1
|
Chavan SG, Rathod PR, Koyappayil A, Hwang S, Lee MH. Recent advances of electrochemical and optical point-of-care biosensors for detecting neurotransmitter serotonin biomarkers. Biosens Bioelectron 2024; 267:116743. [PMID: 39270361 DOI: 10.1016/j.bios.2024.116743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Since its discovery in 1984, the monoamine serotonin (5-HT) has been recognized for its critical role as a neuromodulator in both the central and peripheral nervous systems. Recent research reveals that serotonin also significantly influences various neuronal activities. Historically, it was believed that peripheral serotonin, produced by tryptophan hydroxylase in intestinal cells, functioned primarily as a hormone. However, new insights have expanded its known roles, necessitating advanced detection methods. Biosensors have emerged as indispensable tools in biomedical diagnostics, enabling the rapid and minimally invasive detection of target analytes with high spatial and temporal resolution. This review summarizes the progress made in the past decade in developing optical and electrochemical biosensors for serotonin detection. We evaluate various sensing strategies that optimize performance in terms of detection limits, sensitivity, and specificity. The study also explores recent innovations in biosensing technologies utilizing surface-modified electrodes with nanomaterials, including gold, graphite, carbon nanotubes, and metal oxide particles. Applications range from in vivo studies to chemical imaging and diagnostics, highlighting future prospects in the field.
Collapse
Affiliation(s)
- Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Pooja Ramrao Rathod
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Seowoo Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea.
| |
Collapse
|
2
|
Park D, Jeong H, Choi J, Han J, Piao H, Kim J, Park S, Song M, Kim D, Sung J, Cheong E, Choi H. Enhancing Flexible Neural Probe Performance via Platinum Deposition: Impedance Stability under Various Conditions and In Vivo Neural Signal Monitoring. MICROMACHINES 2024; 15:1058. [PMID: 39203708 PMCID: PMC11356038 DOI: 10.3390/mi15081058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024]
Abstract
Monitoring neural activity in the central nervous system often utilizes silicon-based microelectromechanical system (MEMS) probes. Despite their effectiveness in monitoring, these probes have a fragility issue, limiting their application across various fields. This study introduces flexible printed circuit board (FPCB) neural probes characterized by robust mechanical and electrical properties. The probes demonstrate low impedance after platinum coating, making them suitable for multiunit recordings in awake animals. This capability allows for the simultaneous monitoring of a large population of neurons in the brain, including cluster data. Additionally, these probes exhibit no fractures, mechanical failures, or electrical issues during repeated-bending tests, both during handling and monitoring. Despite the possibility of using this neural probe for signal measurement in awake animals, simply applying a platinum coating may encounter difficulties in chronic tests and other applications. Furthermore, this suggests that FPCB probes can be advanced by any method and serve as an appropriate type of tailorable neural probes for monitoring neural systems in awake animals.
Collapse
Affiliation(s)
- Daerl Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (D.P.); (J.C.); (J.H.); (H.P.); (J.K.); (S.P.); (M.S.); (D.K.)
| | - Hyeonyeong Jeong
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea;
| | - Jungsik Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (D.P.); (J.C.); (J.H.); (H.P.); (J.K.); (S.P.); (M.S.); (D.K.)
| | - Juyeon Han
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (D.P.); (J.C.); (J.H.); (H.P.); (J.K.); (S.P.); (M.S.); (D.K.)
| | - Honglin Piao
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (D.P.); (J.C.); (J.H.); (H.P.); (J.K.); (S.P.); (M.S.); (D.K.)
| | - Jaehyun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (D.P.); (J.C.); (J.H.); (H.P.); (J.K.); (S.P.); (M.S.); (D.K.)
| | - Seonghoon Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (D.P.); (J.C.); (J.H.); (H.P.); (J.K.); (S.P.); (M.S.); (D.K.)
| | - Mingu Song
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (D.P.); (J.C.); (J.H.); (H.P.); (J.K.); (S.P.); (M.S.); (D.K.)
| | - Dowoo Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (D.P.); (J.C.); (J.H.); (H.P.); (J.K.); (S.P.); (M.S.); (D.K.)
| | - Jaesuk Sung
- Nformare Inc., Seodamun-gu, Seoul 03722, Republic of Korea;
| | - Eunji Cheong
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea;
| | - Heonjin Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (D.P.); (J.C.); (J.H.); (H.P.); (J.K.); (S.P.); (M.S.); (D.K.)
- Nformare Inc., Seodamun-gu, Seoul 03722, Republic of Korea;
| |
Collapse
|
3
|
Elugoke SE, Ganesh P, Kim S, Ebenso EE. Common Transition Metal Oxide Nanomaterials in Electrochemical Sensors for the Diagnosis of Monoamine Neurotransmitter‐Related Disorders. ChemElectroChem 2024; 11. [DOI: 10.1002/celc.202300578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Indexed: 07/23/2024]
Abstract
AbstractMonoamine neurotransmitters are essential for learning, mental alertness, emotions, and blood flow, among other functions. Fatal neurological disorders that signal the imbalance of these biomolecules in the human system include Parkinson's disease, myocardial infarction, Alzheimer's disease, hypoglycemia, Schizophrenia, and a host of other ailments. The diagnosis of these monoamine neurotransmitter‐related conditions revolves around the development of analytical tools with high sensitivity for the four major monoamine neurotransmitters namely dopamine, epinephrine, norepinephrine, and serotonin. The application of electrochemical sensors made from notable metal oxide nanoparticles or composites containing the metal oxide nanoparticles for the detection of these monoamine neurotransmitters was discussed herein. More importantly, the feasibility of the application of the ZnO, CuO, and TiO2 nanoparticle‐based electrochemical sensors for a comprehensive diagnosis of monoamine neurotransmitter‐related conditions was critically investigated in this review.
Collapse
Affiliation(s)
- Saheed E. Elugoke
- Centre for Material Science College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
| | - Pattan‐Siddappa Ganesh
- Interaction Laboratory Advanced Technology Research Center Future Convergence Engineering Korea University of Technology and Education Cheonan 31253 Republic of Korea
| | - Sang‐Youn Kim
- Interaction Laboratory Advanced Technology Research Center Future Convergence Engineering Korea University of Technology and Education Cheonan 31253 Republic of Korea
| | - Eno E. Ebenso
- Centre for Material Science College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
| |
Collapse
|
4
|
Shamsazar A, Moghaddam MS, Asadi A, Mahdavi M. Advancing CEA quantification: Designing a sensitive electrochemical immunosenor using MWCNT/Ni(OH) 2 nanocomposite. Heliyon 2024; 10:e29768. [PMID: 38681597 PMCID: PMC11053223 DOI: 10.1016/j.heliyon.2024.e29768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/26/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
An ultra-sensitive immunosensor was designed for the accurate determination of Carcinoembryonic Antigen (CEA). To enhance the performance of immunosensor, an MWCNT/Ni(OH)2 nanocomposite was utilized as the electrochemical interface and modifier of the electrode surface. The simple preparation procedures for MWCNT/Ni(OH)2 composite were provided. Its characteristics and properties were investigated by HRTEM, FESEM, XRD, and FTIR techniques. Leveraging the unique electrochemical characteristics shown by the MWCNT/Ni(OH)2 nanocomposite and its correlation with CEA, high accuracy in CEA detection was achieved. Experimental findings provide evidence that the proposed immunosensor has the ability to detect CEA in laboratory samples. This research contributes towards achieving precise and rapid CEA detection in cancer diagnosis and prognosis. Across a wide concentration range of CEA, the designed immunosensor demonstrated a linear response from 0.0001 ng/mL to 2 ng/mL, and its limit of detection (LOD) was just 0.076 pg/mL. To evaluate the practical applicability of the electrochemical immunosensor, blood serum samples were examined, revealing the immunosensor's remarkable specificity and longevity. Its high accuracy and stability make it a valuable tool in clinical settings and biomedical research, paving the way for improved cancer management and patient outcomes.
