1
|
Peng X, Liu Y, Peng F, Wang T, Cheng Z, Chen Q, Li M, Xu L, Man Y, Zhang Z, Tan Y, Liu Z. Aptamer-controlled stimuli-responsive drug release. Int J Biol Macromol 2024; 279:135353. [PMID: 39245104 DOI: 10.1016/j.ijbiomac.2024.135353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Aptamers have been widely researched and applied in nanomedicine due to their programmable, activatable, and switchable properties. However, there are few reviews on aptamer-controlled stimuli-responsive drug delivery. This article highlights the mechanisms and advantages of aptamers in the construction of stimuli-responsive drug delivery systems. We summarize the assembly/reconfiguration mechanisms of aptamers in controlled release systems. The assembly and drug release strategies of drug delivery systems are illustrated. Specifically, we focus on the binding mechanisms to the target and the factors that induce/inhibit the binding to the stimuli, such as strand, pH, light, and temperature. The applications of aptamer-based stimuli-responsive drug release are elaborated. The challenges are discussed, and the future directions are proposed.
Collapse
Affiliation(s)
- Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Feicheng Peng
- Hunan Institute for Drug Control, Changsha 410001, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhongyu Cheng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhirou Zhang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
2
|
Mottard K, Cokaiko J, Rogister B, Neirinckx V. Therapeutic targeting of the protein tyrosine kinase-7 in cancer: an overview. Oncologist 2024:oyae290. [PMID: 39468753 DOI: 10.1093/oncolo/oyae290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/10/2024] [Indexed: 10/30/2024] Open
Abstract
The protein tyrosine kinase-7 (PTK7) is an evolutionarily conserved transmembrane receptor that has emerged as a potential therapeutic target for human tumors. PTK7 is a pseudokinase that is involved in the modulation of the Wnt signaling pathway through interactions with other receptors. These interactions result in targeted gene activation that regulates cell polarity, migration, and proliferation during embryogenesis. Aside of this role during development, PTK7 has been shown as overexpressed in numerous cancers including colon carcinoma, leukemia, neuroblastoma, hepatoma, and ovarian cancer. The activity of PTK7 and the direct correlation with poor prognosis have fostered preclinical investigations and phase I clinical trials, aiming at inhibiting PTK7 and inducing antitumoral effects. In this review, we provide an exhaustive overview of the diverse approaches that use PTK7 as a new molecular target for cancer therapy in different tumor types. We discuss current therapies and future strategies including chimeric antigen receptor-T cells, antibody-drug conjugates, aptamers, based on up-to-date literature and ongoing research progress.
Collapse
Affiliation(s)
- Kim Mottard
- Laboratory of Nervous System Diseases and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Julie Cokaiko
- Laboratory of Nervous System Diseases and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium
- Neurology Department, University Hospital, University of Liège, 4000 Liège, Belgium
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
3
|
Yan B, Li Y, He S. Aptamer-mediated therapeutic strategies provide a potential approach for cancer. Int Immunopharmacol 2024; 136:112356. [PMID: 38820957 DOI: 10.1016/j.intimp.2024.112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
The treatment of tumors still faces considerable challenges. While conventional treatments such as surgery, chemotherapy, and radiation therapy provide some curative effects, their side effects and limitations highlight the importance of finding more precise treatment strategies. Aptamers have become an important target molecule in the field of drug delivery systems due to their good affinity and targeting, and they have gradually become an important link from basic research to clinical application. In this paper, we discussed the latest progress of aptamer-mediated nanodrugs, as well as aptamer-mediated photodynamic therapy, photothermal therapy, and immunotherapy strategies for tumor treatment, and explored the possibility of aptamer-mediated therapy for accurate tumor treatment. The purpose of this review is to provide novel insights for treating tumors with aptamer-mediated therapies by summarizing these innovative strategies, thereby ultimately enhancing the therapeutic efficacy for cancer patients.
