1
|
Ohishi Y, Ichikawa T, Yokoyama S, Yamashita J, Iwamura M, Nozaki K, Zhou Y, Chiba J, Inouye M. Water-Soluble Rotaxane-Type Porphyrin Dyes as a Highly Membrane-Permeable and Durable Photosensitizer Suitable for Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2024; 7:6656-6664. [PMID: 39326867 PMCID: PMC11497202 DOI: 10.1021/acsabm.4c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Porphyrins have emerged as highly effective photosensitizers in the field of photodynamic therapy (PDT) because of their high singlet oxygen generation efficiency. However, most porphyrin derivatives do not have adequate water solubility and cell membrane permeability suitable for use in PDT. In addition, they frequently suffer from low durability under photoirradiation. Here, we propose rotaxane-type photosensitizers, in which a porphyrin axle is irreversibly encapsulated within cyclodextrins (CDs), to overcome the drawbacks of porphyrins for PDT. The rotaxane-type photosensitizers were synthesized in high yields by employing a cooperative capture strategy. The CD derivatives worked as a transparent shell to impart a porphyrin axle not only with water solubility but also with photostability. These rotaxanes showed higher cell membrane permeability and photoinduced cytotoxic abilities than talaporfin sodium, presently used as a clinical photosensitizer. The rotaxane-based photosensitizer could have potential for being ideal PDT drugs.
Collapse
Affiliation(s)
- Yuki Ohishi
- Graduate
School of Pharmaceutical Sciences, University
of Toyama, Toyama 930-0194, Japan
| | - Taiki Ichikawa
- Graduate
School of Pharmaceutical Sciences, University
of Toyama, Toyama 930-0194, Japan
| | - Satoru Yokoyama
- Graduate
School of Pharmaceutical Sciences, University
of Toyama, Toyama 930-0194, Japan
| | - Juri Yamashita
- Graduate
School of Science and Engineering, University
of Toyama, Toyama 930-8555, Japan
| | - Munetaka Iwamura
- Graduate
School of Science and Engineering, University
of Toyama, Toyama 930-8555, Japan
| | - Koichi Nozaki
- Graduate
School of Science and Engineering, University
of Toyama, Toyama 930-8555, Japan
| | - Yue Zhou
- Graduate
School of Pharmaceutical Sciences, University
of Toyama, Toyama 930-0194, Japan
| | - Junya Chiba
- Graduate
School of Pharmaceutical Sciences, University
of Toyama, Toyama 930-0194, Japan
| | - Masahiko Inouye
- Graduate
School of Pharmaceutical Sciences, University
of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
2
|
Wu F, Xia Z, Sun D, Huang X, Hu X, Wu Y, Wang Y, Pei M, Han X, Liu S. Expanding the Color Range of Photoresponsive Multicolor Luminescent System Through Host-Guest Interaction. J Org Chem 2024; 89:14898-14907. [PMID: 39356286 DOI: 10.1021/acs.joc.4c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Photoresponsive multicolor luminescent systems offer interesting functions, which have led to applications in anticounterfeiting and biological imaging. However, expanding the color range of these materials remains a challenging task. Herein, a carbazole-modified dithienylethene derivative (DTE-CZ) that exhibits modulated fluorescence color changes through the photocyclization reaction and photolysis reaction is synthesized. DTE-CZ emits orange fluorescence, and it can release a fluorophore which emits blue fluorescence by the photolysis reaction, resulting in the color change. Upon complexation of DTE-CZ with cucurbit[10]uril (CB[10]), the fluorescence wavelength will have a blue shift and the photolysis reaction will be inhibited. Benefiting from the influence of CB[10] and the photolysis reaction of free guests, the color range of the photoresponsive system which is composed of free guests and host-guest complexes is further extended. White light emission along with a color shift from yellow-green to blue was achieved by adjusting the ratio of free guests to host-guest complexes. Finally, the photoresponsive multicolor systems are utilized to construct a photostimulated PVA film and an information encryption system. This work provides an alternative strategy for the preparing of photoresponsive multicolor luminescent system and modulation of its color range.
Collapse
Affiliation(s)
- Fangwei Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Zengyan Xia
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Dongdong Sun
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xin Huang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xianchen Hu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yong Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yanmei Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Mengqi Pei
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xie Han
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
3
|
Ma L, Dai Y, Meng Y, Yu W, Bai Y, Cai Y, Han Y, Wang J, Yao L, Yao Y. Perphenazine modified pillar[5]arene based nano-assemblies for synergistic photothermal and photodynamic cancer therapy. Chem Commun (Camb) 2024; 60:8387-8390. [PMID: 39027932 DOI: 10.1039/d4cc02528h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Nano-assemblies based on perphenazine modified pillar[5]arene were constructed successfully for synergistic photothermal and photodynamic (I&II) cancer therapy.