Collapse
Affiliation(s)
- Ali Shamsazar
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mahsa Soheili Moghaddam
- Department of Internal Medicine, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Majid Mahdavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Ryu JJ, Jang CH. A liquid crystal-based sensor exploiting the aptamer-mediated recognition at the aqueous/liquid crystal interface for sensitive detection of serotonin. Biotechnol Appl Biochem 2023; 70:1972-1982. [PMID: 37479671 DOI: 10.1002/bab.2503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
We report here a liquid crystal (LC)-based sensor for detecting serotonin (5-HT); the proposed sensor uses target-specific aptamer recognition at a cationic surfactant decorated-aqueous/LC interface. Our detection strategy focuses on the orientational transition of LCs upon biological interactions at the interface. In this sensing system, the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) forms a self-assembled monolayer at the aqueous/LC interface and triggers the homeotropic orientation of LCs. After introducing the 5-HT specific aptamer, an electrostatic attraction occurs between the cationic CTAB and anionic aptamer. This interaction destructs the surfactant monolayer at the interface, inducing reorganization of LC alignment from homeotropic to tilted conditions. In the increasing 5-HT levels, specific binding between 5-HT and the aptamer diminishes the interaction between the aptamer and CTAB, thereby maintaining the homeotropic alignment of LCs. The orientational transition of the LCs was observed under a polarized optical microscope. The developed biosensor has a linear detection range from 1 to 1000 nM and a detection limit of 1.68 nM. Moreover, the sensor was applied to a human urine sample and a detection limit of 2.25 nM was obtained. Overall, the designed LC-based sensor is a sensitive, simple, cost effective, and selective platform for detecting 5-HT in aqueous solutions.
Collapse
Affiliation(s)
- Je-Jin Ryu
- Department of Chemistry, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Chang-Hyun Jang
- Department of Chemistry, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Olejnik A, Polaczek K, Szkodo M, Stanisławska A, Ryl J, Siuzdak K. Laser-Induced Graphitization of Polydopamine on Titania Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37915241 PMCID: PMC10658452 DOI: 10.1021/acsami.3c11580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Since the discovery of laser-induced graphite/graphene, there has been a notable surge of scientific interest in advancing diverse methodologies for their synthesis and applications. This study focuses on the utilization of a pulsed Nd:YAG laser to achieve graphitization of polydopamine (PDA) deposited on the surface of titania nanotubes. The partial graphitization is corroborated through Raman and XPS spectroscopies and supported by water contact angle, nanomechanical, and electrochemical measurements. Reactive molecular dynamics simulations confirm the possibility of graphitization in the nanosecond time scale with the evolution of NH3, H2O, and CO2 gases. A thorough exploration of the lasing parameter space (wavelength, pulse energy, and number of pulses) was conducted with the aim of improving either electrochemical activity or photocurrent generation. Whereas the 532 nm laser pulses interacted mostly with the PDA coating, the 365 nm pulses were absorbed by both PDA and the substrate nanotubes, leading to a higher graphitization degree. The majority of the photocurrent and quantum efficiency enhancement is observed in the visible light between 400 and 550 nm. The proposed composite is applied as a photoelectrochemical (PEC) sensor of serotonin in nanomolar concentrations. Because of the suppressed recombination and facilitated charge transfer caused by the laser graphitization, the proposed composite exhibits significantly enhanced PEC performance. In the sensing application, it showed superior sensitivity and a limit of detection competitive with nonprecious metal materials.
Collapse
Affiliation(s)
- Adrian Olejnik
- Department
of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications
and Informatics, Gdańsk University
of Technology, Narutowicza 11/12 St., Gdańsk 80-233, Poland
- Centre
for Plasma and Laser Engineering, The Szewalski
Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk 80-231, Poland
| | - Krzysztof Polaczek
- Centre
for Plasma and Laser Engineering, The Szewalski
Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk 80-231, Poland
- Department
of Biomedical Chemistry, Faculty of Chemistry
University of Gdansk, Wita Stwosza 63 St, Gdańsk 80-308, Poland
| | - Marek Szkodo
- Institute
of Manufacturing and Materials Technology, Faculty of Mechanical Engineering
and Ship Technology, Gdańsk University
of Technology, Narutowicza 11/12 St., Gdańsk 80-233, Poland
| | - Alicja Stanisławska
- Institute
of Manufacturing and Materials Technology, Faculty of Mechanical Engineering
and Ship Technology, Gdańsk University
of Technology, Narutowicza 11/12 St., Gdańsk 80-233, Poland
| | - Jacek Ryl
- Institute
of Nanotechnology and Materials Engineering and Advanced Materials
Center, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Katarzyna Siuzdak
- Centre
for Plasma and Laser Engineering, The Szewalski
Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk 80-231, Poland
| |
Collapse
|
7
|
Choi HK, Choi JH, Yoon J. An Updated Review on Electrochemical Nanobiosensors for Neurotransmitter Detection. BIOSENSORS 2023; 13:892. [PMID: 37754127 PMCID: PMC10526534 DOI: 10.3390/bios13090892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Neurotransmitters are chemical compounds released by nerve cells, including neurons, astrocytes, and oligodendrocytes, that play an essential role in the transmission of signals in living organisms, particularly in the central nervous system, and they also perform roles in realizing the function and maintaining the state of each organ in the body. The dysregulation of neurotransmitters can cause neurological disorders. This highlights the significance of precise neurotransmitter monitoring to allow early diagnosis and treatment. This review provides a complete multidisciplinary examination of electrochemical biosensors integrating nanomaterials and nanotechnologies in order to achieve the accurate detection and monitoring of neurotransmitters. We introduce extensively researched neurotransmitters and their respective functions in biological beings. Subsequently, electrochemical biosensors are classified based on methodologies employed for direct detection, encompassing the recently documented cell-based electrochemical monitoring systems. These methods involve the detection of neurotransmitters in neuronal cells in vitro, the identification of neurotransmitters emitted by stem cells, and the in vivo monitoring of neurotransmitters. The incorporation of nanomaterials and nanotechnologies into electrochemical biosensors has the potential to assist in the timely detection and management of neurological disorders. This study provides significant insights for researchers and clinicians regarding precise neurotransmitter monitoring and its implications regarding numerous biological applications.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Jin-Ha Choi
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
8
|
Gatou MA, Vagena IA, Pippa N, Gazouli M, Pavlatou EA, Lagopati N. The Use of Crystalline Carbon-Based Nanomaterials (CBNs) in Various Biomedical Applications. CRYSTALS 2023; 13:1236. [DOI: 10.3390/cryst13081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
This review study aims to present, in a condensed manner, the significance of the use of crystalline carbon-based nanomaterials in biomedical applications. Crystalline carbon-based nanomaterials, encompassing graphene, graphene oxide, reduced graphene oxide, carbon nanotubes, and graphene quantum dots, have emerged as promising materials for the development of medical devices in various biomedical applications. These materials possess inorganic semiconducting attributes combined with organic π-π stacking features, allowing them to efficiently interact with biomolecules and present enhanced light responses. By harnessing these unique properties, carbon-based nanomaterials offer promising opportunities for future advancements in biomedicine. Recent studies have focused on the development of these nanomaterials for targeted drug delivery, cancer treatment, and biosensors. The conjugation and modification of carbon-based nanomaterials have led to significant advancements in a plethora of therapies and have addressed limitations in preclinical biomedical applications. Furthermore, the wide-ranging therapeutic advantages of carbon nanotubes have been thoroughly examined in the context of biomedical applications.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
9
|
Kim JH, Shin JH, Park B, Cho CH, Huh YS, Choi CH, Park JP. Harnessing protein sensing ability of electrochemical biosensors via a controlled peptide receptor-electrode interface. J Nanobiotechnology 2023; 21:100. [PMID: 36944950 PMCID: PMC10029155 DOI: 10.1186/s12951-023-01843-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Cathepsin B, a cysteine protease, is considered a potential biomarker for early diagnosis of cancer and inflammatory bowel diseases. Therefore, more feasible and effective diagnostic method may be beneficial for monitoring of cancer or related diseases. RESULTS A phage-display library was biopanned against biotinylated cathepsin B to identify a high-affinity peptide with the sequence WDMWPSMDWKAE. The identified peptide-displaying phage clones and phage-free synthetic peptides were characterized using enzyme-linked immunosorbent assays (ELISAs) and electrochemical analyses (impedance spectroscopy, cyclic voltammetry, and square wave voltammetry). Feasibilities of phage-on-a-sensor, peptide-on-a-sensor, and peptide-on-a-AuNPs/MXene sensor were evaluated. The limit of detection and binding affinity values of the peptide-on-a-AuNPs/MXene sensor interface were two to four times lower than those of the two other sensors, indicating that the peptide-on-a-AuNPs/MXene sensor is more specific for cathepsin B (good recovery (86-102%) and %RSD (< 11%) with clinical samples, and can distinguish different stages of Crohn's disease. Furthermore, the concentration of cathepsin B measured by our sensor showed a good correlation with those estimated by the commercially available ELISA kit. CONCLUSION In summary, screening and rational design of high-affinity peptides specific to cathepsin B for developing peptide-based electrochemical biosensors is reported for the first time. This study could promote the development of alternative antibody-free detection methods for clinical assays to test inflammatory bowel disease and other diseases.
Collapse
Affiliation(s)
- Ji Hong Kim
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jae Hwan Shin
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Bumjun Park
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-Ro, Incheon, 22212, Republic of Korea
| | - Chae Hwan Cho
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-Ro, Incheon, 22212, Republic of Korea
| | - Chang-Hyung Choi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jong Pil Park
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
10
|
Xu QQ, Luo L, Liu ZG, Guo Z, Huang XJ. Highly sensitive and selective serotonin (5-HT) electrochemical sensor based on ultrafine Fe 3O 4 nanoparticles anchored on carbon spheres. Biosens Bioelectron 2023; 222:114990. [PMID: 36495719 DOI: 10.1016/j.bios.2022.114990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Neurotransmitter serotonin (5-HT) is involved in various physiological and pathological processes. Therefore, its highly sensitive and selective detection in human serum is of great significance for early diagnosis of disease. In this work, employing iron phthalocyanine as Fe source, ultrafine Fe3O4 nanoparticles anchored on carbon spheres (Fe3O4/CSs) have been prepared, which exhibits an excellent electrochemical sensing performance toward 5-HT. With carbonecous spheres turned into conductive carbon spheres under the heat treatment in N2 atmosphere, iron phthalocyanine absorbed on their surfaces are simultaneously pyrolysised and oxidized, and finally transformed into ultrafine Fe3O4 nanoparticles. Electrochemical results demonstrate a high sensitivity (5.503 μA μM-1) and a low detection limit (4 nM) toward 5-HT for as-prepared Fe3O4/CSs. In combination with the morphology and physicochemical property of Fe3O4/CSs, the enhanced sensing mechanism toward 5-HT is disscussed. In addition, the developed electrochemical sensor also displays a good sensing stability and an anti-interferent ability. Further applied in real human serum samples, a satisfactory recovery rate is achieved. Promisingly, the developed electrochemical sensor can be employed for the determination of 5-HT in actual samples.
Collapse
Affiliation(s)
- Qian-Qian Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, PR China
| | - Lan Luo
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, PR China
| | - Zhong-Gang Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, PR China
| | - Zheng Guo
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, PR China.
| | - Xing-Jiu Huang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China
| |
Collapse
|
11
|
Ashraf G, Aziz A, Iftikhar T, Zhong ZT, Asif M, Chen W. The Roadmap of Graphene-Based Sensors: Electrochemical Methods for Bioanalytical Applications. BIOSENSORS 2022; 12:1183. [PMID: 36551150 PMCID: PMC9775289 DOI: 10.3390/bios12121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Graphene (GR) has engrossed immense research attention as an emerging carbon material owing to its enthralling electrochemical (EC) and physical properties. Herein, we debate the role of GR-based nanomaterials (NMs) in refining EC sensing performance toward bioanalytes detection. Following the introduction, we briefly discuss the GR fabrication, properties, application as electrode materials, the principle of EC sensing system, and the importance of bioanalytes detection in early disease diagnosis. Along with the brief description of GR-derivatives, simulation, and doping, classification of GR-based EC sensors such as cancer biomarkers, neurotransmitters, DNA sensors, immunosensors, and various other bioanalytes detection is provided. The working mechanism of topical GR-based EC sensors, advantages, and real-time analysis of these along with details of analytical merit of figures for EC sensors are discussed. Last, we have concluded the review by providing some suggestions to overcome the existing downsides of GR-based sensors and future outlook. The advancement of electrochemistry, nanotechnology, and point-of-care (POC) devices could offer the next generation of precise, sensitive, and reliable EC sensors.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
12
|
Ashraf G, Zhong ZT, Asif M, Aziz A, Iftikhar T, Chen W, Zhao YD. State-of-the-Art Fluorescent Probes: Duplex-Specific Nuclease-Based Strategies for Early Disease Diagnostics. BIOSENSORS 2022; 12:bios12121172. [PMID: 36551139 PMCID: PMC9775407 DOI: 10.3390/bios12121172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
Precision healthcare aims to improve patient health by integrating prevention measures with early disease detection for prompt treatments. For the delivery of preventive healthcare, cutting-edge diagnostics that enable early disease detection must be clinically adopted. Duplex-specific nuclease (DSN) is a useful tool for bioanalysis since it can precisely digest DNA contained in duplexes. DSN is commonly used in biomedical and life science applications, including the construction of cDNA libraries, detection of microRNA, and single-nucleotide polymorphism (SNP) recognition. Herein, following the comprehensive introduction to the field, we highlight the clinical applicability, multi-analyte miRNA, and SNP clinical assays for disease diagnosis through large-cohort studies using DSN-based fluorescent methods. In fluorescent platforms, the signal is produced based on the probe (dyes, TaqMan, or molecular beacon) properties in proportion to the target concentration. We outline the reported fluorescent biosensors for SNP detection in the next section. This review aims to capture current knowledge of the overlapping miRNAs and SNPs' detection that have been widely associated with the pathophysiology of cancer, cardiovascular, neural, and viral diseases. We further highlight the proficiency of DSN-based approaches in complex biological matrices or those constructed on novel nano-architectures. The outlooks on the progress in this field are discussed.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
Chavan SG, Yagati AK, Koyappayil A, Go A, Yeon S, Lee T, Lee MH. Conformationally Flexible Dimeric-Serotonin-Based Sensitive and Selective Electrochemical Biosensing Strategy for Serotonin Recognition. Anal Chem 2022; 94:17020-17030. [PMID: 36414244 DOI: 10.1021/acs.analchem.2c02747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A novel electrochemical sensor was constructed based on an enzyme-mediated physiological reaction between neurotransmitter serotonin per-oxidation to reconstruct dual-molecule 4,4'-dimeric-serotonin self-assembled derivative, and the potential biomedical application of the multi-functional nano-platform was explored. Serotonin accelerated the catalytic activity to form a dual molecule at the C4 position and created phenolic radical-radical coupling intermediates in a peroxidase reaction system. Here, 4,4' dimeric-serotonin possessed the capability to recognize intermolecular interactions between amine groups. The excellent quenching effects on top of the gold surface electrode system archive logically inexpensive and straightforward analytical demands. In biochemical sensing analysis, the serotonin dimerization concept demonstrated a robust, low-cost, and highly sensitive immunosensor, presenting the potential of quantifying serotonin at point-of-care (POC) testing. The high-specificity serotonin electrochemical sensor had a limit of detection (LOD) of 0.9 nM in phosphate buffer and 1.4 nM in human serum samples and a linear range of 10 to 400 with a sensitivity of 2.0 × 10-2 nM. The bivalent 4,4'-dimer-serotonin interaction strategy provides a promising platform for serotonin biosensing with high specificity, sensitivity, selectivity, stability, and reproducibility. The self-assembling gold surface electrochemical system presents a new analytical method for explicitly detecting tiny neurotransmitter-responsive serotonin neuromolecules.
Collapse
Affiliation(s)
- Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-Gu, Seoul06974, South Korea
| | - Ajay Kumar Yagati
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-Gu, Seoul06974, South Korea
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-Gu, Seoul06974, South Korea
| | - Anna Go
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-Gu, Seoul06974, South Korea
| | - Sangho Yeon
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-Gu, Seoul06974, South Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul01897, Republic of Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-Gu, Seoul06974, South Korea
| |
Collapse
|
14
|
Koli PB, Birari MD, Ahire SA, Shinde SG, Ingale RS, Patil IJ. Ferroso-ferric oxide (Fe3O4) embedded g-C3N4 nanocomposite sensor fabricated by photolithographic technique for environmental pollutant gas sensing and relative humidity characteristics. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Eluwale Elugoke S, Esther Fayemi O, Saheed Adekunle A, Ganesh PS, Kim SY, Ebenso EE. Sensitive and selective neurotransmitter epinephrine detection at a carbon quantum dots/copper oxide nanocomposite. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Sharif MN, Taufiq S, Sohail M, Abbas SR. Tuberculosis detection from raw sputum samples using Au-electroplated screen-printed electrodes as E-DNA sensor. Front Chem 2022; 10:1046930. [PMID: 36479437 PMCID: PMC9720118 DOI: 10.3389/fchem.2022.1046930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 08/05/2024] Open
Abstract
Tuberculosis (TB) remains a leading cause of death globally, especially in underdeveloped nations. The main impediment to TB eradication is a lack of efficient diagnostic tools for disease diagnosis. In this work, label free and ultrasensitive electrochemical DNA biosensor for detecting Mycobacterium tuberculosis has been developed based on the electrodeposition of gold nanoparticles on the surface of carbon screen-printed carbon electrode (Zensors) for signal amplification. Particularly, screen-printed electrodes were modified by electrochemical deposition of Au to enhance the conductivity and facilitate the immobilization of ssDNA probes via Au-S bonds. The electrochemically modified SPEs were characterized using Scanning electron microscopy/Energy Dispersive X-Ray Analysis (SEM/EDX) and X-Ray Diffraction (XRD). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques were used to investigate the DNA hybridization between single-stranded (ssDNA) probe and target DNA (tDNA). Under the ideal conditions, DPV exhibited a correlation coefficient R2 = 0.97, when analyzed with different tDNA concentrations. The proposed DNA biosensor exhibits a good detection range from 2 to 10 nm with a low detection limit of 1.91 nm, as well as high selectivity that, under ideal conditions, distinguishes non-complementary DNA from perfectly matched tDNA. By eliminating the need for DNA purification, this work paves the path for creating disposable biosensors capable of detecting DNA from raw sputum samples.
Collapse
Affiliation(s)
- M. N. Sharif
- Biosensors and Therapeutics Lab, School of Interdisciplinary Engineering and Sciences (SINES), Islamabad, Pakistan
- Department of Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), Islamabad, Pakistan
| | - S. Taufiq
- Biosensors and Therapeutics Lab, School of Interdisciplinary Engineering and Sciences (SINES), Islamabad, Pakistan
- Department of Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), Islamabad, Pakistan
| | - M. Sohail
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - S. R. Abbas
- Biosensors and Therapeutics Lab, School of Interdisciplinary Engineering and Sciences (SINES), Islamabad, Pakistan
- Department of Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), Islamabad, Pakistan
| |
Collapse
|
17
|
Khan MQ, Khan RA, Alsalme A, Ahmad K, Kim H. Design and Fabrication of α-MnO 2-Nanorods-Modified Glassy-Carbon-Electrode-Based Serotonin Sensor. BIOSENSORS 2022; 12:849. [PMID: 36290986 PMCID: PMC9599580 DOI: 10.3390/bios12100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Serotonin is a very important monoamine neurotransmitter, which takes part in biological and psychological processes. In the present scenario, design and fabrication of a serotonin electrochemical sensor is of great significance. In this study, we have synthesized α-MnO2 via a hydrothermal synthesis method using potassium permanganate as a precursor. The physiochemical properties, such as structural and phase-purity of the prepared α-MnO2, were investigated by various characterization techniques and methods (powder X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy). Furthermore, the serotonin sensor was fabricated using α-MnO2 as an electrode modifier or electro-catalyst. The bare glassy carbon electrode (GCE) was adopted as a working substrate, and its active carbon surface was modified with the synthesized α-MnO2. This modified GCE (α-MnO2/GCE = MGCE) was explored as a serotonin sensor. The electrochemical investigations showed that the MGCE has excellent electro-catalytic properties towards determination of serotonin. The MGCE exhibits an excellent detection limit (DL) of 0.14 µM, along with good sensitivity of 2.41 µAµM-1 cm-2. The MGCE also demonstrated excellent selectivity for determination of serotonin in the presence of various electro-active/interfering molecules. The MGCE also exhibits good cyclic repeatability, stability, and storage stability.
Collapse
Affiliation(s)
- Mohd Quasim Khan
- Department of Chemistry, M.M.D. College, Moradabad, M.J.P. Rohilkhand University, Bareilly 244001, UP, India
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khursheed Ahmad
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Haekyoung Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
18
|
Ashraf G, Ahmad T, Ahmed MZ, Murtaza, Rasimi Y. Advances in Metal-Organic Framework (MOFs) based biosensors for diagnosis: An update. Curr Top Med Chem 2022; 22:CTMC-EPUB-125974. [PMID: 36043769 DOI: 10.2174/1568026622666220829125548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
Abstract
Metal-organic frameworks (MOFs) have significant advantages over other candidate classes of chemo-sensory materials owing to their extraordinary structural tunability and characteristics. MOF-based biosensing is a simple, and convenient method for identifying various species. Biomarkers are molecular or cellular processes that link environmental exposure to a health outcome. Biomarkers are important in understanding the links between environmental chemical exposure and the development of chronic diseases, as well as in identifying disease-prone subgroups. Until now, several species, including nanoparticles (NPs) and their nanocomposites, small molecules, and unique complex systems, have been used for the chemical sensing of biomarkers. Following the overview of the field, we discussed the various fabrication methods for MOFs development in this review. We provide a thorough overview of the previous five years of progress to broaden the scope of analytes for future research. Several enzymatic and non-enzymatic sensors are offered, together with a mandatory measuring method that includes detection range and dynamic range. In addition, we reviewed the comparison of enzymatic and non-enzymatic biosensors, inventive edges, and the difficulties that need to be solved. This work might open up new possibilities for material production, sensor development, medical diagnostics, and other sensing fields.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan Hubei, P. R. China
| | - Tauqir Ahmad
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | | | - Murtaza
- Department of Chemical Sciences, University of Lakki Marwat, Khyber Pakhtunkhwa, Pakistan
| | - Yousef Rasimi
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
19
|
Zhang J, Yang L, Pei J, Tian Y, Liu J. A reagentless electrochemical immunosensor for sensitive detection of carcinoembryonic antigen based on the interface with redox probe-modified electron transfer wires and effectively immobilized antibody. Front Chem 2022; 10:939736. [PMID: 36003618 PMCID: PMC9393226 DOI: 10.3389/fchem.2022.939736] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
Convenient and sensitive detection of tumors marked in serum samples is of great significance for the early diagnosis of cancers. Facile fabrication of reagentless electrochemical immunosensor with efficient sensing interface and high sensitivity is still a challenge. Herein, an electrochemical immunosensor was easily fabricated based on the easy fabrication of immunoassay interface with electron transfer wires, confined redox probes, and conveniently immobilized antibodies, which can achieve sensitive and reagentless determination of the tumor marker, carcinoembryonic antigen (CEA). Carboxyl multi-walled carbon nanotubes (MWCNTs) were firstly modified with an electrochemical redox probe, methylene blue (MB), which has redox potentials distinguished from those of redox molecules commonly existing in biological samples (for example, ascorbic acid and uric acid). After the as-prepared MB-modified MWCNT (MWCNT-MB) was coated on the supporting glassy carbon electrode (GCE), the MWCNT-MB/GCE exhibited improved active area and electron transfer property. Polydopamine (PDA) was then in situ synthesized through simple self-polymerization of dopamine, which acts as the bio-linker to covalently immobilize the anti-CEA antibody (Ab). The developed immunosensor could be applied for electrochemical detection of CEA based on the decrease in the redox signal of MB after specific binding of CEA and immobilized Ab. The fabricated immunosensor can achieve sensitive determination of CEA ranging from 10 pg/ml to 100 ng/ml with a limit of detection (LOD) of 0.6 pg/ml. Determination of CEA in human serum samples was also realized with high accuracy.
Collapse
Affiliation(s)
- Jing Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luoxing Yang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jie Pei
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanzhang Tian
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yanzhang Tian, ; Jiyang Liu,
| | - Jiyang Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Yanzhang Tian, ; Jiyang Liu,
| |
Collapse
|
20
|
Asif M, Ashraf G, Aziz A, Iftikhar T, Wang Z, Xiao F, Sun Y. Tuning the Redox Chemistry of Copper Oxide Nanoarchitectures Integrated with rGOP via Facet Engineering: Sensing H 2S toward SRB Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19480-19490. [PMID: 35446543 DOI: 10.1021/acsami.2c02119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ultrasensitive determination of sulfate reducing bacteria (SRB) is of great significance for their crucial roles in environmental and industrial harms together with the early detection of microbial corrosion. In this work, we report the development of highly efficient electrocatalysts, i.e., Cu2O-CuO extended hexapods (EHPs), which are wrapped on homemade freestanding graphene paper to construct a flexible paper electrode in the electrochemical sensing of the biomarker sulfide for SRB detection. Herein Cu2O-CuO EHPs have been synthesized via a highly controllable and facile approach at room temperature, where the redox centers of copper oxide nanoarchitectures are tuned via facet engineering, and then they are deposited on the graphene paper surface through an electrostatic adsorption to enable homogeneous and highly dense distribution. Owing to the synergistic contribution of high electrocatalytic activity from the Cu mixed oxidation states and abundant catalytically active facets of Cu2O-CuO EHPs and high electrical conductivity of the graphene paper electrode substrate, the resultant nanohybrid paper electrode has exhibited superb electrochemical sensing properties for H2S with a wide linear range up to 352 μM and an extremely low detection limit (LOD) of 0.1 nM with a signal-to-noise ratio of 3 (S/N = 3), as well as high sensitivity, stability, and selectivity. Furthermore, taking advantage of the good biocompatibility and mechanical flexibility, the electrochemical sensing platform based on the proposed electrode has been applied in the sensitive detection of SRB in environmental samples through the sensing of sulfide from SRB, which holds great promise for on-site and online corrosion and environmental monitoring.
Collapse
Affiliation(s)
- Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ghazala Ashraf
- School of Biomedical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ayesha Aziz
- School of Biomedical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Tayyaba Iftikhar
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhanpeng Wang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fei Xiao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yimin Sun
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
21
|
Dai B, Zhou R, Ping J, Ying Y, Xie L. Recent advances in carbon nanotube-based biosensors for biomolecular detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Ashraf G, Asif M, Aziz A, Iftikhar T, Zhong ZT, Zhang S, Liu B, Chen W, Zhao YD. Advancing interfacial properties of carbon cloth via anodic-induced self-assembly of MOFs film integrated with α-MnO 2: A sustainable electrocatalyst sensing acetylcholine. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128133. [PMID: 34968843 DOI: 10.1016/j.jhazmat.2021.128133] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/10/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The metal organic frameworks (MOFs) with tunable composition, modified structure, and morphologically controlled nanoarchitectures are quite imperative to improve the electrochemical (EC) performances of sensing platforms. Herein, EC control over the fabrication of HKUST-1 (Cu-MOFs) nanocrystals is achieved via anodic-induced electrodeposition approach following the mixing of Cu2+ salt precursor in the vicinity of benzene-1,3,5-tricarboxylate (BTC3-) ligands. The problem of controlled mass transfer and slow dispersal of MOFs is resolved by EC deposition of pyramidal-octagonal MOFs on a highly conductive and flexible carbon substrate (activated carbon cloth, ACC) wrapped with rGO layers (ACC-rGO@Cu(BTC). Further, α-MnO2 is integrated on ACC-rGO@Cu(BTC) to achieve the synergistic effect of ternary structure interfaces. The novel ACC-rGO@Cu(BTC)@MnO2 based flexible electrode exhibits striking EC performance toward non-enzymatic sensing of acetylcholine (ACh) including wide linear range (0.1 µM - 3 mM), lowest detection limit (5 nM, S/N = 3), high selectivity, and long-term stability. Moreover, the developed sensing system has been applied for real-time detection of ACh efflux released from three different cell lines and biological matrices. Our work unlocks a new prospect of precisely structured MOFs with extensive functionalities and scaled-up fabrication methods via selection of nanoscale reaction centers to develop flexible sensing devices.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Muhammad Asif
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Shujie Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| |
Collapse
|
23
|
Voltammetric kinetic discrimination of two sequential proton-coupled electron transfers in serotonin oxidation: Electrochemical interrogation of a serotonin intermediate. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Ashraf G, Zhong ZT, Asif M, Aziz A, Song L, Zhang S, Liu B, Chen W, Zhao YD. Extension of duplex specific nuclease sensing application with RNA aptamer. Talanta 2022; 242:123314. [PMID: 35182839 DOI: 10.1016/j.talanta.2022.123314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/09/2023]
Abstract
Duplex specific nuclease (DSN) that can precisely cleave DNA portion in double-stranded DNA or DNA-RNA hybrid has engrossed immense attention owing to its great potential in emerging bioanalytical applications. Here, we present a novel approach to extend DSN sensing application by coupling RNA aptamer. Specially designed RNA ligand sequences are used to capture the target and simultaneously provide complementary sequences of DNA for DSN aided fluorescent signal enhancement. A clotting enzyme, thrombin, has been used as a model analyte. One RNA aptamer combined with the target molecule can generate fluorescent signals through cleavage of hybridized TaqMan DNA probe (P2) by DSN. The proposed assay has achieved the lowest detection limit of 0.039 pM. The assay has been applied for real-time detection of thrombin release from live cells and other biotic media for early disease diagnosis. The developed method is versatile and can detect various other targets by choosing the relevant aptamer and probe sequences. This method is promising to be applied to medical diagnosis, biosensing, food safety, environmental monitoring, and other fields.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China
| | - Laibo Song
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China
| | - Shujie Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China.
| |
Collapse
|
25
|
Wang N, Ga L, Ai J, Wang Y. Fluorescent Copper Nanomaterials for Sensing NO2− and Temperature. Front Chem 2022; 9:805205. [PMID: 35145953 PMCID: PMC8821814 DOI: 10.3389/fchem.2021.805205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/16/2021] [Indexed: 12/03/2022] Open
Abstract
In this work, highly fluorescent copper nanomaterials were synthesized by using ascorbic acid as a ligand. The excitation wavelength of copper nanomaterials is 367 nm, and the emission wavelength is 420 nm. The size range is 5–6 nm. Nitrite can selectively quench the fluorescence of copper nanomaterials. Therefore, copper nanomaterials can be used to selectively detect nitrite ions. The linear equation is F = −32.94 c (NO2−) + 8,455, and the correlation coefficient is 0.9435. At the same time, we found that the fluorescence intensity of copper nanomaterials has a good correlation with temperature (20–60°C), which shows that they have great potential in the application of nanothermometers.
Collapse
Affiliation(s)
- Ning Wang
- Inner Mongolian Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot, China
| | - Lu Ga
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Jun Ai
- Inner Mongolian Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot, China
- *Correspondence: Jun Ai,
| | - Yong Wang
- College of Geographical Science, Inner Mongolia Normal University, Hohhot, China
| |
Collapse
|
26
|
Aziz A, Asif M, Ashraf G, Iftikhar T, Hu J, Xiao F, Wang S. Boosting electrocatalytic activity of carbon fiber@fusiform-like copper-nickel LDHs: Sensing of nitrate as biomarker for NOB detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126907. [PMID: 34418835 DOI: 10.1016/j.jhazmat.2021.126907] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Morphological evolution of layered double hydroxides (LDHs) with preferential crystal facets has appealed gigantic attention of research community. Herein, we prepare hierarchical hybrid material by structurally integrating fusiform-like CuNiAl LDHs petals on conductive backbone of CF (CF@CuNiAl LDHs) and investigate electrocatalytic behavior in nitrate reduction over a potential window of -0.7 V to +0.7 V. The CF@CuNiAl LDHs electrode exhibits remarkable electrocatalytic aptitude in nitrate sensing including broad linear ranges of 5 nM to 40 µM and 75 µM to 2.4 mM with lowest detection limit of 0.02 nM (S/N = 3). The sensor shows sensitivity of 830.5 ± 1.84 µA mM1- cm2- and response time within 3 s. Owing to synergistic collaboration of improved electron transfer kinetics, specific fusiform-like morphology, presence of more catalytically active {111} facets and superb catalytic activity of LDHs, CF@CuNiAl LDHs electrode has outperformed as electrochemical sensor. Encouraged from incredible performance, CF@CuNiAl LDHs flexible electrode has been applied in real-time in-vitro detection of nitrite oxidizing bacteria (NOB) through the sensing of nitrate because NOB convert nitrite into nitrate by characteristic metabolic process to obtain their energy. Further, CF@CuNiAl LDHs based sensing podium has also been employed in in-vitro detection of nitrates from mineral water, tap water and Pepsi drink.
Collapse
Affiliation(s)
- Ayesha Aziz
- Advanced Biomaterials and Tissue Engineering Centre, School of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Muhammad Asif
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Ghazala Ashraf
- Advanced Biomaterials and Tissue Engineering Centre, School of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Tayyaba Iftikhar
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jinlong Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fei Xiao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Shenqi Wang
- Advanced Biomaterials and Tissue Engineering Centre, School of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
27
|
Thenrajan T, Sankar SS, Kundu S, Wilson J. Bimetallic nickel iron zeolitic imidazolate fibers as biosensing platform for neurotransmitter serotonin. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04947-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Tuan Le H, Thuy Nhi Le K, Phuong Ngo Q, Thanh Tran D, Hoon Kim N, Hee Lee J. Mo and Zn-Dual doped Cu xO nanocrystals confined High-Conductive Cu arrays as novel sensitive sensor for neurotransmitter detection. J Colloid Interface Sci 2022; 606:1031-1041. [PMID: 34487926 DOI: 10.1016/j.jcis.2021.08.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022]
Abstract
The development of sensitive and selective sensors using facile and low-cost methods for detecting neurotransmitter molecules is a critical factor in the health care system in regard to early diagnosis. In this research, an electrocatalyst derived from Mo,Zn dual-doped CuxO nanocrystals-based layer coating over one-dimensional copper nanowire arrays (Mo,Zn-CuxO/CuNWs) was successfully designed using a facile electrodeposition approach and used as an electrochemical sensor for non-enzymatic dopamine (DA) neurotransmitter detection. The synergistic effect caused by the dual-doping effect along with its excellent conductivity produced a large electroactive surface area and an improved hetero-charge transfer, thereby boosting DA sensing ability with a low limit detection of 0.32 µM, wide-range of detection (0.5 µM - 3.9 mM), long-term stability (5 weeks), and high selectivity in phosphate buffer solution (pH 7.4). Also, the sensor accurately determined DA in real blood serum-spiked solutions. The achieved results evidenced that the Mo,Zn-CuxO/CuNWs derived sensor is highly suitable for DA detection. Therefore, it also opens new windows for the development of low-cost, accurate, high-performance, and stable sensors for other neurotransmitter sensing for the purposes of better health care and early diagnosis.
Collapse
Affiliation(s)
- Huu Tuan Le
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Kha Thuy Nhi Le
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Quynh Phuong Ngo
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Duy Thanh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea; Carbon Composite Research Center, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
29
|
S S, Nair AJS, Sandhya KY. Highly Stable Copper Nano Cluster on Nitrogen-Doped Graphene Quantum Dots for the Simultaneous Electrochemical Sensing of Dopamine, Serotonin, and Nicotine; a Possible Addiction Scrutinizing Strategy. J Mater Chem B 2022; 10:3974-3988. [DOI: 10.1039/d1tb02368c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly stable copper nanocluster CuNC@N-GQD which exhibited stability for more than one year was synthesized using nitrogen doped graphene quantum dots (N-GQDs) as reducing and capping agents and smaller...
Collapse
|
30
|
Wang W, Zhang B, Zhang Y, Ma P, Wang X, Sun Y, Song D, Fei Q. Colorimetry and SERS dual-mode sensing of serotonin based on functionalized gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120057. [PMID: 34119772 DOI: 10.1016/j.saa.2021.120057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
In this study, we reported a colorimetry and SERS dual-mode sensing of serotonin (5-HT) based on functionalized gold nanoparticles (AuNPs). Based on the amino and hydroxyl groups in 5-HT can react with dithiobis succinimidyl propionate (DSP) and N-acetyl-L-cysteine (NALC) respectively, we synthesized two kinds of functionalized AuNPs (DSP-AuNPs and NALC-AuNPs). A double interaction between functionalized nanoparticles and the hydroxyl and the amino group of serotonin led to interparticle-crosslinking aggregation. The aggregation of the two functionalized AuNPs can cause the plasmon coupling of AuNPs resulting in a color change visible to the naked eye and the enlargement of SERS "hot spot" area and the enhancement of SERS signal. Furthermore, two kinds of functionalized AuNPs can specifically recognize 5-HT and effectively reduce the interference of biomolecules with similar structure to 5-HT in the experiment. This dual-mode system has the advantages of low detection limit, high sensitivity and good selectivity, and the detection limit is 0.15 nmol L-1. Besides, the system was applied to the determination of 5-HT content in human serum, and the relative standard deviation (RSD) was lower than 3.75%, which indicated that the system had a good application prospect in the determination of biological samples.
Collapse
Affiliation(s)
- Wei Wang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Bo Zhang
- International Center of Future Science, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yue Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Xinghua Wang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Ying Sun
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Qiang Fei
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| |
Collapse
|
31
|
Sriram B, Baby JN, Hsu YF, Wang SF, George M, Veerakumar P, Lin KC. Electrochemical sensor-based barium zirconate on sulphur-doped graphitic carbon nitride for the simultaneous determination of nitrofurantoin (antibacterial agent) and nilutamide (anticancer drug). J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Asif M, Xu Y, Xiao F, Sun Y. Diagnosis of COVID-19, vitality of emerging technologies and preventive measures. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 423:130189. [PMID: 33994842 PMCID: PMC8103773 DOI: 10.1016/j.cej.2021.130189] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/22/2021] [Accepted: 05/02/2021] [Indexed: 05/18/2023]
Abstract
Coronavirus diseases-2019 (COVID-19) is becoming increasing serious and major threat to public health concerns. As a matter of fact, timely testing enhances the life-saving judgments on treatment and isolation of COVID-19 infected individuals at possible earliest stage which ultimately suppresses spread of infectious diseases. Many government and private research institutes and manufacturing companies are striving to develop reliable tests for prompt quantification of SARS-CoV-2. In this review, we summarize existing diagnostic methods as manual laboratory-based nucleic acid assays for COVID-19 and their limitations. Moreover, vitality of rapid and point of care serological tests together with emerging biosensing technologies has been discussed in details. Point of care tests with characteristics of rapidity, accurateness, portability, low cost and requiring non-specific devices possess great suitability in COVID-19 diagnosis and detection. Besides, this review also sheds light on several preventive measures to track and manage disease spread in current and future outbreaks of diseases.
Collapse
Affiliation(s)
- Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yun Xu
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430205, China
| | - Fei Xiao
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430205, China
| | - Yimin Sun
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
33
|
Bibi N, Shah MH, Khan N, Mahmood Q, Aldosari AA, Abbasi AM. Analysis and health risk assessment of heavy metals in some onion varieties. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
34
|
Ashiq R, Fatima B, Shah M, Hussain D, Mohyuddin A, Majeed S, Mehmood R, Imran M, Ashiq MN, Najam-Ul-Haq M. Tin derived antimony/nitrogen-doped porous carbon (Sb/NPC) composite for electrochemical sensing of albumin from hepatocellular carcinoma patients. Mikrochim Acta 2021; 188:338. [PMID: 34510324 DOI: 10.1007/s00604-021-05005-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023]
Abstract
An electrochemical sensor based on an antimony/nitrogen-doped porous carbon (Sb/NPC) composite has been developed for the quantitative detection of albumin from hepatocellular carcinoma (HCC) patients. Sb/NPC is hydrothermally synthesized from Sn/NPC precursors. The synthesized precursor (Sn/NPC) and the product (Sb/NPC) are characterized by XRD, FTIR, TGA, UV/Vis, SEM, and AFM. Cyclic voltammetry, chronoamperometry, and electrochemical impedance studies are used to investigate the electrochemical performance of Sb/NPC-GCE. Sb/NPC-GCE detects albumin at physiological pH of 7.4 in the potential range 0.92 V and 0.09 V for oxidation and reduction, respectively. LOD and recovery of Sb/NPC-GCE for the determination of albumin are 0.13 ng.mL-1 and 66.6 ± 0.97-100 ± 2.73%, respectively. Chronoamperometry of the modified working electrode demonstrates its stability for 14 h, indicating its reusability and reproducibility. Sb/NPC-GCE is a selective sensor for albumin detection in the presence of interfering species. The electrode has been applied for albumin detection in human serum samples of HCC patients. A negative correlation of albumin with alpha-fetoprotein levels in HCC patients is observed by statistical analysis.
Collapse
Affiliation(s)
- Rabia Ashiq
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University, Multan, Pakistan
| | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Rubaida Mehmood
- MINAR Cancer Hospital, Pakistan Atomic Energy Commission, Multan, Pakistan
| | - Muhammad Imran
- Biochemistry Section, Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Muhammad Naeem Ashiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
35
|
Attaallah R, Amine A. The Kinetic and Analytical Aspects of Enzyme Competitive Inhibition: Sensing of Tyrosinase Inhibitors. BIOSENSORS 2021; 11:322. [PMID: 34562912 PMCID: PMC8471001 DOI: 10.3390/bios11090322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
An amperometric biosensor based on tyrosinase, immobilized onto a carbon black paste electrode using glutaraldehyde and BSA was constructed to detect competitive inhibitors. Three inhibitors were used in this study: benzoic acid, sodium azide, and kojic acid, and the obtained values for fifty percent of inhibition (IC50) were 119 µM, 1480 µM, and 30 µM, respectively. The type of inhibition can also be determined from the curve of the degree of inhibition by considering the shift of the inhibition curves. Amperometric experiments were performed with a biosensor polarized at the potential -0.15 V vs. Ag/AgCl and using 0.1 M phosphate buffer (pH 6.8) as an electrolyte. Under optimized conditions, the proposed biosensor showed a linear amperometric response toward catechol detection from 0.5 µM to 38 µM with a detection limit of 0.35 µM (S/N = 3), and its sensitivity was 66.5 mA M-1 cm-2. Moreover, the biosensor exhibited a good storage stability. Conversely, a novel graphical plot for the determination of reversible competitive inhibition was represented for free tyrosinase. The graph consisted of plotting the half-time reaction (t1/2) as a function of the inhibitor concentration at various substrate concentrations. This innovative method relevance was demonstrated in the case of kojic acid using a colorimetric bioassay relying on tyrosinase inhibition. The results showed that the t1/2 provides an extended linear range of tyrosinase inhibitors.