Collapse
Affiliation(s)
- Bingshuo Yan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yuting Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.
| |
Collapse
|
4
|
Wu J, Wu J, Wei W, Zhang Y, Chen Q. Upconversion Nanoparticles Based Sensing: From Design to Point-of-Care Testing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311729. [PMID: 38415811 DOI: 10.1002/smll.202311729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Rare earth-doped upconversion nanoparticles (UCNPs) have achieved a wide range of applications in the sensing field due to their unique anti-Stokes luminescence property, minimized background interference, excellent biocompatibility, and stable physicochemical properties. However, UCNPs-based sensing platforms still face several challenges, including inherent limitations from UCNPs such as low quantum yields and narrow absorption cross-sections, as well as constraints related to energy transfer efficiencies in sensing systems. Therefore, the construction of high-performance UCNPs-based sensing platforms is an important cornerstone for conducting relevant research. This work begins by providing a brief overview of the upconversion luminescence mechanism in UCNPs. Subsequently, it offers a comprehensive summary of the sensors' types, design principles, and optimized design strategies for UCNPs sensing platforms. More cost-effective and promising point-of-care testing applications implemented based on UCNPs sensing systems are also summarized. Finally, this work addresses the future challenges and prospects for UCNPs-based sensing platforms.
Collapse
Affiliation(s)
- Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583
| | - Jiaxi Wu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583
| | - Wenya Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, P.R. China
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, P.R. China
| |
Collapse
|
5
|
Yu H, Jia ZS, Xu PF, Liu Y, Xu DD, Li YY, Tang HW. Multiple miRNA Detection through a Suspended Microbead Array Encoded by Triple-Color Upconversion Luminescent Nanotags via Bi-Beam Splitter Hybrid-Multitrap Optical Tweezers. Anal Chem 2023; 95:14086-14093. [PMID: 37665143 DOI: 10.1021/acs.analchem.3c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In recent years, optical tweezers have become a novel tool for biodetection, and to improve the inefficiency of a single trap, the development of multitraps is required. Herein, we constructed a set of hybrid multitrap optical tweezers with the balance of stability and flexibility by the combination of two different beam splitters, a diffraction optical element (DOE) and galvano mirrors (GMs), to capture polystyrene (PS) microbeads in aqueous solutions to create an 18-trap suspended array. A sandwich hybridization strategy of DNA-miRNA-DNA was adopted to detect three kinds of target miRNAs associated with triple negative breast cancer (TNBC), in which different upconversion nanoparticles (UCNPs) with red, green, and blue emissions were applied as luminescent tags to encode the carrier PS microbeads to further indicate the levels of the targets. With encoded luminescent microbeads imaged by a three-channel microscopic system, the biodetection displayed high sensitivity with low limits of detection (LODs) of 0.27, 0.32, and 0.33 fM and exceptional linear ranges of 0.5 fM to 1 nM, 0.7 fM to 1 nM, and 1 fM to 1 nM for miR-343-3p, miR-155, and miR-199a-5p, respectively. In addition, this bead-based assay method was demonstrated to have the potential for being applied in patients' serum by satisfactory standard addition recovery experiment results.
Collapse
Affiliation(s)
- He Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zeng-Shuai Jia
- School of Information Management, Wuhan University, Wuhan 430072, People's Republic of China
| | - Peng-Fei Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Da-Di Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yu-Yao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
6
|
Zhou M, Li X, Wen H, Huang B, Ren J, Zhang J. The construction of CRISPR/Cas9-mediated FRET 16S rDNA sensor for detection of Mycobacterium tuberculosis. Analyst 2023; 148:2308-2315. [PMID: 37083189 DOI: 10.1039/d3an00462g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The simple and efficient detection of nucleic acids is important in the diagnosis of tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tuberculosis). However, base mismatch will lead to false positive and false negative nucleic acid test, which seriously interferes with the accuracy of the final results. Herein, we demonstrated a CRISPR/Cas-9-mediated fluorescent strategy utilizing fluorescence resonance energy transfer (FRET) for the detection of bacteria. High-variable region of M. tuberculosis 16S rDNA fragment was used as the target, and CRISPR/Cas9 was used as the recognition element. The binding of the P1 probe of upconversion nanoparticles (UCNPs) @SiO2-P1 and the P2 probe of Fe3O4@Au-P2 caused the fluorescence quenching of UCNPs. In the presence of the target, the P2 probe hybridized with the target to form double-stranded DNA (dsDNA), which was recognized and cleaved by CRISPR/Cas9, resulting in the breaking of the P1-P2 duplex linkage. UCNPs moved away from Fe3O4@Au under a magnetic field, and the fluorescence signal was restored; bacteria were detected under the excitation of a 980 nm laser source. Using the CRISPR/Cas-9-mediated system, the sensor could distinguish single-base mismatches in 10 bases from the protospacer adjacent motif (PAM) region. The limit of detection (LOD) was 20 CFU mL-1 and the detection time was 2 h. It developed a new way of accurate nucleic acid detection for disease diagnosis.
Collapse
Affiliation(s)
- Ming Zhou
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Xin Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Herui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Bin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, P. R. China.
| | - Jialin Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
7
|
Yu M, Cao R, Ma Z, Zhu M. Development of "smart" drug delivery systems for chemo/PDT synergistic treatment. J Mater Chem B 2023; 11:1416-1433. [PMID: 36734612 DOI: 10.1039/d2tb02248f] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although chemotherapy and photodynamic therapy (PDT) have been developed for fighting cancer, the complex and heterogeneous nature of tumors makes it difficult for a single therapy to completely inhibit tumor growth. In order to reduce multidrug resistance of cancer cells to chemotherapeutic drugs and overcome low PDT efficiency in the hypoxic tumor microenvironment (TME), chemo/PDT synergistic treatment has received much attention in recent years. Depending on the characteristic signals of TME, various drug delivery systems can be constructed to target tumors and improve the therapeutic efficacy and the pharmacokinetic profile of anticancer drugs. This review highlights the synergistic strategies, treatment protocols, and design of chemo/PDT co-therapy in recent years to explore its scope and limitations. Taking advantage of stimuli-responsive materials and active cancer-targeting agents, cancer-targeting synergistic therapy is presented and discussed, providing ideas and suggestions for the construction of chemo/PDT co-therapy "smart" nanocarriers.
Collapse
Affiliation(s)
- Miaomiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Ran Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
8
|
Jin H, Yang M, Gui R. Ratiometric upconversion luminescence nanoprobes from construction to sensing, imaging, and phototherapeutics. NANOSCALE 2023; 15:859-906. [PMID: 36533436 DOI: 10.1039/d2nr05721b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In terms of the combined advantages of upconversion luminescence (UCL) properties and dual-signal ratiometric outputs toward specific targets, the ratiometric UCL nanoprobes exhibit significant applications. This review summarizes and discusses the recent advances in ratiometric UCL nanoprobes, mainly including the construction of nanoprobe systems for sensing, imaging, and phototherapeutics. First, the construction strategies are introduced, involving different types of nanoprobe systems, construction methods, and ratiometric dual-signal modes. Then, the sensing applications are summarized, involving types of targets, sensing mechanisms, sensing targets, and naked-eye visual detection of UCL colors. Afterward, the phototherapeutic applications are discussed, including bio-toxicity, bio-distribution, biosensing, and bioimaging at the level of living cells and small animals, and biomedicine therapy. Particularly, each section is commented on by discussing the state-of-the-art relevant studies on ratiometric UCL nanoprobe systems. Moreover, the current status, challenges, and perspectives in the forthcoming studies are discussed. This review facilitates the exploration of functionally luminescent nanoprobes for excellent sensing, imaging, biomedicine, and multiple applications in significant fields.
