• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4612466)   Today's Articles (4074)   Subscriber (49383)
For: Chen D, Zhao X, Wei X, Zhang J, Wang D, Lu H, Jia P. Ultrastretchable, Tough, Antifreezing, and Conductive Cellulose Hydrogel for Wearable Strain Sensor. ACS Appl Mater Interfaces 2020;12:53247-53256. [PMID: 33185423 DOI: 10.1021/acsami.0c14935] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Number Cited by Other Article(s)
1
Li M, Wang Y, Wei Q, Zhang J, Chen X, An Y. A High-Stretching, Rapid-Self-Healing, and Printable Composite Hydrogel Based on Poly(Vinyl Alcohol), Nanocellulose, and Sodium Alginate. Gels 2024;10:258. [PMID: 38667677 PMCID: PMC11049067 DOI: 10.3390/gels10040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]  Open
2
Qin Y, Wei E, Cui C, Xie J. High Tensile, Antibacterial, and Conductive Hydrogel Sensor with Multiple Cross-Linked Networks Based on PVA/Sodium Alginate/Zinc Oxide. ACS OMEGA 2024;9:16851-16859. [PMID: 38617655 PMCID: PMC11007832 DOI: 10.1021/acsomega.4c01860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
3
Wang Y, Liu H, Yu J, Liao H, Yang L, Ren E, Lin S, Lan J. Ionic Conductive Cellulose-Based Hydrogels with Superior Long-Lasting Moisture and Antifreezing Features for Flexible Strain Sensor Applications. Biomacromolecules 2024;25:838-852. [PMID: 38164823 DOI: 10.1021/acs.biomac.3c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
4
Tian Y, Zhang L, Li X, Yan M, Wang Y, Ma J, Wang Z. Compressible, anti-freezing, and ionic conductive cellulose/polyacrylic acid composite hydrogel prepared via AlCl3/ZnCl2 aqueous system as solvent and catalyst. Int J Biol Macromol 2023;253:126550. [PMID: 37657569 DOI: 10.1016/j.ijbiomac.2023.126550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 09/03/2023]
5
Li JW, Chen HF, Huang PH, Kuo CFJ, Cheng CC, Chiu CW. Photocurable Carbon Nanotube/Polymer Nanocomposite for the 3D Printing of Flexible Capacitive Pressure Sensors. Polymers (Basel) 2023;15:4706. [PMID: 38139958 PMCID: PMC10747156 DOI: 10.3390/polym15244706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]  Open
6
Wang C, Yang B, Xiang R, Ji J, Wu Y, Tan S. High-Saline-Enabled Hydrophobic Homogeneous Cross-Linking for Extremely Soft, Tough, and Stretchable Conductive Hydrogels as High-Sensitive Strain Sensors. ACS NANO 2023;17:23194-23206. [PMID: 37926964 DOI: 10.1021/acsnano.3c09884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
7
Shan C, Bauman L, Che M, Kim AR, Su R, Zhao B. Organohydrogels with cellulose nanofibers enhanced supramolecular interactions toward high performance self-adhesive sensing pads. Carbohydr Polym 2023;320:121211. [PMID: 37659812 DOI: 10.1016/j.carbpol.2023.121211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 09/04/2023]
8
Wang DC, Lei SN, Zhong S, Xiao X, Guo QH. Cellulose-Based Conductive Materials for Energy and Sensing Applications. Polymers (Basel) 2023;15:4159. [PMID: 37896403 PMCID: PMC10610528 DOI: 10.3390/polym15204159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]  Open
9
Wei Y, Li Y, Yan J, Liu Y, Xie XM. Highly Conductive Polysiloxane Elastomers with Excellent Transparency, Resilience, and Stretchability. ACS APPLIED MATERIALS & INTERFACES 2023;15:41031-41042. [PMID: 37605317 DOI: 10.1021/acsami.3c09780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
10
Chen Z, Liu H, Lin X, Mei X, Lyu W, Liao Y. Competitive proton-trapping strategy enhanced anti-freezing organohydrogel fibers for high-strain-sensitivity wearable sensors. MATERIALS HORIZONS 2023;10:3569-3581. [PMID: 37306627 DOI: 10.1039/d3mh00459g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
11
