgery, The First People's Hospital of Nanning, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| | - Yi Xu
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Minan Lu
- Department of Orthopedic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Ronghe Gu
- Department of Orthopedic Surgery, The First People's Hospital of Nanning, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
- Guangxi Key Laboratory of Intelligent Precision Medicine, The First People's Hospital of Nanning, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| |
Collapse
|
5
|
He T, Wang Y, Wang R, Yang H, Hu X, Pu Y, Yang B, Zhang J, Li J, Huang C, Jin R, Nie Y, Zhang X. Fibrous topology promoted pBMP2-activated matrix on titanium implants boost osseointegration. Regen Biomater 2023; 11:rbad111. [PMID: 38173764 PMCID: PMC10761207 DOI: 10.1093/rb/rbad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Titanium (Ti) implants have been extensively used after surgical operations. Its surface bioactivity is of importance to facilitate integration with surrounding bone tissue, and ultimately ensure stability and long-term functionality of the implant. The plasmid DNA-activated matrix (DAM) coating on the surface could benefit osseointegration but is still trapped by poor transfection for further application, especially on the bone marrow mesenchymal stem cells (BMSCs) in vivo practical conditions. Herein, we constructed a DAM on the surface of fibrous-grained titanium (FG Ti) composed of phase-transition lysozyme (P) as adhesive, cationic arginine-rich lipid (RLS) as the transfection agent and plasmid DNA (pDNA) for bone morphology protein 2 (BMP2) expression. The cationic lipid RLS improved up to 30-fold higher transfection than that of commercial reagents (Lipofectamine 2000 and polyethyleneimine) on MSC. And importantly, Ti surface topology not only promotes the DAM to achieve high transfection efficiency (∼75.7% positive cells) on MSC due to the favorable combination but also reserves its contact induction effect for osteoblasts. Upon further exploration, the fibrous topology on FG Ti could boost pDNA uptake for gene transfection, and cell migration in MSC through cytoskeleton remodeling and induce contact guidance for enhanced osteointegration. At the same time, the cationic RLS together with adhesive P were both antibacterial, showing up to 90% inhibition rate against Escherichia coli and Staphylococcus aureus with reduced adherent microorganisms and disrupted bacteria. Finally, the FG Ti-P/pBMP2 implant achieved accelerated bone healing capacities through highly efficient gene delivery, aligned surface topological structure and increased antimicrobial properties in a rat femoral condylar defect model.
Collapse
Affiliation(s)
- Ting He
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yichun Wang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Ruohan Wang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Huan Yang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xueyi Hu
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yiyao Pu
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Binbin Yang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Department of the Affiliated Stomatological Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Jingyuan Zhang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Juan Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chongxiang Huang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610064, China
| | - Rongrong Jin
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yu Nie
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Moreland AS, Limwongyut J, Holton SJ, Bazan GC. Structural modulation of membrane-intercalating conjugated oligoelectrolytes decouples outer membrane permeabilizing and antimicrobial activities. Chem Commun (Camb) 2023; 59:12172-12175. [PMID: 37747122 DOI: 10.1039/d3cc02861e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
We report a series of membrane-intercalating conjugated oligoelectrolytes (MICOEs) to probe how structural features impact bacterial membrane integrity and antibiotic activity. Minimum inhibitory concentrations (MICs) and outer membrane (OM) permeability correlated to different structural parameters suggesting that the antimicrobial mechanism is not related to OM permeabilization. However, lipid order parameters and MICs correlated to the same structural feature suggesting a possible link.
Collapse
Affiliation(s)
- Alex S Moreland
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | - Samuel J Holton
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Guillermo C Bazan
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
- Department of Chemistry, National University of Singapore 117544, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore 117544, Singapore.
