1
|
Kan X, Wang JC, Dong YB. COFs as porous organic materials for the separation and purification of ethylene from C2 hydrocarbons. Chem Commun (Camb) 2024. [PMID: 39533974 DOI: 10.1039/d4cc04439h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
With rapid societal development, there has been a significant increase in the demand for chemicals. Ethylene, as the most widely used basic chemical, is now subject to increasingly stringent quality and purity standards. The separation and purification of ethylene from C2 hydrocarbons via covalent organic frameworks (COFs) are a fascinating and challenging area of research. Compared with conventional separation techniques, COFs have demonstrated the capacity to efficiently separate and purify analogues while simultaneously reducing energy consumption. As a result, it is urgent to conduct a study on COF applications in separating and purifying ethylene from C2 hydrocarbons to foster greater advancement in this field. This review provides an overview of research on ethylene separation, discusses the results and effective strategies reported for the use of COFs in ethylene separation to date, and presents challenges encountered in the current development process. The aim of this review is to inspire the design of COFs for ethylene separation and facilitate further development in this emerging field.
Collapse
Affiliation(s)
- Xuan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
- Marine Sciences Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Qingdao 266104, P. R. China
| | - Jian-Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
2
|
Li E, Siniard KM, Yang Z, Dai S. Porous liquids: an integrated platform for gas storage and catalysis. Chem Sci 2024:d4sc04288c. [PMID: 39430938 PMCID: PMC11487929 DOI: 10.1039/d4sc04288c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Porous liquids (PLs) represent a new frontier in materials design, combining the unique features of fluidity in liquids and permanent porosity in solids. By engineering well-defined pores into liquids via designed structure modification techniques, the greatly improved free volume significantly enhances the gas transport and storage capability of PL sorbents. Triggered by the promising applications of PLs in gas separation, PLs are further explored in catalysis particularly to integrate the gas storage and catalytic transformation procedure. This emerging field has demonstrated promising progress to advance catalytic procedures using PLs as catalysts, with performance surpassing that of the pure liquid and porous host counterparts. In this perspective article, the recent discoveries and progress in the field of integrated gas storage and catalysis by leveraging the PL platforms will be summarized, particularly compared with the traditional homogeneous or heterogeneous catalytic procedures. The unique features of PLs endow them with combined merits from liquid and solid catalysts and beyond which will be illustrated first. This will be followed by the unique techniques being utilized to probe the porosity and active sites in PLs and the structural evolution during the catalytic procedures. The catalytic application of PLs will be divided by the reaction categories, including CO2-involving transformation, O2-involving reaction, H2S conversion, hydrogenation reaction, and non-gas involving cascade reactions. In each reaction type, the synthesis approaches and structure engineering techniques of PLs, structure characterization, catalytic performance evaluation, and reaction mechanism exploration will be discussed, highlighting the structure-performance relationship and the advancement benefiting from the unique features of PLs.
Collapse
Affiliation(s)
- Errui Li
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee Knoxville TN 37996 USA
| | - Kevin M Siniard
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee Knoxville TN 37996 USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee Knoxville TN 37996 USA
| |
Collapse
|
3
|
Hurlock MJ, Lu L, Sarswat A, Chang CW, Rimsza JM, Sholl DS, Lively RP, Nenoff TM. Exploitation of Pore Structure for Increased CO 2 Selectivity in Type 3 Porous Liquids. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51639-51648. [PMID: 39277871 DOI: 10.1021/acsami.4c09811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
CO2 capture requires materials with high adsorption selectivity and an industrial ease of implementation. To address these needs, a new class of porous materials was recently developed that combines the fluidity of solvents with the porosity of solids. Type 3 porous liquids (PLs) composed of solvents and metal-organic frameworks (MOFs) offer a promising alternative to current liquid carbon capture methods due to the inherent tunability of the nanoporous MOFs. However, the effects of MOF structural features and solvent properties on CO2-MOF interactions within PLs are not well understood. Herein experimental and computational data of CO2 gas adsorption isotherms were used to elucidate both solvent and pore structure influences on ZIF-based PLs. The roles of the pore structure including solvent size exclusion, structural environment, and MOF porosity on PL CO2 uptake were examined. A comparison of the pore structure and pore aperture was performed using ZIF-8, ZIF-L, and amorphous-ZIF-8. Adsorption experiments here have verified our previously proposed solvent size design principle for ZIF-based PLs (1.8× ZIF pore aperture). Furthermore, the CO2 adsorption isotherms of the ZIF-based PLs indicated that judicious selection of the pore environment allows for an increase in CO2 selectivity greater than expected from the individual PL components or their combination. This nonlinear increase in the CO2 selectivity is an emergent behavior resulting from the complex mixture of components specific to the ZIF-L + 2'-hydroxyacetophenone-based PL.