Saeidi M, Chenani H, Orouji M, Adel Rastkhiz M, Bolghanabadi N, Vakili S, Mohamadnia Z, Hatamie A, Simchi A(A. Electrochemical Wearable Biosensors and Bioelectronic Devices Based on Hydrogels: Mechanical Properties and Electrochemical Behavior. BIOSENSORS 2023;13:823. [PMID: 37622909 PMCID: PMC10452289 DOI: 10.3390/bios13080823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
12
Ye Y, Yu L, Lizundia E, Zhu Y, Chen C, Jiang F. Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chem Rev 2023;123:9204-9264. [PMID: 37419504 DOI: 10.1021/acs.chemrev.2c00618] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
13
Omidian H, Chowdhury SD. High-Performing Conductive Hydrogels for Wearable Applications. Gels 2023;9:549. [PMID: 37504428 PMCID: PMC10379850 DOI: 10.3390/gels9070549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]  Open
14
Teng CP, Tan MY, Toh JPW, Lim QF, Wang X, Ponsford D, Lin EMJ, Thitsartarn W, Tee SY. Advances in Cellulose-Based Composites for Energy Applications. MATERIALS (BASEL, SWITZERLAND) 2023;16:ma16103856. [PMID: 37241483 DOI: 10.3390/ma16103856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
15
Peng W, Pan X, Liu X, Gao Y, Lu T, Li J, Xu M, Pan L. A moisture self-regenerative, ultra-low temperature anti-freezing and self-adhesive polyvinyl alcohol/polyacrylamide/CaCl2/MXene ionotronics hydrogel for bionic skin strain sensor. J Colloid Interface Sci 2023;634:782-792. [PMID: 36565620 DOI: 10.1016/j.jcis.2022.12.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
16
Wan L, Li P, Yan M, Wang J, Li X. Strong, self-healing, shape memory PAA-PANI/PVA/PDA/AOP conductive hydrogels with interpenetrating network and hydrogen bond interaction. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
17
Patel DK, Ganguly K, Dutta SD, Patil TV, Randhawa A, Lim KT. Highly stretchable, adhesive, and biocompatible hydrogel platforms of tannic acid functionalized spherical nanocellulose for strain sensors. Int J Biol Macromol 2023;229:105-122. [PMID: 36587632 DOI: 10.1016/j.ijbiomac.2022.12.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
18
Rudich A, Sapru S, Shoseyov O. Biocompatible, Resilient, and Tough Nanocellulose Tunable Hydrogels. NANOMATERIALS (BASEL, SWITZERLAND) 2023;13:nano13050853. [PMID: 36903731 PMCID: PMC10005666 DOI: 10.3390/nano13050853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Accepted: 02/19/2023] [Indexed: 06/12/2023]
19
Xie Y, Gao S, Jian J, Shi X, Lai C, Wang C, Xu F, Chu F, Zhang D. Skin-mimicking strategy to fabricate strong and highly conductive anti-freezing cellulose-based hydrogels as strain sensors. Int J Biol Macromol 2023;227:462-471. [PMID: 36521712 DOI: 10.1016/j.ijbiomac.2022.12.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
20
Song B, Fan X, Gu H. Chestnut-Tannin-Crosslinked, Antibacterial, Antifreezing, Conductive Organohydrogel as a Strain Sensor for Motion Monitoring, Flexible Keyboards, and Velocity Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023;15:2147-2162. [PMID: 36562537 DOI: 10.1021/acsami.2c18441] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
21
Zhang G, Li C, Tan J, Wang M, Liu Z, Ren Y, Xue Y, Zhang Q. Double Modification of Poly(urethane-urea): Toward Healable, Tear-Resistant, and Mechanically Robust Elastomers for Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2023;15:2134-2146. [PMID: 36571454 DOI: 10.1021/acsami.2c18397] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
22
Yoo H, Kim E, Chung JW, Cho H, Jeong S, Kim H, Jang D, Kim H, Yoon J, Lee GH, Kang H, Kim JY, Yun Y, Yoon S, Hong Y. Silent Speech Recognition with Strain Sensors and Deep Learning Analysis of Directional Facial Muscle Movement. ACS APPLIED MATERIALS & INTERFACES 2022;14:54157-54169. [PMID: 36413961 DOI: 10.1021/acsami.2c14918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
23