| |
Collapse
|
7
|
Wu C, Liu L, Zhang M, Jike X, Zhang H, Yang N, Yang H, Xu H, Lei H. Mechanisms of Antioxidant Dipeptides Enhancing Ethanol-Oxidation Cross-Stress Tolerance in Lager Yeast: Roles of the Cell Wall and Membrane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12538-12548. [PMID: 37578164 DOI: 10.1021/acs.jafc.3c03793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
High concentrations of ethanol could cause intracellular oxidative stress in yeast, which can lead to ethanol-oxidation cross-stress. Antioxidant dipeptides are effective in maintaining cell viability and stress tolerance under ethanol-oxidation cross-stress. In this study, we sought to elucidate how antioxidant dipeptides affect the yeast cell wall and membrane defense systems to enhance stress tolerance. Results showed that antioxidant dipeptide supplementation reduced cell leakage of nucleic acids and proteins by changing cell wall components under ethanol-oxidation cross-stress. Antioxidant dipeptides positively modulated the cell wall integrity pathway and up-regulated the expression of key genes. Antioxidant dipeptides also improved the cell membrane integrity by increasing the proportion of unsaturated fatty acids and regulating the expression of key fatty acid synthesis genes. Moreover, the addition of antioxidant dipeptides significantly (p < 0.05) increased the content of ergosterol. Ala-His (AH) supplementation caused the highest content of ergosterol, with an increase of 23.68 ± 0.01% compared to the control, followed by Phe-Cys (FC) and Thr-Tyr (TY). These results revealed that the improvement of the cell wall and membrane functions of antioxidant dipeptides was responsible for enhancing the ethanol-oxidation cross-stress tolerance of yeast.
Collapse
Affiliation(s)
- Caiyun Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Li Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Mengmeng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaolan Jike
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hexin Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Nana Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hongjie Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Heithoff DM, Mahan SP, Barnes V L, Leyn SA, George CX, Zlamal JE, Limwongyut J, Bazan GC, Fried JC, Fitzgibbons LN, House JK, Samuel CE, Osterman AL, Low DA, Mahan MJ. A broad-spectrum synthetic antibiotic that does not evoke bacterial resistance. EBioMedicine 2023; 89:104461. [PMID: 36801104 PMCID: PMC10025758 DOI: 10.1016/j.ebiom.2023.104461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) poses a critical threat to public health and disproportionately affects the health and well-being of persons in low-income and middle-income countries. Our aim was to identify synthetic antimicrobials termed conjugated oligoelectrolytes (COEs) that effectively treated AMR infections and whose structures could be readily modified to address current and anticipated patient needs. METHODS Fifteen chemical variants were synthesized that contain specific alterations to the COE modular structure, and each variant was evaluated for broad-spectrum antibacterial activity and for in vitro cytotoxicity in cultured mammalian cells. Antibiotic efficacy was analyzed in murine models of sepsis; in vivo toxicity was evaluated via a blinded study of mouse clinical signs as an outcome of drug treatment. FINDINGS We identified a compound, COE2-2hexyl, that displayed broad-spectrum antibacterial activity. This compound cured mice infected with clinical bacterial isolates derived from patients with refractory bacteremia and did not evoke bacterial resistance. COE2-2hexyl has specific effects on multiple membrane-associated functions (e.g., septation, motility, ATP synthesis, respiration, membrane permeability to small molecules) that may act together to negate bacterial cell viability and the evolution of drug-resistance. Disruption of these bacterial properties may occur through alteration of critical protein-protein or protein-lipid membrane interfaces-a mechanism of action distinct from many membrane disrupting antimicrobials or detergents that destabilize membranes to induce bacterial cell lysis. INTERPRETATION The ease of molecular design, synthesis and modular nature of COEs offer many advantages over conventional antimicrobials, making synthesis simple, scalable and affordable. These COE features enable the construction of a spectrum of compounds with the potential for development as a new versatile therapy for an imminent global health crisis. FUNDING U.S. Army Research Office, National Institute of Allergy and Infectious Diseases, and National Heart, Lung, and Blood Institute.
Collapse
Affiliation(s)
- Douglas M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Scott P Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA; Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Lucien Barnes V
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Semen A Leyn
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Cyril X George
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Jaime E Zlamal
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Jakkarin Limwongyut
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA; Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Guillermo C Bazan
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA; Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA; Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Jeffrey C Fried
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA; Department of Pulmonary and Critical Care Medicine, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA
| | - Lynn N Fitzgibbons
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA; Division of Infectious Diseases, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA
| | - John K House
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, 2570, Australia
| | - Charles E Samuel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - David A Low
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA.
| | - Michael J Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
9
|
Wang N, Cheng B, Guang S, Xu H. Self-assembled photothermal conversion shell coating on the surface of CA/SP for photothermal bacteriostasis and rapid wound healing. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|