Collapse
Affiliation(s)
- Matthew J Hurlock
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Lu Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Akriti Sarswat
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chao-Wen Chang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jessica M Rimsza
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - David S Sholl
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Transformational Decarbonization Initiative, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Ryan P Lively
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tina M Nenoff
- Advanced Science and Technology, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
4
|
Rimsza JM, Duwal S, Root HD. Impact of Vertex Functionalization on Flexibility of Porous Organic Cages. ACS OMEGA 2024; 9:29025-29034. [PMID: 38973899 PMCID: PMC11223230 DOI: 10.1021/acsomega.4c04186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Efficient carbon capture requires engineered porous systems that selectively capture CO2 and have low energy regeneration pathways. Porous liquids (PLs), solvent-based systems containing permanent porosity through the incorporation of a porous host, increase the CO2 adsorption capacity. A proposed mechanism of PL regeneration is the application of isostatic pressure in which the dissolved nanoporous host is compressed to alter the stability of gases in the internal pore. This regeneration mechanism relies on the flexibility of the porous host, which can be evaluated through molecular simulations. Here, the flexibility of porous organic cages (POCs) as representative porous hosts was evaluated, during which pore windows decreased by 10-40% at 6 GPa. POCs with sterically smaller functional groups, such as the 1,2-ethane in the CC1 POC resulted in greater imine cage flexibility relative to those with sterically larger functional groups, such as the cyclohexane in the CC3 POC that protected the imine cage from the application of pressure. Structural changes in the POC also caused CO2 adsorption to be thermodynamically unfavorable beginning at ∼2.2 GPa in the CC1 POC, ∼1.1 GPa in the CC3 POC, and ∼1.0 GPa in the CC13 POC, indicating that the CO2 would be expelled from the POC at or above these pressures. Energy barriers for CO2 desorption from inside the POC varied based on the geometry of the pore window and all the POCs had at least one pore window with a sufficiently low energy barrier to allow for CO2 desorption under ambient temperatures. The results identified that flexibility of the CC1, CC3, or CC13 POCs under compression can result in the expulsion of captured gas molecules.
Collapse
Affiliation(s)
- Jessica M. Rimsza
- Geochemistry
Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Sakun Duwal
- Dynamic
Material Properties Department, Sandia National
Laboratories, Albuquerque, New Mexico 87123, United States
| | - Harrison D. Root
- Advanced
Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| |
Collapse
|
5
|
Mow R, Russell-Parks GA, Redwine GEB, Petel BE, Gennett T, Braunecker WA. Polymer-Coated Covalent Organic Frameworks as Porous Liquids for Gas Storage. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1579-1590. [PMID: 38370283 PMCID: PMC10870717 DOI: 10.1021/acs.chemmater.3c02828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/20/2024]
Abstract
Several synthetic methods have recently emerged to develop high-surface-area solid-state organic framework-based materials into free-flowing liquids with permanent porosity. The fluidity of these porous liquid (PL) materials provides them with advantages in certain storage and transport processes. However, most framework-based materials necessitate the use of cryogenic temperatures to store weakly bound gases such as H2, temperatures where PLs lose their fluidity. Covalent organic framework (COF)-based PLs that could reversibly form stable complexes with H2 near ambient temperatures would represent a promising development for gas storage and transport applications. We report here the development, characterization, and evaluation of a material with these remarkable characteristics based on Cu(I)-loaded COF colloids. Our synthetic strategy required tailoring conditions for growing robust coatings of poly(dimethylsiloxane)-methacrylate (PDMS-MA) around COF colloids using atom transfer radical polymerization (ATRP). We demonstrate exquisite control over the coating thickness on the colloidal COF, quantified by transmission electron microscopy and dynamic light scattering. The coated COF material was then suspended in a liquid polymer matrix to make a PL. CO2 isotherms confirmed that the coating preserved the general porosity of the COF in the free-flowing liquid, while CO sorption measurements using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) confirmed the preservation of Cu(I) coordination sites. We then evaluated the gas sorption phenomenon in the Cu(I)-COF-based PLs using DRIFTS and temperature-programmed desorption measurements. In addition to confirming that H2 transport is possible at or near mild refrigeration temperatures with these materials, our observations indicate that H2 diffusion is significantly influenced by the glass-transition temperature of both the coating and the liquid matrix. The latter result underscores an additional potential advantage of PLs in tailoring gas diffusion and storage temperatures through the coating composition.