Zhang CW, Zou W, Yu HC, Hao XP, Li G, Li T, Yang W, Wu ZL, Zheng Q. Manta Ray Inspired Soft Robot Fish with Tough Hydrogels as Structural Elements. ACS APPLIED MATERIALS & INTERFACES 2022;14:52430-52439. [PMID: 36351752 DOI: 10.1021/acsami.2c17009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
24
Wang X, Guo C, Pi M, Li M, Yang X, Lu H, Cui W, Ran R. Significant Roles of Ions in Enhancing and Functionalizing Anisotropic Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2022;14:51318-51328. [PMID: 36323531 DOI: 10.1021/acsami.2c15138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
25
Qie H, Wang Z, Ren J, Lü S, Liu M. A tough shape memory hydrogel strain sensor based on gelatin grafted polypyrrole. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
26
Yang J, Chen Y, Zhao L, Zhang J, Luo H. Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2137525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
27
Jian J, Xie Y, Gao S, Sun Y, Lai C, Wang J, Wang C, Chu F, Zhang D. A skin-inspired biomimetic strategy to fabricate cellulose enhanced antibacterial hydrogels as strain sensors. Carbohydr Polym 2022;294:119760. [DOI: 10.1016/j.carbpol.2022.119760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022]
28
Lu J, Hu O, Hou L, Ye D, Weng S, Jiang X. Highly tough and ionic conductive starch/poly(vinyl alcohol) hydrogels based on a universal soaking strategy. Int J Biol Macromol 2022;221:1002-1011. [PMID: 36113584 DOI: 10.1016/j.ijbiomac.2022.09.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
29
Ultrafast gelation of silk fibroin-assisted conductive hydrogel with long-term environmental stability using self-catalytic dopamine/metal/H2O2 system. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
30
Zhang Y, Chen H, Li J. Recent advances on gelatin methacrylate hydrogels with controlled microstructures for tissue engineering. Int J Biol Macromol 2022;221:91-107. [DOI: 10.1016/j.ijbiomac.2022.08.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022]
31
Gao Y, Zhang Z, Ren X, Jia F, Gao G. A hydrogel sensor driven by sodium carboxymethyl starch with synergistic enhancement of toughness and conductivity. J Mater Chem B 2022;10:5743-5752. [PMID: 35802130 DOI: 10.1039/d2tb00839d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
32
Zhang X, Zhang G, Huang X, He J, Bai Y, Zhang L. Antifreezing and Nondrying Sensors of Ionic Hydrogels with a Double-Layer Structure for Highly Sensitive Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022;14:30256-30267. [PMID: 35749282 DOI: 10.1021/acsami.2c08589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
33
Qi C, Dong Z, Huang Y, Xu J, Lei C. Tough, Anti-Swelling Supramolecular Hydrogels Mediated by Surfactant-Polymer Interactions for Underwater Sensors. ACS APPLIED MATERIALS & INTERFACES 2022;14:30385-30397. [PMID: 35737578 DOI: 10.1021/acsami.2c06395] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
34
Chen L, Fei X, Zhou Y, Tian J, Xu L, Li Y. Supramolecular hydrogel based on polyionic liquids for underwater sensing. J Colloid Interface Sci 2022;628:287-298. [DOI: 10.1016/j.jcis.2022.07.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
35
High-Strength, Conductive, Antifouling, and Antibacterial Hydrogels for Wearable Strain Sensors. ACS Biomater Sci Eng 2022;8:2624-2635. [PMID: 35512312 DOI: 10.1021/acsbiomaterials.1c01630] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
36
You L, Shi X, Cheng J, Yang J, Xiong C, Ding Z, Zheng Z, Wang S, Wang J. Flexible porous Gelatin/Polypyrrole/Reduction graphene oxide organohydrogel for wearable electronics. J Colloid Interface Sci 2022;625:197-209. [PMID: 35716615 DOI: 10.1016/j.jcis.2022.06.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 01/20/2023]
37