Collapse
Affiliation(s)
- Longtao Ma
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, China.
| | - Yu Dai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yujia Meng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Wenqiang Yu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yiqiao Bai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yan Cai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, China.
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Long Yao
- Nantong University Analysis & Testing Center, Nantong University, Nantong, Jiangsu 226019, China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
4
|
Zhao Z, Yang J, Liu Y, Wang S, Zhou W, Li ZT, Zhang DW, Ma D. Acyclic cucurbit[ n]uril-based nanosponges significantly enhance the photodynamic therapeutic efficacy of temoporfin in vitro and in vivo. J Mater Chem B 2023; 11:9027-9034. [PMID: 37721029 DOI: 10.1039/d3tb01422c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Acyclic cucurbit[n]uril-based nanosponges are prepared based on supramolecular vesicle-templated cross-linking. The nanosponges are capable of encapsulating the clinically approved photodynamic therapeutic (PDT) drug temoporfin. When loaded with nanosponges, the PDT bioactivity of temoporfin is enhanced 7.5-fold for HeLa cancer cells and 20.8 fold for B16-F10 cancer cells, respectively. The reason for the significant improvement in PDT efficacy is confirmed to be an enhanced cell uptake by confocal laser scanning microscopy and flow cytometry. Animal studies show that nanosponges could dramatically increase the tumor suppression effect of temoporfin. In vitro and in vivo experiments demonstrate that nanosponges are nontoxic and biocompatible.
Collapse
Affiliation(s)
- Zizhen Zhao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Jingyu Yang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yamin Liu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Shuyi Wang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
| | - Wei Zhou
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Da Ma
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
| |
Collapse
|
5
|
Zhang Y, Wang Y, Chen T, Han Y, Yan C, Wang J, Lu B, Ma L, Ding Y, Yao Y. Pillar[5]arene based water-soluble [3]pseudorotaxane with enhanced fluorescence emission for cell imaging and both type I and II photodynamic cancer therapy. Chem Commun (Camb) 2023. [PMID: 37314502 DOI: 10.1039/d3cc01929b] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water-soluble [3]pseudorotaxane with enhanced fluorescence emission was successfully constructed and applied in cell imaging and photodynamic cancer therapy.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Chaoguo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Longtao Ma
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
6
|
Shukla S, Sagar B, Sood AK, Gaur A, Batra S, Gulati S. Supramolecular Chemotherapy with Cucurbit[ n]urils as Encapsulating Hosts. ACS APPLIED BIO MATERIALS 2023. [PMID: 37224296 DOI: 10.1021/acsabm.3c00244] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The cucurbit[n]urils (CB[n]) belong to the field of relatively young supramolecules which act as containers for a large variety of guests and are being explored extensively for their numerous biomedical applications. This includes drug formulation and delivery, controlled drug release, photodynamic therapy, sensing for bioanalytical purposes, etc. These supramolecular host-guest systems have distinctive recognition properties and have successfully been shown to enhance the in vitro and in vivo utility of various chemotherapeutic agents. The CB[n]s are tailored to optimize their application in payload delivery and diagnostics and in lowering the toxicity of existing drugs. This review has listed the recent studies on working mechanisms and host-guest complexation of the biologically vital molecules with CB[n] and highlighted their implementation in anticancer therapeutics. Various modifications in CB-drug inclusion compounds like CB supramolecular nanoarchitectures along with application in photodynamic therapy, which has shown potential as targeted drug delivery vehicles in cancer chemotherapy, have also been discussed.
Collapse
|
7
|
Wu Q, Lei Q, Zhong HC, Ren TB, Sun Y, Zhang XB, Yuan L. Fluorophore-based host-guest assembly complexes for imaging and therapy. Chem Commun (Camb) 2023; 59:3024-3039. [PMID: 36785939 DOI: 10.1039/d2cc06286k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently, supramolecular chemistry with its unique properties has received considerable attention in many fields. Supramolecular fluorescent systems constructed on the basis of macrocyclic hosts are not only effective in overcoming the limitations of imaging and diagnostic reagents, but also in enhancing their performances. This paper summarizes the recent advances in supramolecular fluorescent systems based on host-guest interactions and their application in bioimaging and therapy as well as the challenges and prospects in developing novel supramolecular fluorescent systems.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Qian Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Hai-Chen Zhong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
8
|
Lin B, Wang Q, Qi Z, Xu H, Qu DH. Cucurbit[8]uril-mediated multi-color fluorescence system for time-dependent information encryption. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
9
|
Wu D, Zhang Z, Li X, Han J, Hu Q, Yu Y, Mao Z. Cucurbit[10]uril-based supramolecular radicals: Powerful arms to kill facultative anaerobic bacteria. J Control Release 2023; 354:626-634. [PMID: 36681280 DOI: 10.1016/j.jconrel.2023.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/23/2023]
Abstract
Two water-soluble supramolecular complexes (CB[10]⊃PSA and CB[10]⊃TPE-cyc) are constructed based on the host-guest interaction between cucurbit[10]uril (CB[10]) and perylene diimide derivative (PSA) or tetracationic cyclophane (TPE-cyc). Attributing to the matched redox potential, both supramolecular complexes can be specifically reduced into corresponding supramolecular radical cations or anions by facultative anaerobic E. coli. Benefiting from the strong near-infrared (NIR) absorption, CB[10]⊃PSA radical anions and CB[10]⊃TPE-cyc radical cations act as efficient NIR photosensitizers and perform an excellent antimicrobial activity (close to 100%) via PTT. In addition, the biocompatibility of TPE-cyc is notably improved under the protection of CB[10], guaranteeing its biosafety for in vivo application. CB[10]⊃PSA radical anions and CB[10]⊃TPE-cyc radical cations are in situ generated in the E. coli-infected abscess of mice and effectively inhibit the bacterial infection without obvious system toxicity. It is anticipated that this supramolecular strategy may pave a new way for the selective bacteria inhibition to regulate the balance of different bacterial flora.
Collapse
Affiliation(s)
- Dan Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhankui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xinyue Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jin Han
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China..
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China..
| | - Yuan Yu
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China..
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China..
| |
Collapse
|
10
|
Xue B, Geng X, Cui H, Chen H, Wu Z, Chen H, Li H, Zhou Z, Zhao M, Tan C, Li J. Size engineering of 2D MOF nanosheets for enhanced photodynamic antimicrobial therapy. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Selective gradient separation of aminophenol isomers by cucurbit[6]uril. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Luo Y, Zhang W, Yang XN, Yang MX, Min W, Tao Z, Xiao X. Cucurbit[10]uril-Based Orthogonal Supramolecular Polymers with Host-Guest and Coordination Interactions and Its Applications in Anion Classification. Inorg Chem 2022; 61:16678-16684. [PMID: 36206319 DOI: 10.1021/acs.inorgchem.2c02333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel orthogonal supramolecular polymer (Q[10]-TPDPB-Lu3+) in a host-guest ratio of 2:1 was successfully constructed utilizing the specificity and excellent cavity matching of Q[10] with the tripyridine derivatives (TPDPB). Significantly, non-covalent interactions between Q[10]'s hydrophobic cavities and Lu3+ were used to induce charge transfer of TPDPB to TPDPB and TPDPB to Lu3+, resulting in the construction of structurally interesting orthogonal assemblies with excellent fluorescence properties. Finally, the Q[10]-TPDPB-Lu3+ assemblies were shown to have good recognition and classification of strong and weak acid anions as well as iodide anions, and the classification was accompanied by a clear fluorescence emission change allowing visual observation.
Collapse
Affiliation(s)
- Yang Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Wei Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xi Nan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Mao Xia Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Wen Min
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
13
|
Bacteria-targeting photoactivated antibacterial nanosystem based on oligoalginate-protoporphyrin IX for plant disease treatment. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Feng Q, Yang T, Ma L, Li X, Yuan H, Zhang M, Zhang Y, Fan L. Morpholine-Functionalized Multicomponent Metallacage as a Vector for Lysosome-Targeted Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38594-38603. [PMID: 35981928 DOI: 10.1021/acsami.2c11662] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metallacages with suitable cavities and specific functions are promising delivery vectors in biological systems. Herein, we report a morpholine-functionalized metallacage for lysosome-targeted cell imaging. The efficient host-guest interactions between the metallacage and dyes prevent them from aggregation, so their emission in aqueous solutions is well maintained. The fluorescence quantum yield of these host-guest complexes reaches 74.40%. Therefore, the metallacage is further employed as a vector to deliver dyes with different emission colors (blue, green, and red) into lysosomes for targeted imaging. This research affords a type of vector for the delivery of various cargos toward biological applications, which will enrich the usage of metallacages in biomedical engineering.
Collapse
Affiliation(s)
- Qian Feng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Lihong Fan
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| |
Collapse
|
15
|
Liu M, Cen R, Li J, Li Q, Tao Z, Xiao X, Isaacs L. Double‐Cavity
Nor
‐
Seco
‐Cucurbit[10]uril Enables Efficient and Rapid Separation of Pyridine from Mixtures of Toluene, Benzene, and Pyridine. Angew Chem Int Ed Engl 2022; 61:e202207209. [DOI: 10.1002/anie.202207209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ming Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Ran Cen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Jisen Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Qing Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Zhu Tao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Xin Xiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry University of Maryland, College Park College Park MD 20742 USA
| |
Collapse
|
16
|
Luo Y, Zhang W, Zhao J, Yang MX, Ren Q, Redshaw C, Tao Z, Xiao X. A novel pillar[5]arene-cucurbit[10]uril based host-guest complex: Synthesis, characterization and detection of paraquat. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Liu M, Cen R, Li J, Li Q, Tao Z, Xiao X, Isaacs L. Double‐Cavity Nor‐Seco‐Cucurbit[10]uril Enables Efficient and Rapid Separation of Pyridine from Mixtures of Toluene, Benzene, and Pyridine. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ming Liu
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Ran Cen
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Jisen Li
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Qing Li
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Zhu Tao
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Xin Xiao
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Lyle Isaacs
- University of Maryland at College Park Department of Chemistry and Biochemistry Building 091 20742 College Park UNITED STATES
| |
Collapse
|
18
|
Hu H, Wang H, Yang Y, Xu JF, Zhang X. A Bacteria-Responsive Porphyrin for Adaptable Photodynamic/Photothermal Therapy. Angew Chem Int Ed Engl 2022; 61:e202200799. [PMID: 35332634 DOI: 10.1002/anie.202200799] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 12/17/2022]
Abstract
We report a cationic porphyrin 5,10,15,20-tetrakis-(4-N-methylpyridyl)-porphyrin (TMPyP) that can respond to specific bacteria, followed by adaptable photodynamic/photothermal therapy processes. TMPyP could be reduced to phlorin by facultative anaerobes with a strong reducing ability such as E. coli and S. typhimurium in hypoxic environments, possessing strong NIR absorption and remarkable photothermal conversion capacity, thus demonstrating excellent antimicrobial activity (>99 %) by photothermal therapy. While in an aerobic environment with aerobic bacteria, TMPyP functioned as a typical photosensitizer that killed bacteria effectively (>99.9 %) by photodynamic therapy. By forming a host-guest complex with cucurbit[7]uril, the biocompatibility of TMPyP significantly improved. This kind of bacteria-responsive porphyrin shows specificity and adaptivity in antimicrobial treatment and holds potential in non-invasive treatments of bacterial infections.
Collapse
Affiliation(s)
- Hao Hu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hua Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuchong Yang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
Hu H, Wang H, Yang Y, Xu J, Zhang X. A Bacteria‐Responsive Porphyrin for Adaptable Photodynamic/Photothermal Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao Hu
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Hua Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuchong Yang
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiang‐Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
20
|
Nie H, Wei Z, Ni XL, Liu Y. Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chem Rev 2022; 122:9032-9077. [PMID: 35312308 DOI: 10.1021/acs.chemrev.1c01050] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cucurbit[n]urils (Q[n]s or CB[n]s), as a classical of artificial organic macrocyclic hosts, were found to have excellent advantages in the fabricating of tunable and smart organic luminescent materials in aqueous media and the solid state with high emitting efficiency under the rigid pumpkin-shaped structure-derived macrocyclic-confinement effect in recent years. This review aims to give a systematically up-to-date overview of the Q[n]-based supramolecular organic luminescent emissions from the confined spaces triggered host-guest complexes, including the assembly fashions and the mechanisms of the macrocycle-based luminescent complexes, as well as their applications. Finally, challenges and outlook are provided. Since this class of Q[n]-based supramolecular organic luminescent emissions, which have essentially derived from the cavity-dependent confinement effect and the resulting assembly fashions, emerged only a few years ago, we hope this review will provide valuable information for the further development of macrocycle-based light-emitting materials and other related research fields.
Collapse
Affiliation(s)
- Haigen Nie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhen Wei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xin-Long Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Wang H, Xue KF, Yang Y, Hu H, Xu JF, Zhang X. In Situ Hypoxia-Induced Supramolecular Perylene Diimide Radical Anions in Tumors for Photothermal Therapy with Improved Specificity. J Am Chem Soc 2022; 144:2360-2367. [DOI: 10.1021/jacs.1c13067] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hua Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ke-Fei Xue
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuchong Yang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hao Hu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Zhang TX, Hou X, Kong Y, Yang F, Yue YX, Shah MR, Li HB, Huang F, Liu J, Guo DS. A hypoxia-responsive supramolecular formulation for imaging-guided photothermal therapy. Theranostics 2022; 12:396-409. [PMID: 34987652 PMCID: PMC8690909 DOI: 10.7150/thno.67036] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Photothermal agents (PTAs) based on organic small-molecule dyes emerge as promising theranostic strategy in imaging and photothermal therapy (PTT). However, hydrophobicity, photodegradation, and low signal-to-noise ratio impede their transformation from bench to bedside. In this study, a novel supramolecular PTT formulation by a stimuli-responsive macrocyclic host is prepared to overcome these obstacles of organic small-molecule PTAs. Methods: Sulfonated azocalix[4]arene (SAC4A) was synthesized as a hypoxia-responsive macrocyclic host. Taking IR780 as an example, the supramolecular nanoformulation IR780@SAC4A was constructed by grinding method, and its solubility, photostability, and photothermal conversion were evaluated. The hypoxia tumor-selective imaging and supramolecular PTT of IR780@SAC4A were further evaluated in vitro and in vivo. Results: IR780@SAC4A is capable of enhancing the solubility, photostability, and photothermal conversion of IR780 significantly, which achieve this supramolecular formulation with good imaging-guided PTT efficacy in vitro and in vivo. Conclusions: This study demonstrates that the supramolecular PTT strategy is a promising cancer theranostic method. Moreover, this supramolecular approach is applicative to construct kinds of supramolecular PTAs, opening a general avenue for extending smart PTT formulations.
Collapse
|
23
|
Yang Y, Pei X, Zhang S, Li Y, Yuan Y, Huang X. Dynamic reversible hydrogel-bearing cucurbit[6]uril units: Unique recognition of copper ions. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Synthesis and characterization of a sensitive and selective Fe3+ fluorescent sensor based on novel sulfonated calix[4]arene‐based host‐guest complex. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Xue EY, Shi WJ, Fong WP, Ng DKP. Targeted Delivery and Site-Specific Activation of β-Cyclodextrin-Conjugated Photosensitizers for Photodynamic Therapy through a Supramolecular Bio-orthogonal Approach. J Med Chem 2021; 64:15461-15476. [PMID: 34662121 DOI: 10.1021/acs.jmedchem.1c01505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeted delivery of photosensitizers using hydrophilic and tumor-directing carriers and site-specific activation of their photocytotoxicity are two common strategies to enhance the specificity of anticancer photodynamic therapy. We report herein a novel supramolecular bio-orthogonal approach to integrate these two functions. A β-cyclodextrin-substituted aza-boron-dipyrromethene-based photosensitizer was first complexed with a ferrocene-substituted black-hole quencher to inhibit its photosensitizing ability. Upon encountering the adamantane moieties that had been delivered to target cancer cells through specific binding of the conjugated peptide to the overexpressed epidermal growth factor receptor, the ferrocene-based guest species were displaced due to the stronger binding interactions between β-cyclodextrin and adamantane, thereby restoring the photodynamic activity of the photosensitizer. Hence, this two-step process enabled targeted delivery and site-specific activation of the photosensitizer, as demonstrated through a series of experiments in aqueous media, in a range of cancer cell lines and in tumor-bearing nude mice.
Collapse
Affiliation(s)
- Evelyn Y Xue
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wen-Jing Shi
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
26
|
Liu H, Lin M, Cui Y, Gan W, Sun J, Li B, Zhao Y. Single-crystal structures of cucurbituril-based supramolecular host-guest complexes for bioimaging. Chem Commun (Camb) 2021; 57:10190-10193. [PMID: 34519729 DOI: 10.1039/d1cc04823f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two single-crystal structures of cucurbit[n]uril mediated supramolecular complexes were obtained in which [1+3] and [2+3] self-assembly modes are adopted due to the different sizes of cucurbit[7]uril and cucurbit[8]uril. An obvious red-shift in absorption and emission was observed compared to the guest molecule itself which makes them good biolabels.
Collapse
Affiliation(s)
- Hui Liu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Min Lin
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Yu Cui
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Weijin Gan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Bo Li
- Department of Cardiology, Zibo Central Hospital, Shandong University, Zibo 255000, P. R. China.
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|