1
|
Peng X, Liu Y, Peng F, Wang T, Cheng Z, Chen Q, Li M, Xu L, Man Y, Zhang Z, Tan Y, Liu Z. Aptamer-controlled stimuli-responsive drug release. Int J Biol Macromol 2024; 279:135353. [PMID: 39245104 DOI: 10.1016/j.ijbiomac.2024.135353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Aptamers have been widely researched and applied in nanomedicine due to their programmable, activatable, and switchable properties. However, there are few reviews on aptamer-controlled stimuli-responsive drug delivery. This article highlights the mechanisms and advantages of aptamers in the construction of stimuli-responsive drug delivery systems. We summarize the assembly/reconfiguration mechanisms of aptamers in controlled release systems. The assembly and drug release strategies of drug delivery systems are illustrated. Specifically, we focus on the binding mechanisms to the target and the factors that induce/inhibit the binding to the stimuli, such as strand, pH, light, and temperature. The applications of aptamer-based stimuli-responsive drug release are elaborated. The challenges are discussed, and the future directions are proposed.
Collapse
Affiliation(s)
- Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Feicheng Peng
- Hunan Institute for Drug Control, Changsha 410001, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhongyu Cheng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhirou Zhang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
2
|
Hasanzadeh A, Ebadati A, Saeedi S, Kamali B, Noori H, Jamei B, Hamblin MR, Liu Y, Karimi M. Nucleic acid-responsive smart systems for controlled cargo delivery. Biotechnol Adv 2024; 74:108393. [PMID: 38825215 DOI: 10.1016/j.biotechadv.2024.108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Stimulus-responsive delivery systems allow controlled, highly regulated, and efficient delivery of various cargos while minimizing side effects. Owing to the unique properties of nucleic acids, including the ability to adopt complex structures by base pairing, their easy synthesis, high specificity, shape memory, and configurability, they have been employed in autonomous molecular motors, logic circuits, reconfigurable nanoplatforms, and catalytic amplifiers. Moreover, the development of nucleic acid (NA)-responsive intelligent delivery vehicles is a rapidly growing field. These vehicles have attracted much attention in recent years due to their programmable, controllable, and reversible properties. In this work, we review several types of NA-responsive controlled delivery vehicles based on locks and keys, including DNA/RNA-responsive, aptamer-responsive, and CRISPR-responsive, and summarize their advantages and limitations.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arefeh Ebadati
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular and Cell Biology, University of California, Merced, Merced, USA
| | - Sara Saeedi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Kamali
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnam Jamei
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Xuan J, Wang Z, Huang Y, Liu Y, Han Y, Li M, Xiao M. DNA response element-based smart drug delivery systems for precise drug release. Biomater Sci 2024; 12:3550-3564. [PMID: 38832670 DOI: 10.1039/d4bm00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Smart drug delivery systems (DDSs) that respond to, interact with, or are actuated by biological signals or pathological abnormalities (e.g., the tumor microenvironment) for controllable drug release are appealing therapeutic platforms for cancer treatment. Owing to their inherent self-assembled nature, nucleic acids have emerged as programmable materials for the development of multifunctional structures. In response to external environmental stimuli, DNA response elements can serve as switches to trigger conformational changes in DNA structures. Their stimulus-responsive properties make them promising candidates for constructing smart DDSs, and advancements in DNA response element-based DDSs in the field of biomedicine have been made. This review summarizes different types of DNA response elements, including DNA aptamers, DNAzymes, disulfide bond-modified DNA, pH-responsive DNA motifs, and photocleavable DNA building blocks, and highlights the advancements in DNA response element-based smart DDSs for precise drug release. Finally, future challenges and perspectives in this field are discussed.
Collapse
Affiliation(s)
- Jinnan Xuan
- Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, 11 Cihu Road, Huangshi 435002, P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China.
| | - Zhen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Yuting Huang
- Department of Radiotherapy, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Chaohu 238000, P. R. China
| | - Yisi Liu
- Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, 11 Cihu Road, Huangshi 435002, P. R. China
| | - Yuqiang Han
- Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, 11 Cihu Road, Huangshi 435002, P. R. China
| | - Man Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China.
| |
Collapse
|
4
|
Krissanaprasit A, Mihalko E, Meinhold K, Simpson A, Sollinger J, Pandit S, Dupont DM, Kjems J, Brown AC, LaBean TH. A functional RNA-origami as direct thrombin inhibitor with fast-acting and specific single-molecule reversal agents in vivo model. Mol Ther 2024; 32:2286-2298. [PMID: 38720458 PMCID: PMC11286819 DOI: 10.1016/j.ymthe.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/29/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Injectable anticoagulants are widely used in medical procedures to prevent unwanted blood clotting. However, many lack safe, effective reversal agents. Here, we present new data on a previously described RNA origami-based, direct thrombin inhibitor (HEX01). We describe a new, fast-acting, specific, single-molecule reversal agent (antidote) and present in vivo data for the first time, including efficacy, reversibility, preliminary safety, and initial biodistribution studies. HEX01 contains multiple thrombin-binding aptamers appended on an RNA origami. It exhibits excellent anticoagulation activity in vitro and in vivo. The new single-molecule, DNA antidote (HEX02) reverses anticoagulation activity of HEX01 in human plasma within 30 s in vitro and functions effectively in a murine liver laceration model. Biodistribution studies of HEX01 in whole mice using ex vivo imaging show accumulation mainly in the liver over 24 h and with 10-fold lower concentrations in the kidneys. Additionally, we show that the HEX01/HEX02 system is non-cytotoxic to epithelial cell lines and non-hemolytic in vitro. Furthermore, we found no serum cytokine response to HEX01/HEX02 in a murine model. HEX01 and HEX02 represent a safe and effective coagulation control system with a fast-acting, specific reversal agent showing promise for potential drug development.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Emily Mihalko
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC 27695, USA
| | - Katherine Meinhold
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Aryssa Simpson
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC 27695, USA
| | - Jennifer Sollinger
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC 27695, USA
| | - Sanika Pandit
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC 27695, USA
| | - Daniel M Dupont
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000 Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000 Aarhus, Denmark
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC 27695, USA; Comparative Medicine Institute, North Carolina State University and University of North Carolina, Chapel Hill, NC 27695, USA
| | - Thomas H LaBean
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695, USA; Comparative Medicine Institute, North Carolina State University and University of North Carolina, Chapel Hill, NC 27695, USA.
| |
Collapse
|
5
|
Huang Z, Zhao L, Guo Q, Fan D, Ren X, Wei Q, Wu D. Controlled-Release Electrochemiluminescence Biosensor with Strong Self-On Effect by a Multiple Signal Amplification Strategy for Trace Detection of Prostate-Specific Antigen. Anal Chem 2024; 96:6659-6665. [PMID: 38635916 DOI: 10.1021/acs.analchem.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The enhancement of sensitivity in biological analysis detection can reduce the probability of false positives of the biosensor. In this work, a novel self-on controlled-release electrochemiluminescence (CRE) biosensor was designed by multiple signal amplification and framework-enhanced stability strategies. As a result, the changes of the ECL signal were enhanced before and after the controlled-release process, achieving sensitive detection of prostate-specific antigen (PSA). Specifically, for one thing, Fe3O4@CeO2-NH2 with two paths for enhancing the generation of coreactant radicals was used as the coreaction accelerator to boost ECL performance. For another, due to the framework stability, zeolitic imidazolate framework-8-NH2 (ZIF-8-NH2) was combined with luminol to make the ECL signal more stable. Based on these strategies, the constructed CRE biosensor showed a strong self-on effect in the presence of PSA and high sensitivity in a series of tests. The detection range and limit of detection (LOD) were 5 fg/mL to 10 ng/mL and 2.8 fg/mL (S/N = 3), respectively, providing a feasible approach for clinical detection of PSA.
Collapse
Affiliation(s)
- Ziqiu Huang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qingfang Guo
- Shandong Water Conservancy Vocational College, Rizhao 276826, P. R. China
| | - Dawei Fan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dan Wu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
6
|
Castro R, Adair JH, Mastro AM, Neuberger T, Matters GL. VCAM-1-targeted nanoparticles to diagnose, monitor and treat atherosclerosis. Nanomedicine (Lond) 2024; 19:723-735. [PMID: 38420919 DOI: 10.2217/nnm-2023-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) was identified over 2 decades ago as an endothelial adhesion receptor involved in leukocyte recruitment and cell-based immune responses. In atherosclerosis, a chronic inflammatory disease of the blood vessels that is the leading cause of death in the USA, endothelial VCAM-1 is robustly expressed beginning in the early stages of the disease. The interactions of circulating immune cells with VCAM-1 on the activated endothelial cell surface promote the uptake of monocytes and the progression of atherosclerotic lesions in susceptible vessels. Herein, we review the role of VCAM-1 in atherosclerosis and the use of VCAM-1 binding peptides, antibodies and aptamers as targeting agents for nanoplatforms for early detection and treatment of atherosclerotic disease.
Collapse
Affiliation(s)
- Rita Castro
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Pharmaceutical Sciences & Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - James H Adair
- Department of Materials Science, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Pharmacology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Thomas Neuberger
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gail L Matters
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
7
|
Ouyang Y, O'Hagan MP, Willner B, Willner I. Aptamer-Modified Homogeneous Catalysts, Heterogenous Nanoparticle Catalysts, and Photocatalysts: Functional "Nucleoapzymes", "Aptananozymes", and "Photoaptazymes". ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210885. [PMID: 37083210 DOI: 10.1002/adma.202210885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Indexed: 05/03/2023]
Abstract
Conjugation of aptamers to homogeneous catalysts ("nucleoapzymes"), heterogeneous nanoparticle catalysts ("aptananozymes"), and photocatalysts ("photoaptazymes") yields superior catalytic/photocatalytic hybrid nanostructures emulating functions of native enzymes and photosystems. The concentration of the substrate in proximity to the catalytic sites ("molarity effect") or spatial concentration of electron-acceptor units in spatial proximity to the photosensitizers, by aptamer-ligand complexes, leads to enhanced catalytic/photocatalytic efficacies of the hybrid nanostructures. This is exemplified by sets of "nucleoapzymes" composed of aptamers conjugated to the hemin/G-quadruplex DNAzymes or metal-ligand complexes as catalysts, catalyzing the oxidation of dopamine to aminochrome, oxygen-insertion into the Ar─H moiety of tyrosinamide and the subsequent oxidation of the catechol product into aminochrome, or the hydrolysis of esters or ATP. Also, aptananozymes consisting of aptamers conjugated to Cu2+ - or Ce4+ -ion-modified C-dots or polyadenine-stabilized Au nanoparticles acting as catalysts oxidizing dopamine or operating bioreactor biocatalytic cascades, are demonstrated. In addition, aptamers conjugated to the Ru(II)-tris-bipyridine photosensitizer or the Zn(II) protoporphyrin IX photosensitizer provide supramolecular photoaptazyme assemblies emulating native photosynthetic reaction centers. Effective photoinduced electron transfer followed by the catalyzed synthesis of NADPH or the evolution of H2 is demonstrated by the photosystems. Structure-function relationships dictate the catalytic and photocatalytic efficacies of the systems.
Collapse
Affiliation(s)
- Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Michael P O'Hagan
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Bilha Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
8
|
Mohammadinejad A, Gaman LE, Aleyaghoob G, Gaceu L, Mohajeri SA, Moga MA, Badea M. Aptamer-Based Targeting of Cancer: A Powerful Tool for Diagnostic and Therapeutic Aims. BIOSENSORS 2024; 14:78. [PMID: 38391997 PMCID: PMC10887380 DOI: 10.3390/bios14020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Cancer is known as one of the most significant causes of death worldwide, and, in spite of novel therapeutic methods, continues to cause a considerable number of deaths. Targeted molecular diagnosis and therapy using aptamers with high affinity have become popular techniques for pathological angiogenesis and cancer therapy scientists. In this paper, several aptamer-based diagnostic and therapeutic techniques such as aptamer-nanomaterial conjugation, aptamer-drug conjugation (physically or covalently), and biosensors, which have been successfully designed for biomarkers, were critically reviewed. The results demonstrated that aptamers can potentially be incorporated with targeted delivery systems and biosensors for the detection of biomarkers expressed by cancer cells. Aptamer-based therapeutic and diagnostic methods, representing the main field of medical sciences, possess high potential for use in cancer therapy, pathological angiogenesis, and improvement of community health. The clinical use of aptamers is limited due to target impurities, inaccuracy in the systematic evolution of ligands via exponential enrichment (SELEX)stage process, and in vitro synthesis, making them unreliable and leading to lower selectivity for in vivo targets. Moreover, size, behavior, probable toxicity, low distribution, and the unpredictable behavior of nanomaterials in in vivo media make their usage in clinical assays critical. This review is helpful for the implementation of aptamer-based therapies which are effective and applicable for clinical use and the design of future studies.
Collapse
Affiliation(s)
- Arash Mohammadinejad
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania;
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| | - Laura Elena Gaman
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Ghazaleh Aleyaghoob
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- Department of Chemistry, Payame Noor University, Tehran 19395-4697, Iran
| | - Liviu Gaceu
- Faculty of Food and Tourism, Transilvania University of Brasov, 500014 Brașov, Romania;
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran;
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania;
- Centre for Applied Medicine and Intervention Strategies in Medical Practice, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| | - Mihaela Badea
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania;
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| |
Collapse
|
9
|
Park D, Lee SJ, Park JW. Aptamer-Based Smart Targeting and Spatial Trigger-Response Drug-Delivery Systems for Anticancer Therapy. Biomedicines 2024; 12:187. [PMID: 38255292 PMCID: PMC10813750 DOI: 10.3390/biomedicines12010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, the field of drug delivery has witnessed remarkable progress, driven by the quest for more effective and precise therapeutic interventions. Among the myriad strategies employed, the integration of aptamers as targeting moieties and stimuli-responsive systems has emerged as a promising avenue, particularly in the context of anticancer therapy. This review explores cutting-edge advancements in targeted drug-delivery systems, focusing on the integration of aptamers and stimuli-responsive platforms for enhanced spatial anticancer therapy. In the aptamer-based drug-delivery systems, we delve into the versatile applications of aptamers, examining their conjugation with gold, silica, and carbon materials. The synergistic interplay between aptamers and these materials is discussed, emphasizing their potential in achieving precise and targeted drug delivery. Additionally, we explore stimuli-responsive drug-delivery systems with an emphasis on spatial anticancer therapy. Tumor microenvironment-responsive nanoparticles are elucidated, and their capacity to exploit the dynamic conditions within cancerous tissues for controlled drug release is detailed. External stimuli-responsive strategies, including ultrasound-mediated, photo-responsive, and magnetic-guided drug-delivery systems, are examined for their role in achieving synergistic anticancer effects. This review integrates diverse approaches in the quest for precision medicine, showcasing the potential of aptamers and stimuli-responsive systems to revolutionize drug-delivery strategies for enhanced anticancer therapy.
Collapse
Affiliation(s)
- Dongsik Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|
10
|
Liu P, Xu X, Bai X, Gao X, Liu K, Xu Y, Li A, Song X. Improvements of Solubility and Bioavailability of Lutein Through Grafting with Hydrophilic Polyacrylic Acid. J Pharm Sci 2023; 112:2811-2819. [PMID: 37211314 DOI: 10.1016/j.xphs.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
In this study, polyacrylic acid grafted lutein (PAA-g-lutein) was prepared by hydrophilic modification of lutein with polyacrylic acid (PAA) through Steglish esterification method. The unreacted lutein was loaded in micelles formed by self-assembly of graft copolymers in water to form composite nanoparticles. The bioaccessibility and bioavailability of lutein nanoparticles were studied by in vitro and in vivo digestion experiments. Compared with free lutein, the saturated solubility and bioaccessibility of lutein nanoparticles were increased by 78 times and 3.6 times, respectively. The pharmacokinetics results in the mice model showed that the maximum concentration (Cmax) and area under concentration-time curve (AUC) of plasma of mice were increased by 3.05 and 6.07 times with lutein nanoparticles compared with free lutein. Meanwhile, the prepared lutein nanoparticles also promoted the accumulation of lutein in the liver, mesenteric adipose, and eyeballs. These results indicate that graft copolymerization of lutein with water-soluble polymers to form nanoparticles is an effective method to promote the bioavailability of lutein in vivo. Moreover, this method is simple and applicable, and can also be used for the modification of other bioactive molecules.
Collapse
Affiliation(s)
- Peng Liu
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Xiaoxue Xu
- College of Life Sciences, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Xiaoyu Bai
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Xingtong Gao
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Kai Liu
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Yiming Xu
- College of Life Sciences, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Aixiang Li
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China.
| | - Xinhua Song
- College of Life Sciences, Shandong University of Technology, Zibo, 255049, People's Republic of China; Shandong Tianyin Biotechnology Co., Ltd., Zibo, 255000, People's Republic of China
| |
Collapse
|
11
|
Fadeev M, Davidson-Rozenfeld G, Li Z, Willner I. Stimuli-Responsive DNA-Based Hydrogels on Surfaces for Switchable Bioelectrocatalysis and Controlled Release of Loads. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37011-37025. [PMID: 37477942 PMCID: PMC10401574 DOI: 10.1021/acsami.3c06230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
The assembly of enzyme [glucose oxidase (GOx)]-loaded stimuli-responsive DNA-based hydrogels on electrode surfaces, and the triggered control over the stiffness of the hydrogels, provides a means to switch the bioelectrocatalytic functions of the hydrogels. One system includes the assembly of GOx-loaded, pH-responsive, hydrogel matrices cross-linked by two cooperative nucleic acid motives comprising permanent duplex nucleic acids and "caged" i-motif pH-responsive duplexes. Bioelectrocatalyzed oxidation of glucose leads to the formation of gluconic acid that acidifies the hydrogel resulting in the separation of the i-motif constituents and lowering the hydrogel stiffness. Loading of the hydrogel matrices with insulin results in the potential-triggered, glucose concentration-controlled, switchable release of insulin from the hydrogel-modified electrodes. The switchable bioelectrocatalyzed release of insulin is demonstrated in the presence of ferrocenemethanol as a diffusional electron mediator or by applying an electrically wired integrated matrix that includes ferrocenyl-modified GOx embedded in the hydrogel. The second GOx-loaded, stimuli-responsive, DNA-based hydrogel matrix associated with the electrode includes a polyacrylamide hydrogel cooperatively cross-linked by duplex nucleic acids and "caged" G-quadruplex-responsive duplexes. The hydrogel matrix undergoes K+-ions/crown ether-triggered stiffness changes by the cyclic K+-ion-stimulated formation of G-quadruplexes (lower stiffness) and the crown ether-induced separation of the G-quadruplexes (higher stiffness). The hydrogel matrices demonstrate switchable bioelectrocatalytic functions guided by the stiffness properties of the hydrogels.
Collapse
Affiliation(s)
- Michael Fadeev
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gilad Davidson-Rozenfeld
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhenzhen Li
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
12
|
Fan D, Zhang C, Wang H, Wei Q, Cai H, Wei F, Bian Z, Liu W, Wang X, Liu Z. Fabrication of a composite 3D-printed titanium alloy combined with controlled in situ drug release to prevent osteosarcoma recurrence. Mater Today Bio 2023; 20:100683. [PMID: 37346395 PMCID: PMC10279918 DOI: 10.1016/j.mtbio.2023.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Osteosarcoma is a malignant bone tumor occurring in adolescents. Surgery combined with adjuvant or neoadjuvant chemotherapy is the standard treatment. However, systemic chemotherapy is associated with serious side effects and a high risk of postoperative tumor recurrence, leading to a high amputation rate and mortality in cancer patients. Implant materials that can simultaneously repair large bone defects and prevent osteosarcoma recurrence are in urgent need. Herein, an intelligent system comprising 3D-printed titanium scaffold (TS) and pH-responsive PEGylated paclitaxel prodrugs was fabricated for bone defect reconstruction and recurrence prevention following osteosarcoma surgery. The drug-loaded implants exhibited excellent stability and biocompatibility for supporting the activity of bone stem cells under normal body fluid conditions and the rapid release of drugs in response to faintly acidic environments. An in vitro study demonstrated that five human osteosarcoma cell lines could be efficiently eradicated by paclitaxel released in an acidic microenvironment. Using mice models, we demonstrated that the drug-loaded TS can enable a pH-responsive treatment of postoperative tumors and effectively prevent osteosarcoma recurrence. Therefore, local implantation of this composite scaffold may be a promising topical therapeutic method to prevent osteosarcoma recurrence.
Collapse
Affiliation(s)
- Daoyang Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, 100035, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hufei Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingguang Wei
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Hong Cai
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Feng Wei
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Zhilei Bian
- Department of Hematology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, 100035, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
13
|
Zeng Y, Mu Z, Nie B, Qu X, Zhang Y, Li C, Sun L, Li G. Engineered Escherichia coli as a Controlled-Release Biocarrier for Electrochemical Immunoassay. NANO LETTERS 2023; 23:2854-2861. [PMID: 36930741 DOI: 10.1021/acs.nanolett.3c00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Micro/nanocarriers hold great potential in bioanalysis for molecular recognition and signal amplification but are frequently hampered by harsh synthesis conditions and time-consuming labeling processes. Herein, we demonstrate that Escherichia coli (Ec) can be engineered as an efficient biocarrier for electrochemical immunoassay, which can load ultrahigh amounts of redox indicators and simultaneously be decorated with detection antibodies via a facile polydopamine (PDA)-mediated coating approach. Compared with conventional carrier materials, the entire preparation of the Ec biocarrier is simple, highly sustainable, and reproducible. Moreover, immune recognition and electrochemical transduction are performed independently, which eliminates the accumulation of biological interference on the electrode and simplifies electrode fabrication. Using human epidermal growth factor receptor 2 (HER2) as the model target, the proposed immunosensor exhibits excellent analytical performance with a low detection limit of 35 pg/mL. The successful design and deployment of Ec biocarrier may provide new guidance for developing biohybrids in biosensing applications.
Collapse
Affiliation(s)
- Yujing Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Zheying Mu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Beibei Nie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Xinyu Qu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yuanyuan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
14
|
Li Z, Wang J, Willner B, Willner I. Topologically Triggered Dynamic DNA Frameworks. Isr J Chem 2023. [DOI: 10.1002/ijch.202300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zhenzhen Li
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Jianbang Wang
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Bilha Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Itamar Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
15
|
Cao M, Vial A, Minder L, Guédin A, Fribourg S, Azéma L, Feuillie C, Molinari M, Di Primo C, Barthélémy P, Jeanne LC. Aptamer-based nanotrains and nanoflowers as quinine delivery systems. Int J Pharm X 2023; 5:100172. [PMID: 36861067 PMCID: PMC9969250 DOI: 10.1016/j.ijpx.2023.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
In this study, we designed aptamer-based self-assemblies for the delivery of quinine. Two different architectures were designed by hybridizing quinine binding aptamers and aptamers targeting Plasmodium falciparum lactate dehydrogenase (PfLDH): nanotrains and nanoflowers. Nanotrains consisted in controlled assembly of quinine binding aptamers through base-pairing linkers. Nanoflowers were larger assemblies obtained by Rolling Cycle Amplification of a quinine binding aptamer template. Self-assembly was confirmed by PAGE, AFM and cryoSEM. The nanotrains preserved their affinity for quinine and exhibited a higher drug selectivity than nanoflowers. Both demonstrated serum stability, hemocompatibility, low cytotoxicity or caspase activity but nanotrains were better tolerated than nanoflowers in the presence of quinine. Flanked with locomotive aptamers, the nanotrains maintained their targeting ability to the protein PfLDH as analyzed by EMSA and SPR experiments. To summarize, nanoflowers were large assemblies with high drug loading ability, but their gelating and aggregating properties prevent from precise characterization and impaired the cell viability in the presence of quinine. On the other hand, nanotrains were assembled in a selective way. They retain their affinity and specificity for the drug quinine, and their safety profile as well as their targeting ability hold promise for their use as drug delivery systems.
Collapse
Affiliation(s)
- Mengyuan Cao
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France,Corresponding authors.
| | - Anthony Vial
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | - Laetitia Minder
- Univ. Bordeaux, INSERM, CNRS, IECB, US001, UAR 3033, Pessac, France
| | - Aurore Guédin
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Sébastien Fribourg
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Laurent Azéma
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Cécile Feuillie
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | - Michael Molinari
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | - Carmelo Di Primo
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Philippe Barthélémy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Leblond Chain Jeanne
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France,Corresponding authors.
| |
Collapse
|
16
|
Zhang Z, Zhuang J, Sun D, Ding Q, Zheng H, Li H, Zhang X, Du Y, Ma T, Meng Q. Netrin-1 Monoclonal Antibody-Functionalized Nanoparticle Loaded with Metformin Prevents the Progression of Abdominal Aortic Aneurysms. Int J Nanomedicine 2023; 18:627-639. [PMID: 36777816 PMCID: PMC9912973 DOI: 10.2147/ijn.s400993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Background Abdominal aortic aneurysms (AAAs) are a global health and economic burden. Therapeutic strategies to inhibit the progression of AAAs are currently lacking. Recently, the therapeutic effect of metformin on aneurysms has attracted considerable interest. However, the unfavorable pharmacokinetic properties of metformin limit its feasibility for AAA treatment. Methods and Results We constructed a metformin-loaded netrin-1-responsive AAA-targeted nanoparticle (Tgt-NP-Met) for AAA management. Evaluation of the therapeutic effect of Tgt-NP-Met was performed by in vitro and in vivo experiments. Our results showed that the binding of netrin-1 monoclonal antibodies enhanced the AAA-targeting capability of nanoparticles (NPs). Moreover, Tgt-NP-Met administration prevented AAA development and reduced the aneurysm diameter in apolipoprotein E (ApoE)-deficient (ApoE-/-) mice that received continuous infusion of angiotensin II. Furthermore, metformin prevented AAA progression by inhibiting the transformation of vascular smooth muscle cells (VSMCs) from a contractile phenotype to a synthetic phenotype, which is mediated by macrophage infiltration and activation. Conclusion Our findings identify metformin as a functional suppressor for macrophage-mediated phenotypic transformation of VSMCs and Tgt-NP-Met as an efficient therapeutic strategy for AAA management.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jiawei Zhuang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Daohan Sun
- Department of Vascular Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Qingwei Ding
- Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Hui Zheng
- Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Haixiang Li
- Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiaoyu Zhang
- Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yaming Du
- Department of Vascular Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Teng Ma
- Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Qingyou Meng
- Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China,Correspondence: Qingyou Meng; Teng Ma, Email ;
| |
Collapse
|
17
|
Cao M, Vial A, Minder L, Guédin A, Fribourg S, Azéma L, Feuillie C, Molinari M, Di Primo C, Barthélémy P, Leblond Chain J. WITHDRAWN: Aptamer-based nanotrains and nanoflowers as quinine delivery systems. Int J Pharm 2023; 632:122552. [PMID: 36587777 DOI: 10.1016/j.ijpharm.2022.122552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been withdrawn at the request of the author, editor and publisher. The publisher regrets that an error occurred during the publication of this paper, which was intended to be published in International Journal of Pharmaceutics: X (not International Journal of Pharmaceutics). This error bears no reflection on the scientific content of this article or its authors. The publisher apologizes to the readers for this unfortunate error.
Collapse
Affiliation(s)
- Mengyuan Cao
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000, Bordeaux, France
| | - Anthony Vial
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | - Laetitia Minder
- Univ. Bordeaux, INSERM, CNRS, IECB, US001, UAR 3033, Pessac, France
| | - Aurore Guédin
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000, Bordeaux, France
| | - Sébastien Fribourg
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000, Bordeaux, France
| | - Laurent Azéma
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000, Bordeaux, France
| | - Cécile Feuillie
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | - Michael Molinari
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | - Carmelo Di Primo
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000, Bordeaux, France
| | - Philippe Barthélémy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000, Bordeaux, France
| | | |
Collapse
|
18
|
Robust polyaniline coated microcapsules with superior thermal and solvent stability. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Amundarain A, Pastor F, Prósper F, Agirre X. Aptamers, a New Therapeutic Opportunity for the Treatment of Multiple Myeloma. Cancers (Basel) 2022; 14:5471. [PMID: 36358889 PMCID: PMC9657029 DOI: 10.3390/cancers14215471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 08/30/2023] Open
Abstract
Multiple Myeloma (MM) remains an incurable disease due to high relapse rates and fast development of drug resistances. The introduction of monoclonal antibodies (mAb) has caused a paradigm shift in MM treatment, paving the way for targeted approaches with increased efficacy and reduced toxicities. Nevertheless, antibody-based therapies face several difficulties such as high immunogenicity, high production costs and limited conjugation capacity, which we believe could be overcome by the introduction of nucleic acid aptamers. Similar to antibodies, aptamers can bind to their targets with great affinity and specificity. However, their chemical nature reduces their immunogenicity and production costs, while it enables their conjugation to a wide variety of cargoes for their use as delivery agents. In this review, we summarize several aptamers that have been tested against MM specific targets with promising results, establishing the rationale for the further development of aptamer-based strategies against MM. In this direction, we believe that the study of novel plasma cell surface markers, the development of intracellular aptamers and further research on aptamers as building blocks for complex nanomedicines will lead to the generation of next-generation targeted approaches that will undoubtedly contribute to improve the management and life quality of MM patients.
Collapse
Affiliation(s)
- Ane Amundarain
- Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 31008 Pamplona, Spain
| | - Fernando Pastor
- Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 31008 Pamplona, Spain
| | - Felipe Prósper
- Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 31008 Pamplona, Spain
- Hematology Department, Clínica Universidad de Navarra, CCUN, University of Navarra, 31008 Pamplona, Spain
| | - Xabier Agirre
- Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 31008 Pamplona, Spain
| |
Collapse
|
20
|
Tang Y, Wang J, Cao Q, Chen F, Wang M, Wu Y, Chen X, Zhu X, Zhang X. Dopamine/DOPAC-assisted immobilization of bone morphogenetic protein-2 loaded Heparin/PEI nanogels onto three-dimentional printed calcium phosphate ceramics for enhanced osteoinductivity and osteogenicity. BIOMATERIALS ADVANCES 2022; 140:213030. [PMID: 36027668 DOI: 10.1016/j.bioadv.2022.213030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, the three-dimensional (3D) printed calcium phosphate (CaP) ceramics have well-designed geometric structure, but suffer from relative weak osteoinductivity. Surface modification by incorporating bone morphogenetic protein-2 (BMP2) onto scaffolds is considered as an efficient approach to improve their bioactivity. However, high dose and uncontrolled burst release of BMP2 may cause undesired side effect. In the present study, porous BCP ceramics with inverse face-centred cube structure prepared by digital light processing (DLP)-based 3D printing technique were used as the substrates. BMP2 proteins were loaded in the self-assembled Heparin/PEI nanogels (NP/BMP2), and then immobilized onto BCP substrates through the intermediate mussel-derived bioactive dopamine and dihydroxyphenylacetic acid (DA/DOPAC) coating layers to construct functional BCP/layer/NP/BMP2 scaffolds. Our results showed that Heparin/PEI nanogel was a potent delivery system for BMP2, and BCP/layer/NP/BMP2 scaffolds exhibited the high loading capacity, controlled release rate, and sustained local delivery of BMP2. In vitro cell experiments with bone marrow stromal cells (BMSCs) found that BCP/layer/NP/BMP2 could promote cell proliferation, facilitate cell spreading, accelerate cell migration, up-regulate expression of osteogenic genes, and improve synthesis of osteoblast-related proteins. Moreover, the murine intramuscular implantation model suggested that BCP/layer/NP/BMP2 had a superior osteoinductive capacity, and the rat femoral condyle defect repair model showed that BCP/layer/NP/BMP2 could enhance in situ bone repair and regeneration. These findings demonstrate that the incorporation of BMP2 loaded Heparin/PEI nanogels to 3D printed scaffolds holds great promise in fabricating bone graft with a superior biological performance for orthopedic application.
Collapse
Affiliation(s)
- Yitao Tang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Quanle Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Fuying Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Menglu Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yonghao Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
21
|
Dong J, O'Hagan MP, Willner I. Switchable and dynamic G-quadruplexes and their applications. Chem Soc Rev 2022; 51:7631-7661. [PMID: 35975685 DOI: 10.1039/d2cs00317a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G-Quadruplexes attract growing interest as functional constituents in biology, chemistry, nanotechnology, and material science. In particular, the reversible dynamic reconfiguration of G-quadruplexes provides versatile means to switch DNA nanostructures, reversibly control catalytic functions of DNA assemblies, and switch material properties and functions. The present review article discusses the switchable dynamic reconfiguration of G-quadruplexes as central functional and structural motifs that enable diverse applications in DNA nanotechnology and material science. The dynamic reconfiguration of G-quadruplexes has a major impact on the development of DNA switches and DNA machines. The integration of G-quadruplexes with enzymes yields supramolecular assemblies exhibiting switchable catalytic functions guided by dynamic G-quadruplex topologies. In addition, G-quadruplexes act as important building blocks to operate constitutional dynamic networks and transient dissipative networks mimicking complex biological dynamic circuitries. Furthermore, the integration of G-quadruplexes with DNA nanostructures, such as origami tiles, introduces dynamic and mechanical features into these static frameworks. Beyond the dynamic operation of G-quadruplex structures in solution, the assembly of G-quadruplexes on bulk surfaces such as electrodes or nanoparticles provides versatile means to engineer diverse electrochemical and photoelectrochemical devices and to switch the dynamic aggregation/deaggregation of nanoparticles, leading to nanoparticle assemblies that reveal switchable optical properties. Finally, the functionalization of hydrogels, hydrogel microcapsules, or nanoparticle carriers, such as SiO2 nanoparticles or metal-organic framework nanoparticles, yields stimuli-responsive materials exhibiting shape-memory, self-healing, and controlled drug release properties. Indeed, G-quadruplex-modified nanomaterials find growing interest in the area of nanomedicine. Beyond the impressive G-quadruplex-based scientific advances achieved to date, exciting future developments are still anticipated. The review addresses these goals by identifying the potential opportunities and challenges ahead of the field in the coming years.
Collapse
Affiliation(s)
- Jiantong Dong
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
22
|
Xu X, Jiang Y, Lu C. Self-Assembled ATP-Responsive DNA Nanohydrogel for Specifically Activated Fluorescence Imaging and Chemotherapy in Cancer Cells. Anal Chem 2022; 94:10221-10226. [PMID: 35796567 DOI: 10.1021/acs.analchem.2c01760] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor marker-responsive drug delivery systems have been developed for cancer imaging and chemotherapy. However, improving their ability of controlled drug release remains a challenge. In this study, we have developed an adenosine triphosphate (ATP)-responsive DNA nanohydrogel for specifically activated fluorescence imaging and chemotherapy in cancer cells. Acrylamide and acrydite-modified DNAs were polymerized to obtain DNA-grafted polyacrylamide copolymers. Then, the copolymers acted as the backbone of the nanohydrogel and were assembled by base complementation with ATP aptamer linkers to construct an ATP-responsive nanohydrogel. Meanwhile, the chemotherapeutic drug doxorubicin (DOX) was added and loaded into the ATP-responsive nanohydrogel during the assembly process. After endocytosis by cancer cells and response to a high intracellular ATP level, the DOX-loaded nanohydrogel disassembled due to the formation of aptamer/ATP complexes. Subsequently, the released DOX played a role in fluorescence imaging and chemotherapy of cancer cells. Through the ATP-responsive property and satisfying drug delivery capability, this nanohydrogel realized fluorescence imaging and specific cancer cell killing capabilities due to different intracellular ATP levels in normal and cancer cell lines. In summary, this study has provided a novel strategy of constructing a tumor microenvironment-responsive drug delivery system triggered by the tumor markers for tumor intracellular imaging and chemotherapy.
Collapse
Affiliation(s)
- Xin Xu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yifan Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
23
|
Li H, Geng W, Haruna SA, Hassan MM, Chen Q. A target-responsive release SERS sensor for sensitive detection of tetracycline using aptamer-gated HP-UiO-66-NH2 nanochannel strategy. Anal Chim Acta 2022; 1220:339999. [DOI: 10.1016/j.aca.2022.339999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022]
|
24
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
25
|
Singh A, Bhatia D. DNA Nanotechnology-Based Supramolecular Assemblies for Targeted Biomedical Applications. CHEM REC 2022; 22:e202200048. [PMID: 35532197 DOI: 10.1002/tcr.202200048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/24/2022] [Indexed: 11/10/2022]
Abstract
DNA is a polyanionic, hydrophilic, and natural biopolymer that offers properties such as biodegradability, biocompatibility, non-toxicity, and non-immunogenicity. These properties of DNA as an ideal biopolymer offer modern-day researchers' reasons to exploit these to form high-order supramolecular assemblies. These structures could range from simple to complex and provide various applications. Among them, supramolecular assemblies like DNA hydrogels (DNA-HG) and DNA dendrimers (DNA-DS) show massive growth potential in the areas of biomedical applications such as cell biology, medical stream, molecular biology, pharmacology, and healthcare product manufacturing. The application of both of these assemblies has seen enormous growth in recent years. In this focused review on DNA-based supramolecular assemblies like hydrogels and dendrimers, we present the principles of synthesis and characterization, key developments with examples and applications, and conclude with a brief perspective on challenges and future outlook for such devices and their subsequent applications.
Collapse
Affiliation(s)
- Ankur Singh
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India E-mail: Dhiraj Bhatia
| | - Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India E-mail: Dhiraj Bhatia.,Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
26
|
Ouyang Y, Zhang P, Willner I. Dissipative biocatalytic cascades and gated transient biocatalytic cascades driven by nucleic acid networks. SCIENCE ADVANCES 2022; 8:eabn3534. [PMID: 35522744 PMCID: PMC9075803 DOI: 10.1126/sciadv.abn3534] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Living systems consist of complex transient cellular networks guiding structural, catalytic, and switchable functions driven by auxiliary triggers, such as chemical or light energy inputs. We introduce two different transient, dissipative, biocatalytic cascades, the coupled glucose oxidase (GOx)/horseradish peroxidase (HRP) glucose-driven oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS2-) to the radical anion (ABTS•-) and the lactate dehydrogenase (LDH)/nicotinamide adenine dinucleotide (NAD+) lactate-driven reduction of NAD+ to NADH. The transient biocatalytic systems are driven by nucleic acid reaction modules using a nucleic acid fuel strand L1' and a nicking enzyme, Nt.BbvCI, as fuel-degrading catalyst, leading to the dynamic spatiotemporal transient formation of structurally proximate biocatalysts activating the biocatalytic cascades and transient coupled processes, including the generation of chemiluminescence and the synthesis of alanine. Subjecting the mixture of biocatalysts to selective inhibitors allows the gated transient operation of the biocatalysts. The kinetics of transient biocatalytic cascades are accompanied by kinetic models and computational simulations.
Collapse
|
27
|
Zhang X, Zhi H, Wang F, Zhu M, Meng H, Wan P, Feng L. Target-Responsive Smart Nanomaterials via a Au-S Binding Encapsulation Strategy for Electrochemical/Colorimetric Dual-Mode Paper-Based Analytical Devices. Anal Chem 2022; 94:2569-2577. [PMID: 35080383 DOI: 10.1021/acs.analchem.1c04537] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Target-responsive nanomaterials attract growing interest in the application of drug delivery, bioimaging, and sensing due to the responsive releasing of guest molecules by the smart molecule gate. However, it remains a challenge to develop smart nanomaterials with simple assembly and low nonspecific leakage starting from encapsulation strategies, especially in the sensing field. Herein, Au nanoclusters (Au NCs) were first grown on porous carbon derived from ZIF-8 (PCZIF) to be employed as nanocarriers. By employing the Au NCs as linkers and aptamer (Apta) double-strand hybrids (target Apta and SH-complementary DNA) as capping units, we reported the novel target-responsive nanomaterials of Apta/Au NCs-PCZIF/hemin through Au-S binding encapsulation for sensing assays. The Au-S binding encapsulation strategy simplified the packaging procedure and reduced non-target responsive leakage. As a proof, ochratoxin A (OTA) as a model target participates in the double-strand hybrid competitive displacement reaction and triggered Apta conformation switches from a coil to a G-quadruplex structure accompanied by the dissociation of the gatekeeper. Simultaneously, the released hemin can initiate a self-assembly to form G-quadruplex/hemin DNAzyme. Interestingly, owing to DNAzyme providing electron transfer mediators and peroxidase-like activity, we proposed an electrochemical/colorimetric dual-mode paper-based analytical device (PAD) that provided self-verification to enhance reliability and accuracy, benefiting from independent signal conversion and transmission mechanism. As a consequence, the proposed dual-mode PAD could achieve sensitive electrochemical detection and visual prediction of OTA in the range of 1 pg/mL to 500 ng/mL and 50 pg/mL to 500 ng/mL, respectively. The electrochemical detection limit for OTA was as low as 0.347 pg/mL (S/N = 3). We believe that this work provides point-of-care testing (POCT) tools for a broad spectrum of applications.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hui Zhi
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Fengya Wang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Mingzhen Zhu
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hu Meng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Peng Wan
- Instrumental Analysis Center, Dalian University of Technology, Dalian 116024, P.R. China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| |
Collapse
|
28
|
Shao C, Chi J, Shang L, Fan Q, Ye F. Droplet microfluidics-based biomedical microcarriers. Acta Biomater 2022; 138:21-33. [PMID: 34718181 DOI: 10.1016/j.actbio.2021.10.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022]
Abstract
Droplet microfluidic technology provides a new platform for controllable generation of microdroplets and droplet-derived materials. In particular, because of the ability in high-throughput production and accurate control of the size, structure, and function of these materials, droplet microfluidics presents unique advantages in the preparation of functional microcarriers, i.e., microsized liquid containers or solid particles that serve as substrates of biomolecules or cells. These microcarriers could be extensively applied in the areas of cell culture, tissue engineering, and drug delivery. In this review, we focus on the fabrication of microcarriers from droplet microfluidics, and discuss their applications in the biomedical field. We start with the basic principle of droplet microfluidics, including droplet generation regimes and its control methods. We then introduce the fabrication of biomedical microcarriers based on single, double, and multiple emulsion droplets, and emphasize the various applications of microcarriers in biomedical field, especially in 3D cell culture, drug development and biomedical detection. Finally, we conclude this review by discussing the limitations and challenges of droplet microfluidics in preparing microcarriers. STATEMENT OF SIGNIFICANCE: Because of its precise control and high throughput, droplet microfluidics has been employed to generate functional microcarriers, which have been widely used in the areas of drug development, tissue engineering, and regenerative medicine. This review is significant because it emphasizes recent progress in research on droplet microfluidics in the preparation and application of biomedical microcarriers. In addition, this review suggests research directions for the future development of biomedical microcarriers based on droplet microfluidics by presenting existing shortcomings and challenges.
Collapse
|
29
|
Liu M, Wang L, Lo Y, Shiu SCC, Kinghorn AB, Tanner JA. Aptamer-Enabled Nanomaterials for Therapeutics, Drug Targeting and Imaging. Cells 2022; 11:159. [PMID: 35011722 PMCID: PMC8750369 DOI: 10.3390/cells11010159] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
A wide variety of nanomaterials have emerged in recent years with advantageous properties for a plethora of therapeutic and diagnostic applications. Such applications include drug delivery, imaging, anti-cancer therapy and radiotherapy. There is a critical need for further components which can facilitate therapeutic targeting, augment their physicochemical properties, or broaden their theranostic applications. Aptamers are single-stranded nucleic acids which have been selected or evolved to bind specifically to molecules, surfaces, or cells. Aptamers can also act as direct biologic therapeutics, or in imaging and diagnostics. There is a rich field of discovery at the interdisciplinary interface between nanomaterials and aptamer science that has significant potential across biomedicine. Herein, we review recent progress in aptamer-enabled materials and discuss pending challenges for their future biomedical application.
Collapse
Affiliation(s)
- Mengping Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Lin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Young Lo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Simon Chi-Chin Shiu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Andrew B. Kinghorn
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Julian A. Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
30
|
Chen XF, Zhao X, Yang Z. Aptamer-Based Antibacterial and Antiviral Therapy against Infectious Diseases. J Med Chem 2021; 64:17601-17626. [PMID: 34854680 DOI: 10.1021/acs.jmedchem.1c01567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA molecules selected in vitro that can bind to a broad range of targets with high affinity and specificity. As promising alternatives to conventional anti-infective agents, aptamers have gradually revealed their potential in the combat against infectious diseases. This article provides an overview on the state-of-art of aptamer-based antibacterial and antiviral therapeutic strategies. Diverse aptamers targeting pathogen-related components or whole pathogenic cells are summarized according to the species of microorganisms. These aptamers exhibited remarkable in vitro and/or in vivo inhibitory effect for pathogenic invasion, enzymatic activities, or viral replication, even for some highly drug-resistant strains and biofilms. Aptamer-mediated drug delivery and controlled drug release strategies are also included herein. Critical technical barriers of therapeutic aptamers are briefly discussed, followed by some future perspectives for their implementation into clinical utility.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China.,Guangzhou Laboratory, Guangzhou 510320, PR China.,Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou 510005, PR China
| |
Collapse
|
31
|
Zhang L, Wang M, Zhu Z, Chen S, Wu H, Yang Y, Che F, Li Q, Li H. A GD2-aptamer-mediated, self-assembling nanomedicine for targeted multiple treatments in neuroblastoma theranostics. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:732-748. [PMID: 34703655 PMCID: PMC8515170 DOI: 10.1016/j.omtn.2021.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Because current mainstream anti-glycolipid GD2 therapeutics for neuroblastoma (NB) have limitations, such as severe adverse effects, improved therapeutics are needed. In this study, we developed a GD2 aptamer (DB99) and constructed a GD2-aptamer-mediated multifunctional nanomedicine (ANM) with effective, precise, and biocompatible properties, which functioned both as chemotherapy and as gene therapy for NB. DB99 can bind to GD2+ NB tumor cells but has minimal cross-reactivity to GD2− cells. Furthermore, ANM is formulated by self-assembly of synthetic aptamers DB99 and NB-specific MYCN small interfering RNA (siRNA), followed by self-loading of the chemotherapeutic agent doxorubicin (Dox). ANM is capable of specifically recognizing, binding, and internalizing GD2+, but not GD2−, NB tumor cells in vitro. Intracellular delivery of ANM activates Dox release for chemotherapy and MYCN-siRNA-induced MYCN silencing. ANM specifically targets, and selectively accumulates in, the GD2+ tumor site in vivo and further induces growth inhibition of GD2+ tumors in vivo; in addition, ANM generates fewer or no side effects in healthy tissues, resulting in markedly longer survival with fewer adverse effects. These results suggest that the GD2-aptamer-mediated, targeted drug delivery system may have potential applications for precise treatment of NB.
Collapse
Affiliation(s)
- Liyu Zhang
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.,Shaanxi Institute of Pediatric Diseases, Affiliated Children's hospital of Xi'an Jiaotong University, Xi'an 710002, Shaanixi, China
| | - Meng Wang
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Zeen Zhu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Shengquan Chen
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Haibin Wu
- Shaanxi Institute of Pediatric Diseases, Affiliated Children's hospital of Xi'an Jiaotong University, Xi'an 710002, Shaanixi, China
| | - Ying Yang
- Shaanxi Institute of Pediatric Diseases, Affiliated Children's hospital of Xi'an Jiaotong University, Xi'an 710002, Shaanixi, China
| | - Fengyu Che
- Shaanxi Institute of Pediatric Diseases, Affiliated Children's hospital of Xi'an Jiaotong University, Xi'an 710002, Shaanixi, China
| | - Qiao Li
- Department of clinical laboratory, Affiliated Children's hospital of Xi'an Jiaotong University, Xi'an 710002, China
| | - Hui Li
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.,Department of Neonatology, Affiliated Children's hospital of Xi'an Jiaotong University, Xi'an 710002, China
| |
Collapse
|
32
|
Ouyang Y, Biniuri Y, Fadeev M, Zhang P, Carmieli R, Vázquez-González M, Willner I. Aptamer-Modified Cu 2+-Functionalized C-Dots: Versatile Means to Improve Nanozyme Activities-"Aptananozymes". J Am Chem Soc 2021; 143:11510-11519. [PMID: 34286967 PMCID: PMC8856595 DOI: 10.1021/jacs.1c03939] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The covalent linkage of aptamer binding
sites to nanoparticle nanozymes
is introduced as a versatile method to improve the catalytic activity
of nanozymes by concentrating the reaction substrates at the catalytic
nanozyme core, thereby emulating the binding and catalytic active-site
functions of native enzymes. The concept is exemplified with the synthesis
of Cu2+ ion-functionalized carbon dots (C-dots), modified
with the dopamine binding aptamer (DBA) or the tyrosinamide binding
aptamer (TBA), for the catalyzed oxidation of dopamine to aminochrome
by H2O2 or the oxygenation of l-tyrosinamide
to the catechol product, which is subsequently oxidized to amidodopachrome,
in the presence of H2O2/ascorbate mixture. Sets
of structurally functionalized DBA-modified Cu2+ ion-functionalized
C-dots or sets of structurally functionalized TBA-modified Cu2+ ion-functionalized C-dots are introduced as nanozymes of
superior catalytic activities (aptananozymes) toward the oxidation
of dopamine or the oxygenation of l-tyrosinamide, respectively.
The aptananozymes reveal enhanced catalytic activities as compared
to the separated catalyst and respective aptamer constituents. The
catalytic functions of the aptananozymes are controlled by the structure
of the aptamer units linked to the Cu2+ ion-functionalized
C-dots. In addition, the aptananozyme shows chiroselective catalytic
functions demonstrated by the chiroselective-catalyzed oxidation of l/d-DOPA to l/d-dopachrome. Binding
studies of the substrates to the different aptananozymes and mechanistic
studies associated with the catalytic transformations are discussed.
Collapse
Affiliation(s)
- Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yonatan Biniuri
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael Fadeev
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Pu Zhang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
33
|
Ramezani S, Parkhideh A, Bhattacharya PK, Farach-Carson MC, Harrington DA. Beyond Colonoscopy: Exploring New Cell Surface Biomarkers for Detection of Early, Heterogenous Colorectal Lesions. Front Oncol 2021; 11:657701. [PMID: 34290978 PMCID: PMC8287259 DOI: 10.3389/fonc.2021.657701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths among both men and women in the United States. Early detection and surgical removal of high-risk lesions in the colon can prevent disease from developing and spreading. Despite implementation of programs aimed at early detection, screening colonoscopies fail to detect a fraction of potentially aggressive colorectal lesions because of their location or nonobvious morphology. Optical colonoscopies, while highly effective, rely on direct visualization to detect changes on the surface mucosa that are consistent with dysplasia. Recent advances in endoscopy techniques and molecular imaging permit microscale visualization of the colonic mucosa. These technologies can be combined with various molecular probes that recognize and target heterogenous lesion surfaces to achieve early, real-time, and potentially non-invasive, detection of pre-cancerous lesions. The primary goal of this review is to contextualize existing and emergent CRC surface biomarkers and assess each’s potential as a candidate marker for early marker-based detection of CRC lesions. CRC markers that we include were stratified by the level of support gleaned from peer-reviewed publications, abstracts, and databases of both CRC and other cancers. The selected biomarkers, accessible on the cell surface and preferably on the luminal surface of the colon tissue, are organized into three categories: (1) established biomarkers (those with considerable data and high confidence), (2) emerging biomarkers (those with increasing research interest but with less supporting data), and (3) novel candidates (those with very recent data, and/or supportive evidence from other tissue systems). We also present an overview of recent advances in imaging techniques useful for visual detection of surface biomarkers, and discuss the ease with which these methods can be combined with microscopic visualization.
Collapse
Affiliation(s)
- Saleh Ramezani
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States.,Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Arianna Parkhideh
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Department of Anthropology, Washington University in St. Louis, St. Louis, MO, United States
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Departments of BioSciences and Bioengineering, Rice University, Houston, TX, United States
| | - Daniel A Harrington
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Departments of BioSciences and Bioengineering, Rice University, Houston, TX, United States
| |
Collapse
|
34
|
Vázquez-González M, Willner I. Aptamer-Functionalized Hybrid Nanostructures for Sensing, Drug Delivery, Catalysis and Mechanical Applications. Int J Mol Sci 2021; 22:1803. [PMID: 33670386 PMCID: PMC7918352 DOI: 10.3390/ijms22041803] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 01/05/2023] Open
Abstract
Sequence-specific nucleic acids exhibiting selective recognition properties towards low-molecular-weight substrates and macromolecules (aptamers) find growing interest as functional biopolymers for analysis, medical applications such as imaging, drug delivery and even therapeutic agents, nanotechnology, material science and more. The present perspective article introduces a glossary of examples for diverse applications of aptamers mainly originated from our laboratory. These include the introduction of aptamer-functionalized nanomaterials such as graphene oxide, Ag nanoclusters and semiconductor quantum dots as functional hybrid nanomaterials for optical sensing of target analytes. The use of aptamer-functionalized DNA tetrahedra nanostructures for multiplex analysis and aptamer-loaded metal-organic framework nanoparticles acting as sense-and-treat are introduced. Aptamer-functionalized nano and microcarriers are presented as stimuli-responsive hybrid drug carriers for controlled and targeted drug release, including aptamer-functionalized SiO2 nanoparticles, carbon dots, metal-organic frameworks and microcapsules. A further application of aptamers involves the conjugation of aptamers to catalytic units as a means to mimic enzyme functions "nucleoapzymes". In addition, the formation and dissociation of aptamer-ligand complexes are applied to develop mechanical molecular devices and to switch nanostructures such as origami scaffolds. Finally, the article discusses future challenges in applying aptamers in material science, nanotechnology and catalysis.
Collapse
Affiliation(s)
- Margarita Vázquez-González
- Center for Nanoscience and Nanotechnology, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Center for Nanoscience and Nanotechnology, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|