Collapse
Affiliation(s)
- Rachel
E. Mow
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Glory A. Russell-Parks
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Grace E. B. Redwine
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Brittney E. Petel
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Thomas Gennett
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Wade A. Braunecker
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| |
Collapse
|
6
|
Sheng L, Wang Y, Mou X, Xu B, Chen Z. Accelerating Metal-Organic Framework Selection for Type III Porous Liquids by Synergizing Machine Learning and Molecular Simulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56253-56264. [PMID: 37988477 DOI: 10.1021/acsami.3c12507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
MOF-based type III porous liquids, comprising porous MOFs dissolved in a liquid solvent, have attracted increasing attention in carbon capture. However, discovering appropriate MOFs to prepare porous liquids was still limited in experiments, wasting time and energy. In this study, we have used the density functional theory and molecular dynamics simulation methods to identify 4530 MOF candidates as the core database based on the idea of prohibiting the pore occupancy of porous liquids by the solvent, [DBU-PEG][NTf2] ionic liquid. Based on high-throughput molecular simulation, random forest machine learning models were first trained to predict the CO2 sorption and the CO2/N2 sorption selectivity of MOFs to screen the MOFs to prepare porous liquids. The feature importance was inferred based on Shapley Additive Explanations (SHAP) interpretation, and the ranking of the top 5 descriptors for sorption/selectivity trade-off (TSN) was gravimetric surface area (GSA) > porosity > density > metal fraction > pore size distribution (PSD, 3.5-4 Å). RICBEM was predicted to be one candidate for preparing porous liquid with CO2 sorption capacity of 20.87 mmol/g and CO2/N2 sorption selectivity of 16.75. The experimental results showed that the RICBEM-based porous liquid was successfully synthesized with CO2 sorption capacity of 2.21 mmol/g and CO2/N2 sorption selectivity of 63.2, the best carbon capture performance known to date. Such a screening method would advance the screening of cores and solvents for preparing type III porous liquids with different applications by addressing corresponding factors.
Collapse
Affiliation(s)
- Lisha Sheng
- School of Energy and Environment, Southeast University, Nanjing 210000, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Nanjing 210000, P. R. China
- Key Laboratory of Inlet and Exhaust System Technology, Ministry of Education, Nanjing 210000, P. R. China
| | - Yi Wang
- School of Energy and Environment, Southeast University, Nanjing 210000, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Nanjing 210000, P. R. China
| | - Xinzhu Mou
- College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, P. R. China
| | - Bo Xu
- School of Energy and Environment, Southeast University, Nanjing 210000, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Nanjing 210000, P. R. China
| | - Zhenqian Chen
- School of Energy and Environment, Southeast University, Nanjing 210000, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Nanjing 210000, P. R. China
- Jiangsu Province Key Laboratory of Solar Energy Science and Technology, Nanjing 210000, P. R. China
| |
Collapse
|
7
|
Shu C, Zhao M, Cheng H, Deng Y, Stiernet P, Hedin N, Yuan J. Desulfurization of diesel via joint adsorption and extraction using a porous liquid derived from ZIF-8 and a phosphonium-type ionic liquid. REACT CHEM ENG 2023; 8:3124-3132. [PMID: 38024524 PMCID: PMC10660146 DOI: 10.1039/d3re00364g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/26/2023] [Indexed: 12/01/2023]
Abstract
A type-III porous liquid based on zeolitic imidazolate framework-8 (ZIF-8) and an ionic liquid trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide ([THTDP][BTI]) was synthesized and used for the desulfurization of model diesel. The desulfurization effect by ZIF-8/[THTDP][BTI] combined both the adsorptive desulfurization by ZIF-8 and the extraction desulfurization by [THTDP][BTI]. The removal of the three chosen aromatic organic sulfides by the ZIF-8/[THTDP][BTI] porous liquid followed the order of dibenzothiophene (73.1%) > benzothiophene (70.0%) > thiophene (61.5%). It was further found that deep desulfurization could be realized by ZIF-8/[THTDP][BTI] through triple desulfurization cycles and ZIF-8/[THTDP][BTI] can be regenerated readily. The desulfurization mechanism was explored further in detail by conformation search and density functional theory calculations. Calculations supported that the large molecular volume of [THTDP][BTI] excluded itself from the cavities of ZIF-8, making the pores of ZIF-8 in the porous liquid unoccupied and accessible by other guest species, here the studied organic sulfides. These calculations indicate that the van der Waals interactions were the main interactions between ZIF-8/[THTDP][BTI] and specifically benzothiophene. This work supports that the porous liquid ZIF-8/[THTDP][BTI] could potentially be used for desulfurization of diesel in industry.
Collapse
Affiliation(s)
- Chenhua Shu
- School of Chemistry and Environmental Science, Shangrao Normal University Shangrao 334001 China
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm 10691 Sweden
| | - Min Zhao
- School of Chemistry and Environmental Science, Shangrao Normal University Shangrao 334001 China
| | - Hua Cheng
- School of Chemistry and Environmental Science, Shangrao Normal University Shangrao 334001 China
| | - Yajie Deng
- School of Chemistry and Environmental Science, Shangrao Normal University Shangrao 334001 China
| | - Pierre Stiernet
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm 10691 Sweden
| | - Niklas Hedin
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm 10691 Sweden
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm 10691 Sweden
| |
Collapse
|
8
|
Li X, Mao Z, He Z, Su F, Li M, Jiang M, Chao S, Zheng Y, Liang J. Hierarchical Yolk-Shell Porous Ionic Liquids with Lower Viscosity for Efficient C 3H 6/C 3H 8 Adsorption and Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37879671 DOI: 10.1021/acsami.3c10874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Yolk-shell metal-organic framework (YS-MOF) liquids are candidate materials in large-size species with high-efficiency separation, owing to their hierarchical porosity, faster mass transfer, better compatibility, and higher solution processability than MOF liquids with micropores. Nevertheless, facile synthesis strategies of yolk-shell porous ionic liquids (YSPILs) with regulations of size and morphology are an ongoing challenge. Herein, we propose a general strategy to construct YSPILs based on Z67@PDA with tunable core sizes and morphologies. Benefiting from the unique hierarchical yolk-shell structure, as-prepared YSPILs exhibit promise in C3H6/C3H8 capture and separation with the increased sizes of core in yolk-shell ZIF-67@PDA. Advanced YS-MOF liquids have improved the adsorption properties and increased our ability to tailor chemical composition and pore architecture. Impressively, the adsorption capacity of C3H6 and C3H8 of YSPILs exhibits an approximately 3-fold enhancement compared with that of the neat ILs, confirming that the accessible porosities are retained. Effective C3H6/C3H8 separation performance of YSPILs over PILs based on ZIF-67, revealing the hierarchical porosity of YS-Z67@PDA liquids, benefits larger-size gas separation. Therefore, we believe that this work can not only help us to rationally design novel hierarchically porous ionic liquids but also promote candidate applications in large-size species separation, catalysis, and nanoreactors.
Collapse
Affiliation(s)
- Xiaoqian Li
- Department of Ultrasonic Medicine, 3D Printing Research Center, Tang Du Hospital, Air Force Medical University, No. 569 of Xin Si Road, Xi'an, Shaanxi 710038. P. R. China
| | - Zhuojun Mao
- Department of Ultrasonic Medicine, 3D Printing Research Center, Tang Du Hospital, Air Force Medical University, No. 569 of Xin Si Road, Xi'an, Shaanxi 710038. P. R. China
| | - Zhongjie He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Fangfang Su
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Mingtao Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Maogang Jiang
- Department of Ultrasonic Medicine, 3D Printing Research Center, Tang Du Hospital, Air Force Medical University, No. 569 of Xin Si Road, Xi'an, Shaanxi 710038. P. R. China
| | - Shuaijun Chao
- School of Mechanical Engineering, Xi'an Jiaotong University, No. 28, Xian Ning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yaping Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Jiahe Liang
- Department of Ultrasonic Medicine, 3D Printing Research Center, Tang Du Hospital, Air Force Medical University, No. 569 of Xin Si Road, Xi'an, Shaanxi 710038. P. R. China
| |
Collapse
|
9
|
Abstract
Metal-organic frameworks (MOFs) and ionic liquids (ILs) represent promising materials for adsorption separation. ILs incorporated into MOF materials (denoted as IL/MOF composites) have been developed, and IL/MOF composites combine the advantages of MOFs and ILs to achieve enhanced performance in the adsorption-based separation of fluid mixtures. The designed different ILs are introduced into the various MOFs to tailor their functional properties, which affect the optimal adsorptive separation performance. In this Perspective, the rational fabrication of IL/MOF composites is presented, and their functional properties are demonstrated. This paper provides a critical overview of an emergent class of materials termed IL/MOF composites as well as the recent advances in the applications of IL/MOF composites as adsorbents or membranes in fluid separation. Furthermore, the applications of IL/MOF in adsorptive gas separations (CO2 capture from flue gas, natural gas purification, separation of acetylene and ethylene, indoor pollutants removal) and liquid separations (separation of bioactive components, organic-contaminant removal, adsorptive desulfurization, radionuclide removal) are discussed. Finally, the existing challenges of IL/MOF are highlighted, and an appropriate design strategy direction for the effective exploration of new IL/MOF adsorptive materials is proposed.
Collapse
Affiliation(s)
- Xueqin Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
10
|
Borne I, Saigal K, Jones CW, Lively RP. Thermodynamic Evidence for Type II Porous Liquids. Ind Eng Chem Res 2023; 62:11689-11696. [PMID: 37520782 PMCID: PMC10375470 DOI: 10.1021/acs.iecr.3c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Porous liquids are an emerging class of microporous materials where intrinsic, stable porosity is imbued in a liquid material. Many porous liquids are prepared by dispersing porous solids in bulky solvents; these can be contrasted by the method of dissolving microporous molecules. We highlight the latter "Type II" porous liquids-which are stable thermodynamic solutions with demonstrable colligative properties. This feature significantly impacts the ultimate utility of the liquid for various end-use applications. We also describe a facile method for determining if a Type II porous liquid candidate is "porous" based on assessing the partial molar volume of the porous host molecule dissolved in the solvent by measuring the densities of candidate solutions. Conventional CO2 isotherms confirm the porosity of the porous liquids and corroborate the facile density method.