Collapse
Affiliation(s)
- Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| | - Meng Yang
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| |
Collapse
|
9
|
Zeng Q, Li X, Xie S, Xing D, Zhang T. Specific disruption of glutathione-defense system with activatable single molecule-assembled nanoprodrug for boosted photodynamic/chemotherapy eradication of drug-resistant tumors. Biomaterials 2022; 290:121867. [DOI: 10.1016/j.biomaterials.2022.121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
10
|
Yang Y, Huang J, Wei W, Zeng Q, Li X, Xing D, Zhou B, Zhang T. Switching the NIR upconversion of nanoparticles for the orthogonal activation of photoacoustic imaging and phototherapy. Nat Commun 2022; 13:3149. [PMID: 35672303 PMCID: PMC9174188 DOI: 10.1038/s41467-022-30713-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/06/2022] [Indexed: 12/23/2022] Open
Abstract
Phototheranostics based on upconversion nanoparticles (UCNPs) offer the integration of imaging diagnostics and phototherapeutics. However, the programmable control of the photoactivation of imaging and therapy with minimum side effects is challenging due to the lack of ideal switchable UCNPs agents. Here we demonstrate a facile strategy to switch the near infrared emission at 800 nm from rationally designed UCNPs by modulating the irradiation laser into pulse output. We further synthesize a theranostic nanoagent by combining with a photosensitizer and a photoabsorbing agent assembled on the UCNPs. The orthogonal activation of in vivo photoacoustic imaging and photodynamic therapy can be achieved by altering the excitation modes from pulse to continuous-wave output upon a single 980 nm laser. No obvious harmful effects during photoexcitation was identified, suggesting their use for long-term imaging-guidance and phototherapy. This work provides an approach to the orthogonal activation of imaging diagnostics and photodynamic therapeutics.
Collapse
Affiliation(s)
- Yang Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| | - Wei Wei
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qin Zeng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xipeng Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641, China.
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Spectral Analysis & Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
11
|
Wang M, Hu C, Su Q. Luminescent Lifetime Regulation of Lanthanide-Doped Nanoparticles for Biosensing. BIOSENSORS 2022; 12:131. [PMID: 35200391 PMCID: PMC8869906 DOI: 10.3390/bios12020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 05/16/2023]
Abstract
Lanthanide-doped nanoparticles possess numerous advantages including tunable luminescence emission, narrow peak width and excellent optical and thermal stability, especially concerning the long lifetime from microseconds to milliseconds. Differing from other shorter-lifetime fluorescent nanomaterials, the long lifetime of lanthanide-doped nanomaterials is independent with background fluorescence interference and biological tissue depth. This review presents the recent advances in approaches to regulating the lifetime and applications of bioimaging and biodetection. We begin with the introduction of the strategies for regulating the lifetime by modulating the core-shell structure, adjusting the concentration of sensitizer and emitter, changing energy transfer channel, establishing a fluorescence resonance energy transfer pathway and changing temperature. We then summarize the applications of these nanoparticles in biosensing, including ion and molecule detecting, DNA and protease detection, cell labeling, organ imaging and thermal and pH sensing. Finally, the prospects and challenges of the lanthanide lifetime regulation for fundamental research and practical applications are also discussed.