Qin M, Yuan W, Zhang X, Cheng Y, Xu M, Wei Y, Chen W, Huang D. Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor. Colloids Surf B Biointerfaces 2022;214:112482. [PMID: 35366577 DOI: 10.1016/j.colsurfb.2022.112482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
38
Zaidi SFA, Kim YA, Saeed A, Sarwar N, Lee NE, Yoon DH, Lim B, Lee JH. Tannic acid modified antifreezing gelatin organohydrogel for low modulus, high toughness, and sensitive flexible strain sensor. Int J Biol Macromol 2022;209:1665-1675. [PMID: 35487373 DOI: 10.1016/j.ijbiomac.2022.04.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022]
39
Zhao C, Liu G, Tan Q, Gao M, Chen G, Huang X, Xu X, Li L, Wang J, Zhang Y, Xu D. Polysaccharide-based biopolymer hydrogels for heavy metal detection and adsorption. J Adv Res 2022;44:53-70. [PMID: 36725194 PMCID: PMC9936414 DOI: 10.1016/j.jare.2022.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023]  Open
40
Liu S, Tian X, Zhang X, Xu C, Wang L, Xia Y. A green MXene-based organohydrogel with tunable mechanics and freezing tolerance for wearable strain sensors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
41
Cellulosic-Based Conductive Hydrogels for Electro-Active Tissues: A Review Summary. Gels 2022;8:gels8030140. [PMID: 35323253 PMCID: PMC8953959 DOI: 10.3390/gels8030140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022]  Open
42
Guo WY, Yuan Q, Huang LZ, Zhang W, Li DD, Yao C, Ma MG. Multifunctional bacterial cellulose-based organohydrogels with long-term environmental stability. J Colloid Interface Sci 2022;608:820-829. [PMID: 34785459 DOI: 10.1016/j.jcis.2021.10.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
43
Han Y, Sun L, Wen C, Wang Z, Dai J, Shi L. Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors. Biomed Mater 2022;17. [PMID: 35147523 DOI: 10.1088/1748-605x/ac5416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/09/2022] [Indexed: 11/11/2022]
44
Wang BX, Xu W, Yang Z, Wu Y, Pi F. An Overview on Recent Progress of the Hydrogels: From Material Resources, Properties to Functional Applications. Macromol Rapid Commun 2022;43:e2100785. [PMID: 35075726 DOI: 10.1002/marc.202100785] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/04/2022] [Indexed: 11/06/2022]
45
Wang Q, Zhang Q, Wang G, Wang Y, Ren X, Gao G. Muscle-Inspired Anisotropic Hydrogel Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2022;14:1921-1928. [PMID: 34958540 DOI: 10.1021/acsami.1c18758] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
46
Bhaladhare S, Das D. Cellulose: A Fascinating Biopolymer for Hydrogel Synthesis. J Mater Chem B 2022;10:1923-1945. [DOI: 10.1039/d1tb02848k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
47
Rahmani P, Shojaei A. A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors. Adv Colloid Interface Sci 2021;298:102553. [PMID: 34768136 DOI: 10.1016/j.cis.2021.102553] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 01/11/2023]
48
Niu S, Chang X, Zhu Z, Qin Z, Li J, Jiang Y, Wang D, Yang C, Gao Y, Sun S. Low-Temperature Wearable Strain Sensor Based on a Silver Nanowires/Graphene Composite with a Near-Zero Temperature Coefficient of Resistance. ACS APPLIED MATERIALS & INTERFACES 2021;13:55307-55318. [PMID: 34762410 DOI: 10.1021/acsami.1c14671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
49
Chen C, Wang Y, Zhou T, Wan Z, Yang Q, Xu Z, Li D, Jin Y. Toward Strong and Tough Wood-Based Hydrogels for Sensors. Biomacromolecules 2021;22:5204-5213. [PMID: 34787399 DOI: 10.1021/acs.biomac.1c01141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
50
Xu L, Chen Y, Guo Z, Tang Z, Luo Y, Xie S, Li N, Xu J. Flexible Li+/agar/pHEAA double-network conductive hydrogels with self-adhesive and self-repairing properties as strain sensors for human motion monitoring. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA