1
|
Mossayebi Z, Shabani S, Easton CD, Gurr PA, Simons R, Qiao GG. Amphiphilic Nanoscale Antifog Coatings: Improved Chemical Robustness by Continuous Assembly of Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402114. [PMID: 38989698 DOI: 10.1002/smll.202402114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Designing effective antifog coatings poses challenges in resisting physical and chemical damage, with persistent susceptibility to decomposition in aggressive environments. As their robustness is dictated by physicochemical structural features, precise control through unique fabrication strategies is crucial. To address this challenge, a novel method for crafting nanoscale antifog films with simultaneous directional growth and cross-linking is presented, utilizing solid-state continuous assembly of polymers via ring-opening metathesis polymerization (ssCAPROMP). A new amphiphilic copolymer (specified as macrocross-linker) is designed by incorporating polydimethylsiloxane, poly(2-(methacryloyloxy)ethyl) trimethylammonium chloride (PMETAC), and polymerizable norbornene (NB) pendant groups, allowing ssCAPROMP to produce antifog films under ambient conditions. This novel approach results in distinctive surface and molecular characteristics. Adjusting water-absorption and nanoscale assembly parameters produced ultra-thin (≤100 nm) antifog films with enhanced durability, particularly against strong acidic and alkaline environments, surpassing commercial antifog glasses. Thickness loss analysis against external disturbances further validated the stable surface-tethered chemistries introduced through ssCAPROMP, even with the incorporation of minimal content of cross-linkable NB moieties (5 mol%). Additionally, a potential zwitter-wettability mechanism elucidates antifog observations. This work establishes a unique avenue for exploring nanoengineered antifog coatings through facile and robust surface chemistries.
Collapse
Affiliation(s)
- Zahra Mossayebi
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
- CSIRO Manufacturing, Melbourne, Victoria, 3169, Australia
| | - Sadegh Shabani
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | | - Paul A Gurr
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Ranya Simons
- CSIRO Manufacturing, Melbourne, Victoria, 3169, Australia
| | - Greg G Qiao
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
2
|
Hernández-Contreras M, Cruz J, Gurrola M, Pamplona Solis B, Vega-Azamar R. Application of nanosilica in the construction industry: A bibliometric analysis using Methodi Ordinatio. MethodsX 2024; 12:102642. [PMID: 38660026 PMCID: PMC11041844 DOI: 10.1016/j.mex.2024.102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/29/2024] [Indexed: 04/26/2024] Open
Abstract
The number of publications related to the implementation of nanotechnology in the construction industry, and specifically to the application of nanosilica (SiO2), has had a constant increase in recent years. Based on this, in the present work, an analysis was carried out using bibliometric techniques, with the aim at characterizing the development of specialized literature and identifying the largest areas of growth in the field, maintaining hydrophobic nanosilica as the research guideline. This analysis acquired information from the Scopus and Web of Science (WoS) databases to compare bibliometric indicators of the publications. It should be noted that, even though bibliometric analysis is useful to identify the study areas of greatest interest, to complement this work, the implementation of a method that helped in the research process to obtain the most important bibliography was required. This study implemented Methodi Ordinatio, which helped to take a new direction. Therefore, based on this method, a list of articles cataloged and ranked is obtained, which is the basis for integrating the final bibliographic portfolio. •The study applies the Methodi Ordinatio to obtain a portfolio of the most relevant articles to guide the researchers' work.•Insightful information can be obtained using VOSviewer to analyze and visualize metadata of the bibliographic portfolio.•The study demonstrates how the alpha value in the InOrdinatio formula modifies the resulting portfolio.
Collapse
Affiliation(s)
- M. Hernández-Contreras
- TecNM/ Instituto Tecnológico de Chetumal, Av. Insurgentes 330, Chetumal, QR 77013, Mexico
| | - J.C. Cruz
- TecNM/ Instituto Tecnológico de Chetumal, Av. Insurgentes 330, Chetumal, QR 77013, Mexico
| | - M.P. Gurrola
- IxM-CONAHCYT-Tecnológico Nacional de México/I.T. Chetumal, Insurgentes 330, Chetumal, QR 77013, Mexico
| | - B. Pamplona Solis
- TecNM/ Instituto Tecnológico de Chetumal, Av. Insurgentes 330, Chetumal, QR 77013, Mexico
| | - R.E. Vega-Azamar
- TecNM/ Instituto Tecnológico de Chetumal, Av. Insurgentes 330, Chetumal, QR 77013, Mexico
| |
Collapse
|
3
|
Gao H, Xing Z, Liu J, Chen X, Zhou N, Zheng Y, Tang L, Jin L, Gao J, Meng Z. Bioinspired Photoelectronic Synergy Coating with Antifogging and Antibacterial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10589-10599. [PMID: 38728854 DOI: 10.1021/acs.langmuir.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Optically transparent glass with antifogging and antibacterial properties is in high demand for endoscopes, goggles, and medical display equipment. However, many of the previously reported coatings have limitations in terms of long-term antifogging and efficient antibacterial properties, environmental friendliness, and versatility. In this study, inspired by catfish and sphagnum moss, a novel photoelectronic synergy antifogging and antibacterial coating was prepared by cross-linking polyethylenimine-modified titanium dioxide (PEI-TiO2), polyvinylpyrrolidone (PVP), and poly(acrylic acid) (PAA). The as-prepared coating could remain fog-free under hot steam for more than 40 min. The experimental results indicate that the long-term antifogging properties are due to the water absorption and spreading characteristics. Moreover, the organic-inorganic hybrid of PEI and TiO2 was first applied to enhance the antibacterial performance. The Staphylococcus aureus and the Escherichia coli growth inhibition rates of the as-prepared coating reached 97 and 96% respectively. A photoelectronic synergy antifogging and antibacterial mechanism based on the positive electrical and photocatalytic properties of PEI-TiO2 was proposed. This investigation provides insight into designing multifunctional bioinspired surface materials to realize antifogging and antibacterial that can be applied to medicine and daily lives.
Collapse
Affiliation(s)
- Hanpeng Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Zetian Xing
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jiaxi Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P. R. China
| | - Xiaomin Chen
- Department of Nursing, First Hospital of Qinhuangdao, Qinhuangdao 066000, P. R. China
| | - Na Zhou
- Department of Nursing, First Hospital of Qinhuangdao, Qinhuangdao 066000, P. R. China
| | - Ying Zheng
- Department of Nursing, First Hospital of Qinhuangdao, Qinhuangdao 066000, P. R. China
| | - Lianlian Tang
- Department of Nursing, First Hospital of Qinhuangdao, Qinhuangdao 066000, P. R. China
| | - Liang Jin
- Department of Clinical Laboratory, First Hospital of Qinhuangdao, Qinhuangdao 066000, P. R. China
| | - Jun Gao
- Department of Nursing, First Hospital of Qinhuangdao, Qinhuangdao 066000, P. R. China
| | - Zong Meng
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| |
Collapse
|
4
|
Yamashita N, Yamaoka K, Ikura R, Yoshida D, Park J, Kato N, Kamei M, Ogura K, Igarashi M, Nakagawa H, Takashima Y. Enhancement of the mechanical properties of organic-inorganic hybrid elastomers by introducing movable and reversible crosslinks. SOFT MATTER 2023; 19:9074-9081. [PMID: 37987102 DOI: 10.1039/d3sm01101a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Organic-inorganic materials have been widely utilized in various fields as multifunctional materials. Poly(dimethyl siloxane) (PDMS), a typical inorganic polymer, has industrially appealing functions, such as transparency, biocompatibility, and gas permeability; however, it has poor mechanical properties. We incorporated organic-inorganic hybrid elastomers (PDMS-γCD-AAl⊃P(EA-HEMA) (x)) with movable crosslinks, and we utilized hydrogen bonds as reversible crosslinks. The organic polymer poly ethyl acrylate-r-hydroxy ethyl methacrylate (P(EA-HEMA)) penetrated the cavity of triacetylated γ-cyclodextrin (γCD), which was introduced into the side chains of PDMS, and it compounded with PDMS at the nanoscale. Structural studies involving visual and X-ray scattering measurements revealed that movable crosslinks improved the compatibility levels of PDMS and acrylate copolymers. However, macroscopic phase separation occurred when the number of reversible crosslinks increased. Furthermore, studies on the mobility levels of acrylate copolymers and movable crosslinks indicated that the relaxation behaviour of PDMS-γCD-AAl⊃P(EA-HEMA) (x) changed with changing numbers of reversible crosslinks. Introducing reversible crosslinks improved the Young's modulus and toughness values. The movable and reversible crosslinks between the organic and inorganic polymers contributed to the high elongation properties. The design of PDMS-γCD-AAl⊃P(EA-HEMA) (x) incorporated cooperatively movable and reversible crosslinks to achieve high compatibility of immiscible polymers and to control the mechanical properties.
Collapse
Affiliation(s)
- Naoki Yamashita
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan.
| | - Kenji Yamaoka
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan
| | - Ryohei Ikura
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan
| | - Daichi Yoshida
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan.
| | - Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan
| | - Nobu Kato
- Shin-Etsu Chemical Co., Ltd, Silicone-Electronics Materials Research Center, 1-10, Hitomi, Matsuida-machi, Annaka-Shi, Gunma 379-0224, Japan
| | - Masanao Kamei
- Shin-Etsu Chemical Co., Ltd, Silicone-Electronics Materials Research Center, 1-10, Hitomi, Matsuida-machi, Annaka-Shi, Gunma 379-0224, Japan
| | - Kentaro Ogura
- Shin-Etsu Chemical Co., Ltd, Silicone-Electronics Materials Research Center, 1-10, Hitomi, Matsuida-machi, Annaka-Shi, Gunma 379-0224, Japan
| | - Minoru Igarashi
- Shin-Etsu Chemical Co., Ltd, Silicone-Electronics Materials Research Center, 1-10, Hitomi, Matsuida-machi, Annaka-Shi, Gunma 379-0224, Japan
| | - Hideo Nakagawa
- Shin-Etsu Chemical Co., Ltd, 4-1 Marunouchi, 1-chome, Chiyoda-ku, Tokyo 100-0005, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Visagamani AM, Shanthi D, Muthukrishnaraj A, Venkatadri B, Ahamed JI, Kaviyarasu K. Innovative Preparation of Cellulose-Mediated Silver Nanoparticles for Multipurpose Applications: Experiment and Molecular Docking Studies. ACS OMEGA 2023; 8:38860-38870. [PMID: 37901521 PMCID: PMC10601087 DOI: 10.1021/acsomega.3c02432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/29/2023] [Indexed: 10/31/2023]
Abstract
In recent years, inorganic metal nanoparticle fabrication by extraction of a different part of the plant has been gaining more importance. In this research, cellulose-mediated Ag nanoparticles (cellulose/Ag NPs) with excellent antibacterial and antioxidant properties and photocatalytic activity have been synthesized by the microwave-assisted hydrothermal method. This method is a green, simple, and low-cost method that does not use any other capping or reducing agents. X-ray diffraction (XRD), Fourier transform infrared (FTIR), field emission scanning microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), and UV-visible spectroscopic techniques were used to investigate the structure, morphology, as well as components of the generated cellulose/Ag NPs. In fact, XRD results confirm the formation of the face-centered cubic phase of Ag nanoparticles, while the FTIR spectra showed that the synergy of carbohydrates and proteins is responsible for the formation of cellulose/Ag NPs by the green method. It was found that the green-synthesized silver nanoparticles showed good crystallinity and a size range of about 20-30 nm. The morphology results showed that cellulose has a cavity-like structure and the green-synthesized Ag NPs were dispersed throughout the cellulose polymer matrix. In comparison to cellulose/Ag NPs and Ag nanoparticles, cellulose/Ag NPs demonstrated excellent antibacterial activity, Proteus mirabilis (MTCC 1771) possessed a maximum inhibition zone of 18.81.5 mm at 2.5 g/mL, and Staphylococcus aureus (MTTC 3615) had a minimum inhibition zone of 11.30.5 mm at 0.5 g/mL. Furthermore, cellulose/Ag NPs also exhibited a significant radical scavenging property against the DDPH free radical, and there was a higher degradation efficiency compared to pure Ag NPs against Rhodamine B as 97.38% removal was achieved. Notably, cellulose/Ag NPs remarkably promoted the transfer and separation of photogenerated electron-hole (e-/h+) pairs, thereby offering prospective application of the photodegradation efficiency for Rhodamine B (RhB) as well as antibacterial applications. With the findings from this study, we could develop efficient and environmentally friendly cellulose/Ag nanoparticles using low-cost, environmentally friendly materials, making them suitable for industrial and technological applications.
Collapse
Affiliation(s)
| | - Durairaj Shanthi
- Department
of Chemistry, VelTech MultiTech Dr. Rangarajan
Dr. Sakunthala Engineering College, Avadi, Chennai 600062, India
| | - Appusamy Muthukrishnaraj
- Department
of Chemistry, Faculty of Engineering, Karpagam
Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Babu Venkatadri
- Department
of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
| | - J. Irshad Ahamed
- Department
of Chemistry, Kandaswami Naidu College for
Men, Anna Nagar East, Chennai 600102, India
| | - Kasinathan Kaviyarasu
- UNESCO-UNISA
Africa Chair in Nanosciences/Nanotechnology Laboratories, College
of Graduate Studies, University of South
Africa (UNISA), Muckleneuk Ridge, Pretoria 0002, South Africa
- Nanosciences
African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABS−National Research Foundation (NRF), 1 Old Faure Road, Somerset West 7129, Western Cape, South Africa
| |
Collapse
|
6
|
Chu J, Tian G, Feng X. Recent advances in prevailing antifogging surfaces: structures, materials, durability, and beyond. NANOSCALE 2023. [PMID: 37368459 DOI: 10.1039/d3nr01767b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In past decades, antifogging surfaces have drawn more and more attention owing to their promising and wide applications such as in aerospace, traffic transportation, optical devices, the food industry, and medical and other fields. Therefore, the potential hazards caused by fogging need to be solved urgently. At present, the up-and-coming antifogging surfaces have been developing swiftly, and can effectively achieve antifogging effects primarily by preventing fog formation and rapid defogging. This review analyzes and summarizes current progress in antifogging surfaces. Firstly, some bionic and typical antifogging structures are described in detail. Then, the antifogging materials explored thus far, mainly focusing on substrates and coatings, are extensively introduced. After that, the solutions for improving the durability of antifogging surfaces are explicitly classified in four aspects. Finally, the remaining big challenges and future development trends of the ascendant antifogging surfaces are also presented.
Collapse
Affiliation(s)
- Jiahui Chu
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| | - Guizhong Tian
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| | - Xiaoming Feng
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| |
Collapse
|
7
|
Casagualda C, Mancebo-Aracil J, Moreno-Villaécija M, López-Moral A, Alibés R, Busqué F, Ruiz-Molina D. Mussel-Inspired Lego Approach for Controlling the Wettability of Surfaces with Colorless Coatings. Biomimetics (Basel) 2022; 8:3. [PMID: 36648789 PMCID: PMC9844497 DOI: 10.3390/biomimetics8010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The control of surface wettability with polyphenol coatings has been at the forefront of materials research since the late 1990s, when robust underwater adhesion was linked to the presence of L-DOPA-a catecholic amino acid-in unusually high amounts, in the sequences of several mussel foot proteins. Since then, several successful approaches have been reported, although a common undesired feature of most of them is the presence of a remnant color and/or the intrinsic difficulty in fine-tuning and controlling the hydrophobic character. We report here a new family of functional catechol-based coatings, grounded in the oxidative condensation of readily available pyrocatechol and thiol-capped functional moieties. The presence of at least two additional thiol groups in their structure allows for polymerization through the formation of disulfide bonds. The synthetic flexibility, together with its modular character, allowed us to: (I) develop coatings with applications exemplified by textiles for oil-spill water treatment; (II) develop multifunctional coatings, and (III) fine-tune the WCA for flat and textile surfaces. All of this was achieved with the application of colorless coatings.
Collapse
Affiliation(s)
- Carolina Casagualda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Juan Mancebo-Aracil
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Instituto de Química del Sur-INQUISUR (UNS-CONICET), Universidad Nacional del Sur, Bahía Blanca 8000, Argentina
| | - Miguel Moreno-Villaécija
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Alba López-Moral
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ramon Alibés
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
8
|
Recent progress in the mechanisms, preparations and applications of polymeric antifogging coatings. Adv Colloid Interface Sci 2022; 309:102794. [DOI: 10.1016/j.cis.2022.102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
|
9
|
Preparation of siloxymethyl-modified silicone acrylate prepolymers with UV/moisture dual curability for applications in anti-smudge, anti-fingerprint coatings. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Guo F, Pan F, Zhang W, Liu T, Zuber F, Zhang X, Yu Y, Zhang R, Niederberger M, Ren Q. Robust Antibacterial Activity of Xanthan-Gum-Stabilized and Patterned CeO 2-x-TiO 2 Antifog Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44158-44172. [PMID: 36150021 DOI: 10.1021/acsami.2c11968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Increased occurrence of antimicrobial resistance leads to a huge burden on patients, the healthcare system, and society worldwide. Developing antimicrobial materials through doping rare-earth elements is a new strategy to overcome this challenge. To this end, we design antibacterial films containing CeO2-x-TiO2, xanthan gum, poly(acrylic acid), and hyaluronic acid. CeO2-x-TiO2 inks are additionally integrated into a hexagonal grid for prominent transparency. Such design yields not only an antibacterial efficacy of ∼100% toward Staphylococcus aureus and Escherichia coli but also excellent antifog performance for 72 h in a 100% humidity atmosphere. Moreover, FluidFM is employed to understand the interaction in-depth between bacteria and materials. We further reveal that reactive oxygen species (ROS) are crucial for the bactericidal activity of E. coli through fluorescent spectroscopic analysis and SEM imaging. We meanwhile confirm that Ce3+ ions are involved in the stripping phosphate groups, damaging the cell membrane of S. aureus. Therefore, the hexagonal mesh and xanthan-gum cross-linking chains act as a reservoir for ROS and Ce3+ ions, realizing a long-lasting antibacterial function. We hence develop an antibacterial and antifog dual-functional material that has the potential for a broad application in display devices, medical devices, food packaging, and wearable electronics.
Collapse
Affiliation(s)
- Fangwei Guo
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Spacecraft Mechanism, Shanghai 201108, China
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Fei Pan
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Wenchen Zhang
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tian Liu
- Shanghai Key Laboratory of Spacecraft Mechanism, Shanghai 201108, China
| | - Flavia Zuber
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Xing Zhang
- Shanghai Institute of Aerospace System Engineering, Shanghai 201108, China
| | - Yali Yu
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruiji Zhang
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Markus Niederberger
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
11
|
Sato T, Amano A, Dunderdale GJ, Hozumi A. Transparent Composite Films Showing Durable Antifogging and Repeatable Self-Healing Properties Based on an Integral Blend Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9874-9883. [PMID: 35920887 DOI: 10.1021/acs.langmuir.2c01085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antifogging coatings for infrastructures and transparent objects have attracted much attention lately from the perspective of safety and visibility. We have developed a one-pot process to fabricate transparent composite films showing long-lasting antifogging and fast repeatable self-healing properties based on an integral blend (IB) method. This method does not require any specific pretreatments of inorganic fillers/particles. Thus, the precursor solutions could be prepared in a single step by simply mixing raw materials, e.g., poly(vinylpyrrolidone) (PVP) having different molecular weights (MWs: 55, 360, and 1300 k), nano-clay particles (NCPs), and amino-terminated organosilane (AOS). In this study, to control the degree of cross-linking between the PVP matrices and NCPs, addition of AOS as a cross-linker to the PVP matrices (weight percentage of AOS to the PVP matrices, α = 0.01-300%) was carefully controlled. Transparency and self-healing abilities/kinetics of the resulting samples were found to be strongly influenced by both the MWs of PVP and α values. Samples spin-coated with the lowest MW of PVP (55 k) and α values of 0.01-1% gave highly transparent and durable antifogging performance. For example, no fogging was observed for 7 days under >80% relative humidity, and scratches about 30 μm in width could be completely self-healed within a few hours. However, samples with α > 10% gave opaque/grayish films that did not show any self-healing abilities because of an increase in cross-linking of the matrices. The optimized precursor solution was also deposited directly onto the glass slides covered with a transparent porous silica nano-framework (SNF) by a spray-coating method. Due to the formation of the hard and superhydrophilic/hygroscopic SNF with a large surface area, durability of antifogging and self-healing properties of the composite films were moderately improved, compared to those on the flat glass slides.
Collapse
Affiliation(s)
- Tomoya Sato
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| | - Asei Amano
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
- Graduate School of Engineering, Aichi Institute of Technology (AIT), 1247 Yachigusa, Yakusa, Toyoya 470-0392, Japan
| | - Gary J Dunderdale
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Atsushi Hozumi
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
- Graduate School of Engineering, Aichi Institute of Technology (AIT), 1247 Yachigusa, Yakusa, Toyoya 470-0392, Japan
| |
Collapse
|
12
|
Meng Y, Gao Y, Li J, Liu J, Wang X, Yu F, Wang T, Gao K, Zhang Z. Preparation and characterization of cross-linked waterborne acrylic /PTFE composite coating with good hydrophobicity and anticorrosion properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Lian Q, Chen H, Luo Y, Li Y, Cheng J, Liu Y. Toughening mechanism based on the physical entanglement of branched epoxy resin in the non-phase-separated inhomogeneous crosslinking network: An experimental and molecular dynamics simulation study. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Nguyen T, Wortman P, He Z, Goulas J, Yan H, Mokhtari M, Zhou XD, Fei L. Achieving Superhydrophobic Surfaces via Air-Assisted Electrospray. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2852-2861. [PMID: 35192772 DOI: 10.1021/acs.langmuir.1c03134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Superhydrophobic surface is an enabling technology in numerous emerging and practical applications such as self-cleaning, anticorrosion, antifouling, anti-icing coatings, and oil-water separation. Here, we report a facile air-assisted electrospray approach to achieve a superhydrophobic surface by systematically studying spray conditions and the chemistry of a coating precursor solution consisting of silicon dioxide nanoparticles, polyacrylonitrile, and N,N-dimethylformamide. The wettability behavior of the surface was analyzed with contact angle measurement and correlated with surface structures. The superhydrophobic coating exhibits remarkable water and oil repellent characteristics, as well as good robustness against abrasion and harsh chemical conditions. This air-assisted electrospray technique has shown great control over the coating process and properties and thus can be potentially used for various advanced industrial applications for self-cleaning and anticorrosion surfaces.
Collapse
Affiliation(s)
- Thu Nguyen
- Department of Chemical Engineering, Institute for Materials Research and Innovation, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| | - Philip Wortman
- Department of Petroleum Engineering, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| | - Zizhou He
- Department of Chemical Engineering, Institute for Materials Research and Innovation, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| | - Joshua Goulas
- Department of Chemical Engineering, Institute for Materials Research and Innovation, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| | - Hui Yan
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| | - Mehdi Mokhtari
- Department of Petroleum Engineering, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| | - Xiao-Dong Zhou
- Department of Chemical Engineering, Institute for Materials Research and Innovation, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| | - Ling Fei
- Department of Chemical Engineering, Institute for Materials Research and Innovation, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| |
Collapse
|
15
|
Wu YM, Zhao PC, Jia B, Li Z, Yuan S, Li CH. A silver-functionalized metal–organic framework with effective antibacterial activity. NEW J CHEM 2022. [DOI: 10.1039/d1nj06183f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal–organic framework with alkene-functional groups was constructed and postsynthetically modified with Ag(i) for antibacterial applications.
Collapse
Affiliation(s)
- Ya-Meng Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Pei-Chen Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Bin Jia
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhe Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
16
|
Abstract
Superhydrophobic coatings have a huge impact in various applications due to their extreme water-repellent properties. The main novelty of the current research work lies in the development of cheap, stable, superhydrophobic and self-cleaning coatings with extreme water-repellency. In this work, a composite of hydrothermally synthesized alumina (Al2O3), polymethylhydrosiloxane (PMHS) and polystyrene (PS) was deposited on a glass surface by a dip-coating technique. The Al2O3 nanoparticles form a rough structure, and low-surface-energy PHMS enhances the water-repellent properties. The composite coating revealed a water contact angle (WCA) of 171 ± 2° and a sliding angle (SA) of 3°. In the chemical analysis, Al2p, Si2p, O1s, and C1s elements were detected in the XPS survey. The prepared coating showed a self-cleaning property through the rolling action of water drops. Such a type of coating could have various industrial applications in the future.
Collapse
|
17
|
Dual functional coatings with antifogging and antimicrobial performances for endoscope lens, via facile adsorption-cross-linking strategy. Colloids Surf B Biointerfaces 2021; 206:111933. [PMID: 34175741 DOI: 10.1016/j.colsurfb.2021.111933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022]
Abstract
Surface fogging causes various inconvenience for human daily life, especially for clinic inspection and medical diagnosis, hence the surfaces with reliable antifogging performances have received tremendous interests. Herein, through a facile adsorption-cross-linking strategy, a dual functional coating with both excellent antifogging/frost-resisting properties and reliable antibacterial activity has been steadily integrated onto varied substrates. A series of copolymers poly(HEAA-co-QAC-co-BP) with UV-initiable BP groups are synthesized, and then are covalently fixed on the substrate surfaces via UV triggered cross-linking reaction. The hydrophilic HEAA units endow the surface with excellent antifogging performance, while the introduced QAC groups bring essential antibacterial activity. ZOI results prove that the antibacterial activity stems from the surface contact-killing of bacteria, without releasing any bactericidal agents. Moreover, the functional surface exhibits remarkable resistance toward non-specific protein adsorption as well as no obvious effect on the hemolysis. The coating with the unique merits of both antifogging and antibacterial properties could find broad applications in antifogging fields, in particular for medical diagnosis, health monitoring, etc.
Collapse
|
18
|
Ren J, Kong R, Gao Y, Zhang L, Zhu J. Bioinspired adhesive coatings from polyethylenimine and tannic acid complexes exhibiting antifogging, self-cleaning, and antibacterial capabilities. J Colloid Interface Sci 2021; 602:406-414. [PMID: 34139538 DOI: 10.1016/j.jcis.2021.06.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
In this work, we develop a simple yet robust method to fabricate a bioinspired adhesive coating based on polyethyleneimine (PEI) and tannic acid (TA) complexes, exhibiting excellent antifogging, self-cleaning, and antibacterial properties. The polyethyleneimine-tannic acid (PEI-TA) complexes coating combined with the bioinspired adhesive property from TA can be effectively and stably coated onto various substrates through a one-step deposition process, and the hydrophilicity of the coated substrates can be significantly enhanced with their water contact angle less than 10°. The bioinspired adhesive coating endows the coated substrates with outstanding antifogging and self-cleaning performance. Moreover, it is found that the PEI-TA coated safety goggles display excellent durability and antifogging capability compared to the commercial antifogging safety goggles and commercial antifogging agents coated safety goggles under 65 ℃ vapor condition for 2 h. Furthermore, the PEI-TA coatings show superior antibacterial activities for Gram-negative Escherichiak coli and Gram-positive Staphylococcus aureus. The antifogging, self-cleaning, and antibacterial coating provides widely potential application prospects in optical and medical devices.
Collapse
Affiliation(s)
- Jingli Ren
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ruixia Kong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yujie Gao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lianbin Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|