Collapse
Affiliation(s)
- Mingkai Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Chuanyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
12
|
Lu D, Chen M, Yu L, Chen Z, Guo H, Zhang Y, Han Z, Xu T, Wang H, Zhou X, Zhou Z, Teng G. Smart-Polypeptide-Coated Mesoporous Fe 3O 4 Nanoparticles: Non-Interventional Target-Embolization/Thermal Ablation and Multimodal Imaging Combination Theranostics for Solid Tumors. NANO LETTERS 2021; 21:10267-10278. [PMID: 34878286 DOI: 10.1021/acs.nanolett.1c03340] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tumor theranostics hold great potential for personalized medicine in the future, and transcatheter arterial embolization (TAE) is an important clinical treatment for unresectable or hypervascular tumors. In order to break the limitation, simplify the procedure of TAE, and achieve ideal combinatorial theranostic capability, here, a kind of triblock-polypeptide-coated perfluoropentane-loaded mesoporous Fe3O4 nanocomposites (PFP-m-Fe3O4@PGTTCs) were prepared for non-interventional target-embolization, magnetic hyperthermia, and multimodal imaging combination theranostics of solid tumors. The results of systematic animal experiments by H22-tumor-bearing mice and VX2-tumor-bearing rabbits in vivo indicated that PFP-m-Fe3O4@PGTTC-6.3 has specific tumor accumulation and embolization effects. The tumors' growth has been inhibited and the tumors disappeared 4 weeks and ≤15 days post-injection with embolization and magnetic hyperthermia combination therapy, respectively. The results also showed an excellent effect of magnetic resonance/ultrasound/SPECT multimodal imaging. This pH-responsive non-interventional embolization combinatorial theranostics system provides a novel embolization and multifunctional theranostic candidate for solid tumors.
Collapse
Affiliation(s)
- Dedai Lu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Mingshu Chen
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Lili Yu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Zhengpeng Chen
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Hongyun Guo
- Institute of Gansu Medical Science Research, Gansu Provincial Cancer Hospital, Lanzhou, 730050, China
| | - Yongdong Zhang
- Institute of Gansu Medical Science Research, Gansu Provincial Cancer Hospital, Lanzhou, 730050, China
| | - Zhiming Han
- Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Tingting Xu
- Zhongda Hospital Southeast University, Jiangsu Key Laboratory of Molecular Imaging and Function Imaging, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Haijun Wang
- Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xing Zhou
- Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Zubang Zhou
- Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Gaojun Teng
- Zhongda Hospital Southeast University, Jiangsu Key Laboratory of Molecular Imaging and Function Imaging, School of Medicine, Southeast University, Nanjing, 210009, China
| |
Collapse
|
13
|
Ma W, Sun H, Chen B, Jia R, Huang J, Cheng H, He X, Huang M, Wang K. Engineering a Facile Aptamer "Molecule-Doctor" with Hairpin-Contained I-Motif Enables Accurate Imaging and Killing of Cancer Cells. Anal Chem 2021; 93:14552-14559. [PMID: 34677940 DOI: 10.1021/acs.analchem.1c03580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, we subtly engineered a pH and membrane receptor dual-activatable aptamer therapeutic for bispecific tumor cell imaging and in situ drug release by utilizing a hairpin-contained i-motif as the acid-responsive element to be complementary with a tumor-targeted aptamer, named as an aptamer "molecule-doctor" (pH-Apt-MD). Specifically, the pH-Apt-MD consisted of two DNA strands, where the Apt-sgc8c was labeled with AF488 and Cy3 at its 5'- and 3'-end, respectively. The I-strand, a hairpin-contained i-motif, was complementary to the Apt-sgc8c strand partially, labeled with a BHQ2 in the middle, thus generating Cy3 with quenched fluorescence and only AF488-emitted fluorescence. The double-helix region of pH-Apt-MD was designed rich in GC bases, providing sites for doxorubicin (Dox) intercalation. Once target cells were encountered, the pH-Apt-MD disassembled due to the specific recognition of the aptamer and conformation change of the i-motif, with activated fluorescence resonance energy transfer (FRET) signals between AF488 and Cy3, accompanied by Dox release in situ. Benefiting from the design of the hairpin-contained i-motif, the pH-Apt-MD presented a narrow pH response range (pH 6.0-6.8) with a transition midpoint (pHT) of 6.50 ± 0.04. Furthermore, living cell studies revealed that the stimuli-responsive FRET signal activation of pH-Apt-MD was successfully achieved on the HCT116 cell surface with ultralow background and enhanced imaging contrast. Then, the cytotoxicity experiments proved that accurate drug release and cell killing were realized to target cells in an acidic microenvironment. As a facile double stimuli-responsive strategy, the pH-Apt-MD may hold great promise for application in precise diagnosis and therapy of cancer cells.
Collapse
Affiliation(s)
- Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Huanhuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Biao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Mingmin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| |
Collapse
|
14
|
Fang WK, Liu L, Zhang LL, Liu D, Liu Y, Tang HW. Detection of Amyloid β Oligomers by a Fluorescence Ratio Strategy Based on Optically Trapped Highly Doped Upconversion Nanoparticles-SiO 2@Metal-Organic Framework Microspheres. Anal Chem 2021; 93:12447-12455. [PMID: 34449219 DOI: 10.1021/acs.analchem.1c02679] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD), known as a progressive neurodegenerative disorder, has had a terrible impact on the health of aged people. Due to its severity, early diagnosis of AD is significant to retard the progress and provide timely treatment. Here, we report a fluorescence ratio detection of AD biomarker amyloid β oligomers (AβOs) by combining highly doped upconversion nanoparticles-SiO2@metal-organic framework/black hole quencher (H-USM/BHQ-1) microspheres with optical tweezer (OT) microscopic imaging. Optical trapping a single microsphere not only avoids the interference of fluid viscosity but also provides a high power density laser source to efficiently stimulate upconversion luminescence (UCL) of highly doped upconversion nanoparticles (H-UCNPs). Under this condition, H-UCNPs show stronger UCL and greater power-dependent properties compared to low-doped ones. Moreover, the closely packed quenching molecules BHQ-1 on a metal-organic framework (ZIF-8) exhibit excellent quenching efficiency for upconversion 525 and 540 nm emission. Also, the luminescent resonance energy transfer efficiency reaches 89.58%. When different concentrations of AβOs are present, the UCL540 recovers due to the decomposition of ZIF-8 and the release of BHQ-1. Using 540 and 654 nm emission ratio of highly doped UCNPs as reporters, the limit of detection reaches 28.4 pM for the quantitative determination of AβOs. Besides, this strategy is able to selectively quantify the AβO concentration. Therefore, we demonstrated the combination of optical trapping and highly doped UCNPs which is applied for the detection of AβOs with high sensitivity and specificity.
Collapse
Affiliation(s)
- Wen-Kai Fang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Liu Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Li-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Da Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
15
|
Yang Y, Zhang T, Xing D. Single 808 nm near-infrared-triggered multifunctional upconverting phototheranostic nanocomposite for imaging-guided high-efficiency treatment of tumors. JOURNAL OF BIOPHOTONICS 2021; 14:e202100134. [PMID: 34115430 DOI: 10.1002/jbio.202100134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Multifunctional phototheranostic nanocomposites are promising for early diagnosis and precision therapy of cancer. Aim to enhance their accuracy and efficiency, in this study, we develop a single-laser excited activatable phototheranostic nanocomposite (UCNPs-D-MQ): 808 nm-excited upconverting nanoparticles (UCNPs) as the matrix programmed assembly with amphipathic compound DSPE-PEG-COOH, a near-infrared absorbing polymer DPP and the pro-photosensitizer MBQB. Upon endocytosed by cancer cells and excited by the 808 nm laser, UCNPs-D-MQ could produce high-yield reactive oxygen species (ROS) as the results of singlet oxygen generation from transferring to methylene blue, GSH depletion and ROS generation from photoactivation. It was proven both in vitro and in vivo that the nanocomposites exhibits remarkable therapeutic efficacy as well as minimal photodamage to normal cells. These results reveal UCNPs-D-MQ as a robust theranostic agent for tumor phototherapy.
Collapse
Affiliation(s)
- Yang Yang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, China
- College of Biophotonics, South China Normal University, Guangzhou, China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, China
- College of Biophotonics, South China Normal University, Guangzhou, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, China
- College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
16
|
Correction to: DNA Nanotechnology for Multimodal Synergistic Theranostics. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00190-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
|
18
|
Nanoparticle Systems Applied for Immunotherapy in Various Treatment Modalities. Bioanalysis 2021. [DOI: 10.1007/978-3-030-78338-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|