Collapse
|
11
|
Koutsianos A, Pallach R, Frentzel-Beyme L, Das C, Paulus M, Sternemann C, Henke S. Breathing porous liquids based on responsive metal-organic framework particles. Nat Commun 2023; 14:4200. [PMID: 37452021 PMCID: PMC10349080 DOI: 10.1038/s41467-023-39887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Responsive metal-organic frameworks (MOFs) that display sigmoidal gas sorption isotherms triggered by discrete gas pressure-induced structural transformations are highly promising materials for energy related applications. However, their lack of transportability via continuous flow hinders their application in systems and designs that rely on liquid agents. We herein present examples of responsive liquid systems which exhibit a breathing behaviour and show step-shaped gas sorption isotherms, akin to the distinct oxygen saturation curve of haemoglobin in blood. Dispersions of flexible MOF nanocrystals in a size-excluded silicone oil form stable porous liquids exhibiting gated uptake for CO2, propane and propylene, as characterized by sigmoidal gas sorption isotherms with distinct transition steps. In situ X-ray diffraction studies show that the sigmoidal gas sorption curve is caused by a narrow pore to large pore phase transformation of the flexible MOF nanocrystals, which respond to gas pressure despite being dispersed in silicone oil. Given the established flexible nature and tunability of a range of MOFs, these results herald the advent of breathing porous liquids whose sorption properties can be tuned rationally for a variety of technological applications.
Collapse
Affiliation(s)
- Athanasios Koutsianos
- Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Roman Pallach
- Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Louis Frentzel-Beyme
- Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Chinmoy Das
- Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, Maria-Goeppert-Mayer Str. 2, 44221, Dortmund, Germany
| | - Christian Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, Maria-Goeppert-Mayer Str. 2, 44221, Dortmund, Germany
| | - Sebastian Henke
- Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany.
| |
Collapse
|
12
|
McCalmont SH, Vaz ICM, Oorts H, Gong Z, Moura L, Costa Gomes M. Insights into the Absorption of Hydrocarbon Gases in Phosphorus-Containing Ionic Liquids. J Phys Chem B 2023; 127:3402-3415. [PMID: 36867065 DOI: 10.1021/acs.jpcb.2c08051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The solubility of ethane, ethylene, propane, and propylene was measured in two phosphorus-containing ionic liquids, trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate, [P6,6,6,14][DiOP], and 1-butyl-3-methylimidazolium dimethylphosphate, [C4C1Im][DMP], using an isochoric saturation method. The ionic liquid [C4C1Im][DMP] absorbed between 1 and 20 molecules of gas per 1000 ion pairs, at 313 K and 0.1 MPa, while [P6,6,6,14][DiOP] absorbed up to 169 molecules of propane per 1000 ion pairs under the same conditions. [C4C1Im][DMP] had a higher capacity to absorb olefins than paraffins, while the opposite was true for [P6,6,6,14][DiOP], with the former being slightly more selective than the later. From the analysis of the thermodynamic properties of solvation, we concluded that in both ionic liquids and for all of the studied gases the solvation is ruled by the entropy, even if its contribution is unfavorable. These results, together with density measurements, 2D NMR studies, and self-diffusion coefficients suggest that the gases' solubility is ruled mostly by nonspecific interactions with the ionic liquids and that the looser ion packing in [P6,6,6,14][DiOP] makes it easier to accommodate the gases compared to [C4C1Im][DMP].
Collapse
Affiliation(s)
- Sam H McCalmont
- QUILL Research Centre, Queen's University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, U.K
| | - Inês C M Vaz
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Hanne Oorts
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Zheng Gong
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Leila Moura
- QUILL Research Centre, Queen's University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, U.K
| | - Margarida Costa Gomes
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| |
Collapse
|
13
|
Rimsza J, Nenoff TM. Design of Enhanced Porous Organic Cage Solubility in Type 2 Porous Liquids. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
14
|
Brand MC, Rankin N, Cooper AI, Greenaway RL. Photoresponsive Type III Porous Liquids. Chemistry 2023; 29:e202202848. [PMID: 36250279 PMCID: PMC10108065 DOI: 10.1002/chem.202202848] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Indexed: 11/05/2022]
Abstract
Porous materials are the subject of extensive research because of potential applications in areas such as gas adsorption and molecular separations. Until recently, most porous materials were solids, but there is now an emerging class of materials known as porous liquids. The incorporation of intrinsic porosity or cavities in a liquid can result in free-flowing materials that are capable of gas uptakes that are significantly higher than conventional non-porous liquids. A handful of porous liquids have also been investigated for gas separations. Until now, the release of gas from porous liquids has relied on molecular displacement (e.g., by adding small solvent molecules), pressure or temperature swings, or sonication. Here, we explore a new method of gas release which involves photoisomerisable porous liquids comprising a photoresponsive MOF dispersed in an ionic liquid. This results in the selective uptake of CO2 over CH4 and allows gas release to be controlled by using UV light.
Collapse
Affiliation(s)
- Michael C. Brand
- Department of ChemistryMaterials Innovation FactoryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
- Leverhulme Research Centre for Functional Materials DesignMaterials Innovation Factory and Department of ChemistryUniversity of LiverpoolLiverpoolL7 3NYUK
| | - Nicola Rankin
- Department of ChemistryMaterials Innovation FactoryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
- Leverhulme Research Centre for Functional Materials DesignMaterials Innovation Factory and Department of ChemistryUniversity of LiverpoolLiverpoolL7 3NYUK
| | - Andrew I. Cooper
- Department of ChemistryMaterials Innovation FactoryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
- Leverhulme Research Centre for Functional Materials DesignMaterials Innovation Factory and Department of ChemistryUniversity of LiverpoolLiverpoolL7 3NYUK
| | - Rebecca L. Greenaway
- Department of ChemistryMaterials Innovation FactoryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
- Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood LaneLondonW12 0BZUK
| |
Collapse
|
15
|
Boventi M, Mauri M, Alexander F, James SL, Simonutti R, Castiglione F. Exploring cavities in Type II Porous Liquids with Xenon. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Borne I, Simon N, Jones CW, Lively RP. Design of Gas Separation Processes Using Type II Porous Liquids as Physical Solvents. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Isaiah Borne
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Natalie Simon
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ryan P. Lively
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
17
|
Mahdavi H, Smith SJD, Mulet X, Hill MR. Practical considerations in the design and use of porous liquids. MATERIALS HORIZONS 2022; 9:1577-1601. [PMID: 35373794 DOI: 10.1039/d1mh01616d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The possibility of creating well-controlled empty space within liquids is conceptually intriguing, and from an application perspective, full of potential. Since the concept of porous liquids (PLs) arose several years ago, research efforts in this field have intensified. This review highlights the design, synthesis, and applicability of PLs through a thorough examination of the current state-of-the-art. Following a detailed examination of the fundamentals of PLs, we examine the different synthetic approaches proposed to date, discuss the nature of PLs, and their pathway from the laboratory to practical application. Finally, possible challenges and opportunities are outlined.
Collapse
Affiliation(s)
| | - Stefan J D Smith
- Department of Chemical Engineering, Monash University, Australia.
- CSIRO, Bag 10, Clayton South, VIC 3169, Australia.
| | - Xavier Mulet
- CSIRO, Bag 10, Clayton South, VIC 3169, Australia.
| | - Matthew R Hill
- Department of Chemical Engineering, Monash University, Australia.
- CSIRO, Bag 10, Clayton South, VIC 3169, Australia.
| |
Collapse
|
18
|
Egleston BD, Mroz A, Jelfs KE, Greenaway RL. Porous liquids - the future is looking emptier. Chem Sci 2022; 13:5042-5054. [PMID: 35655552 PMCID: PMC9093153 DOI: 10.1039/d2sc00087c] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/11/2022] [Indexed: 01/01/2023] Open
Abstract
The development of microporosity in the liquid state is leading to an inherent change in the way we approach applications of functional porosity, potentially allowing access to new processes by exploiting the fluidity of these new materials. By engineering permanent porosity into a liquid, over the transient intermolecular porosity in all liquids, it is possible to design and form a porous liquid. Since the concept was proposed in 2007, and the first examples realised in 2015, the field has seen rapid advances among the types and numbers of porous liquids developed, our understanding of the structure and properties, as well as improvements in gas uptake and molecular separations. However, despite these recent advances, the field is still young, and with only a few applications reported to date, the potential that porous liquids have to transform the field of microporous materials remains largely untapped. In this review, we will explore the theory and conception of porous liquids and cover major advances in the area, key experimental characterisation techniques and computational approaches that have been employed to understand these systems, and summarise the investigated applications of porous liquids that have been presented to date. We also outline an emerging discovery workflow with recommendations for the characterisation required at each stage to both confirm permanent porosity and fully understand the physical properties of the porous liquid.
Collapse
Affiliation(s)
- Benjamin D Egleston
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| | - Austin Mroz
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| | - Rebecca L Greenaway
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
19
|
Zhang Z, Yang B, Zhang B, Cui M, Tang J, Qiao X. Type II porous ionic liquid based on metal-organic cages that enables L-tryptophan identification. Nat Commun 2022; 13:2353. [PMID: 35487897 PMCID: PMC9054828 DOI: 10.1038/s41467-022-30092-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Porous liquids with chemical separation properties are quite well-studied in general, but there is only a handful of reports in the context of identification and separation of non-gaseous molecules. Herein, we report a Type II porous ionic liquid composed of coordination cages that exhibits exceptional selectivity towards L-tryptophan (L-Trp) over other aromatic amino acids. A previously known class of anionic organic-inorganic hybrid doughnut-like cage (HD) is dissolved in trihexyltetradecylphosphonium chloride (THTP_Cl). The resulting liquid, HD/THTP_Cl, is thereby composed of common components, facile to prepare, and exhibit room temperature fluidity. The permanent porosity is manifested by the high-pressure isotherm for CH4 and modeling studies. With evidence from time-dependent amino acid uptake, competitive extraction studies and molecular dynamic simulations, HD/THTP_Cl exhibit better selectivity towards L-Trp than other solid state sorbents, and we attribute it to not only the intrinsic porosity of HD but also the host-guest interactions between HD and L-Trp. Specifically, each HD unit is filled with nearly 5 L-Trp molecules, which is higher than the L-Trp occupation in the structure unit of other benchmark metal-organic frameworks.
Collapse
Affiliation(s)
- Zhuxiu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China
| | - Baolin Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China
| | - Bingjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China
| | - Mifen Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China
| | - Jihai Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China.
- Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), No. 5 Xinmofan Road, 210009, Nanjing, China.
| | - Xu Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China.
- Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), No. 5 Xinmofan Road, 210009, Nanjing, China.
| |
Collapse
|
20
|
Rimsza JM, Nenoff TM. Porous Liquids: Computational Design for Targeted Gas Adsorption. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18005-18015. [PMID: 35420771 DOI: 10.1021/acsami.2c03108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this Perspective, we present the unique gas adsorption capabilities of porous liquids (PLs) and the value of complex computational methods in the design of PL compositions. Traditionally, liquids only contain transient pore space between molecules that limit long-term gas capture. However, PLs are stable fluids that that contain permanent porosity due to the combination of a rigid porous host structure and a solvent. PLs exhibit remarkable adsorption and separation properties, including increased solubility and selectivity. The unique gas adsorption properties of PLs are based on their structure, which exhibits multiple gas binding sites in the pore and on the cage surface, varying binding mechanisms including hydrogen-bonding and π-π interactions, and selective diffusion in the solvent. Tunable PL compositions will require fundamental investigations of competitive gas binding mechanisms, thermal effects on binding site stability, and the role of nanoconfinement on gas and solvent diffusion that can be accelerated through molecular modeling. With these new insights PLs promise to be an exceptional material class with tunable properties for targeted gas adsorption.
Collapse
Affiliation(s)
- Jessica M Rimsza
- Geochemistry Department, Sandia National Laboratories, Albuquerque 87185-5820, New Mexico, United States
| | - Tina M Nenoff
- Material, Physical, and Chemical Sciences, Sandia National Laboratories, Albuquerque 87185-5820, New Mexico, United States
| |
Collapse
|
21
|
Chang CW, Borne I, Lawler RM, Yu Z, Jang SS, Lively RP, Sholl DS. Accelerating Solvent Selection for Type II Porous Liquids. J Am Chem Soc 2022; 144:4071-4079. [PMID: 35170940 DOI: 10.1021/jacs.1c13049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type II porous liquids, comprising intrinsically porous molecules dissolved in a liquid solvent, potentially combine the adsorption properties of porous adsorbents with the handling advantages of liquids. Previously, discovery of appropriate solvents to make porous liquids had been limited to direct experimental tests. We demonstrate an efficient screening approach for this task that uses COSMO-RS calculations, predictions of solvent pKa values from a machine-learning model, and several other features and apply this approach to select solvents from a library of more than 11,000 compounds. This method is shown to give qualitative agreement with experimental observations for two molecular cages, CC13 and TG-TFB-CHEDA, identifying solvents with higher solubility for these molecules than had previously been known. Ultimately, the algorithm streamlines the downselection of suitable solvents for porous organic cages to enable more rapid discovery of Type II porous liquids.
Collapse
Affiliation(s)
- Chao-Wen Chang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Isaiah Borne
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Robin M Lawler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhenzi Yu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Seung Soon Jang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ryan P Lively
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David S Sholl
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Oak Ridge National Laboratory, Oak Ridge, Tennessee 37839, United States
| |
Collapse
|
22
|
Li X, Zhang J, Su F, Wang D, Yao D, Zheng Y. Construction and Application of Porous Ionic Liquids. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Alexander FM, Fonrouge SF, Borioni JL, Del Pópolo MG, Horton PN, Coles SJ, Hutchings BP, Crawford DE, James SL. Noria and its derivatives as hosts for chemically and thermally robust Type II porous liquids. Chem Sci 2021; 12:14230-14240. [PMID: 34760209 PMCID: PMC8565397 DOI: 10.1039/d1sc03367k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/10/2021] [Indexed: 11/21/2022] Open
Abstract
Porous Liquids (PLs) are a new class of material that possess both fluidity and permanent porosity. As such they can act as enhanced, selective solvents and may ultimately find applications which are not possible for porous solids, such as continuous flow separation processes. Type II PLs consist of empty molecular hosts dissolved in size-excluded solvents and to date have mainly been based on hosts that have limited chemical and thermal stability. Here we identify Noria, a rigid cyclic oligomer as a new host for the synthesis of more robust Type II PLs. Although the structure of Noria is well-documented, we find that literature has overlooked the true composition of bulk Noria samples. We find that bulk samples typically consist of Noria (ca. 40%), a Noria isomer, specifically a resorcinarene trimer, “R3” (ca. 30%) and other unidentified oligomers (ca. 30%). Noria has been characterised crystallographically as a diethyl ether solvate and its 1H NMR spectrum fully assigned for the first time. The previously postulated but unreported R3 has also been characterised crystallographically as a dimethyl sulfoxide solvate, which confirms its alternative connectivity to Noria. Noria and R3 have low solubility which precludes their use in Type II PLs, however, the partially ethylated derivative Noria-OEt dissolves in the size-excluded solvent 15-crown-5 to give a new Type II PL. This PL exhibits enhanced uptake of methane (CH4) gas supporting the presence of empty pores in the liquid. Detailed molecular dynamics simulations support the existence of pores in the liquid and show that occupation of the pores by CH4 is favoured. Overall, this work revises the general accepted composition of bulk Noria samples and shows that Noria derivatives are appropriate for the synthesis of more robust Type II PLs. Porous Liquids (PLs) are a new class of material that possess both fluidity and permanent porosity. Here we identify Noria, a rigid cyclic oligomer as a new host for the synthesis of more robust Type II PLs.![]()
Collapse
Affiliation(s)
- Francesca M Alexander
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road Belfast BT7 1NN UK
| | - Sergio F Fonrouge
- ICB-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo Padre Jorge Contreras 1300 Mendoza M5502 JMA Argentina
| | - José L Borioni
- ICB-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo Padre Jorge Contreras 1300 Mendoza M5502 JMA Argentina
| | - Mario G Del Pópolo
- ICB-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo Padre Jorge Contreras 1300 Mendoza M5502 JMA Argentina
| | - Peter N Horton
- EPSRC National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton Southampton SO17 1BJ UK
| | - Simon J Coles
- EPSRC National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton Southampton SO17 1BJ UK
| | - Benjamin P Hutchings
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road Belfast BT7 1NN UK
| | - Deborah E Crawford
- School of Chemistry and Bioscience, University of Bradford Richmond Road Bradford BD7 1DP UK
| | - Stuart L James
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road Belfast BT7 1NN UK
| |
Collapse
|
24
|
Bhattacharjee A, Kumar R, Sharma KP. Composite Porous Liquid for Recyclable Sequestration, Storage and In Situ Catalytic Conversion of Carbon Dioxide at Room Temperature. CHEMSUSCHEM 2021; 14:3303-3314. [PMID: 34196112 DOI: 10.1002/cssc.202100931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Permanent pores combined with fluidity renders flow processability to porous liquids otherwise not seen in porous solids. Although porous liquids have been utilized for sequestration of different gases and their separation, there is still a dearth of studies for deploying in situ chemical reactions to convert adsorbed gases into utility chemicals. Here, we show the design and development of a new type of solvent-less and hybrid (meso-)porous liquid composite, which, as demonstrated for the first time, can be used for in situ carbon mineralization of adsorbed CO2 . The recyclable porous liquid composite comprising polymer-surfactant modified hollow silica nanorods and carbonic anhydrase enzyme not only sequesters (5.5 cm3 g-1 at 273 K and 1 atm) and stores CO2 but is also capable of driving an in situ enzymatic reaction for hydration of CO2 to HCO3 - ion, subsequently converting it to CaCO3 due to reaction with pre-dissolved Ca2+ . Light and electron microscopy combined with X-ray diffraction reveals the nucleation and growth of calcite and aragonite crystals. Moreover, the liquid-like property of the porous composite material can be harnessed by executing the same reaction via diffusion of complimentary Ca2+ and HCO3 - ions through different compartments separated by an interfacial channel. These studies provide a proof of concept of deploying chemical reactions within porous liquids for developing utility chemical from adsorbed molecules.
Collapse
Affiliation(s)
- Archita Bhattacharjee
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Raj Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Kamendra P Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|