Collapse
Affiliation(s)
| | - Aziz Amine
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, PA 146, Mohammedia 20800, Morocco;
| |
Collapse
|
36
|
Li B, Guo Y, Jiang Y, Lin JM, Hu Q, Yu L. A pendant droplet-based sensor for the detection of acetylcholinesterase and its inhibitors. Chem Commun (Camb) 2021; 57:8909-8912. [PMID: 35225993 DOI: 10.1039/d1cc03370k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a pendant droplet-based sensor is developed for the rapid and label-free detection of acetylcholinesterase (AChE) and its inhibitors. The detection limit of AChE reaches 0.17 mU mL-1. The pIC50 values of AChE inhibitors such as neostigmine, rivastigmine and galantamine are determined to be 0.45 μM, 0.64 μM and 4.93 μM, respectively.
Collapse
Affiliation(s)
- Benyou Li
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China.
| | - Yongxian Guo
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China.
| | - Yifei Jiang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiongzheng Hu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China.
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China.
| |
Collapse
|
37
|
Sriram B, Baby JN, Wang SF, Hsu YF, Sherlin V A, George M. Well-Designed Construction of Yttrium Orthovanadate Confined on Graphitic Carbon Nitride Sheets: Electrochemical Investigation of Dimetridazole. Inorg Chem 2021; 60:13150-13160. [PMID: 34428891 DOI: 10.1021/acs.inorgchem.1c01548] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibiotics are the most important drugs for people and animals to fight bacterial illnesses. Overuse of antibiotics has had unintended consequences, such as antibiotic resistance and ecosystem eradication owing to toxic chemical discharge, which have a negative influence on the biome. Herein, we report the synthesis of a hollow ellipsoid-shaped yttrium vanadate/graphitic carbon nitride (YVO4@CN) nanocomposite by a hydrothermal approach followed by a sonochemical method for the effective detection of dimetridazole (DMZ). The synergic and coupling effect between both the phases offer non-linear cumulative ramifications which can positively enhance the individual properties of the materials under consideration. This positive hybrid effect increases the conductivity, shortens the ion-diffusion pathway, enhances the electron/ion transportation, and provides more active sites and electron-conducting channels. The accurate optimization of the experimental conditions proposes good electrocatalytic activity for the YVO4@CN catalyst, exhibiting a good response toward DMZ detection. It reveals an extensive linear concentration range (0.001-153.3 and 176.64-351.6 μM), a low detection limit (0.8 nM), higher sensitivity (4.98 μA μM-1 cm-2), appreciable selectivity, increased operational stability (2200 s), and good cycle stability (60 cycles). The electrochemical performance of YVO4@CN indicates its practical application in real-time sample analysis of several families of nitroimidazole drugs.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, 600 086 Tamil Nadu, India
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Abhikha Sherlin V
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, 600 086 Tamil Nadu, India
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, 600 086 Tamil Nadu, India
| |
Collapse
|
38
|
Asif M, Aziz A, Ashraf G, Iftikhar T, Sun Y, Liu H. Turning the Page: Advancing Detection Platforms for Sulfate Reducing Bacteria and their Perks. CHEM REC 2021; 22:e202100166. [PMID: 34415677 DOI: 10.1002/tcr.202100166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/05/2021] [Indexed: 12/27/2022]
Abstract
Sulfate reducing bacteria (SRB) are blamed as main culprits in triggering huge corrosion damages by microbiologically influenced corrosion. They obtained their energy through enzymatic conversion of sulfates to sulfides which are highly corrosive. However, conventional SRB detection methods are complex, time-consuming and are not enough sensitive for reliable detection. The advanced biosensing technologies capable of overcoming the aforementioned drawbacks are in demand. So, nanomaterials being economical, environmental friendly and showing good electrocatalytic properties are promising candidates for electrochemical detection of SRB as compared with antibody based assays. Here, we summarize the recent advances in the detection of SRB using different techniques such as PCR, UV visible method, fluorometric method, immunosensors, electrochemical sensors and photoelectrochemical sensors. We also discuss the SRB detection based on determination of sulfide, typical metabolic product of SRB.
Collapse
Affiliation(s)
- Muhammad Asif
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.,Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ayesha Aziz
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Ghazala Ashraf
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yimin Sun
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
39
|
Mutharani B, Ranganathan P, Tsai HC, Lai JY. Synthesis of hierarchically porous 3D polymeric carbon superstructures with nitrogen-doping by self-transformation: a robust electrocatalyst for the detection of herbicide bentazone. Mikrochim Acta 2021; 188:271. [PMID: 34302235 DOI: 10.1007/s00604-021-04910-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/21/2021] [Indexed: 11/25/2022]
Abstract
Bentazone (BEZ) is one of the utmost selective problematic contact-past herbicide with high toxicity for humans owing to feasible contamination of surface and ground water. In this work, an electrochemical sensor has been developed for the sensitive detection of BEZ, based on hierarchically porous three-dimensional (3D) carbon superstructures (CS)-modified electrodes. The CSs (namely, CSHEX, CSPY, CSACN, and CSNOS) were prepared by the pyrolysis process from organic porous polyacrylonitrile (PAN) superstructure particles (namely, PANHEX, PANPY, PANACN, and PANNOS) obtained by free radical polymerization method using different solvents (hexane, pyridine, acetonitrile, and also no solvent). The assembly with the working electrode of CSs causes the electrocatalytic BEZ oxidation by rapid electron transfer compared to the PAN superstructures and bare electrodes. Intriguingly, compared to all electrodes, CSHEX-modified electrode showed the superior electrochemical detection of BEZ at a working potential of 0.99 V (vs. Ag/AgCl), very low detection limit (0.002 μM), wide dynamic linear range (0.03 to 200 μM), high sensitivity (9.95 μA μM-1 cm-2), and excellent reliability. The advanced sensors displayed an intensification of oxidation peak current of BEZ with high selectivity, remarkable sensitivity, and reproducibility for BEZ detection and received satisfactory outcomes designating the application of sensors for the determination of BEZ in river water samples.
Collapse
Affiliation(s)
- Bhuvanenthiran Mutharani
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Palraj Ranganathan
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, Republic of China
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan. .,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan. .,R & D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, Taiwan.
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan.,R & D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, Taiwan
| |
Collapse
|
40
|
Iftikhar T, Xu Y, Aziz A, Ashraf G, Li G, Asif M, Xiao F, Liu H. Tuning Electrocatalytic Aptitude by Incorporating α-MnO 2 Nanorods in Cu-MOF/rGO/CuO Hybrids: Electrochemical Sensing of Resorcinol for Practical Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31462-31473. [PMID: 34196524 DOI: 10.1021/acsami.1c07067] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, Cu-MOF/rGO/CuO/α-MnO2 nanocomposites have been fabricated by a one-step hydrothermal method and used in the voltammetric detection of resorcinol (RS). The poor conductivity of MOFs in the field of electrochemical sensing is still a major challenge. A series of Cu-MOF/rGO/CuO/α-MnO2 nanocomposites have been synthesized with varying fractions of rGO and with a fixed amount of α-MnO2 via a facile method. These nanocomposites are well characterized using some sophisticated characterization techniques. The as-prepared nanohybrids have strongly promoted the redox reactions at the electrode surface due to their synergistic effects of improved conductivity, high electrocatalytic activity, an enlarged specific surface area, and a plethora of nanoscale level interfacial collaborations. The electrode modified with Cu-MOF/rGO/CuO/α-MnO2 has revealed superior electrochemical properties demonstrating linear differential pulse voltammetry (DPV) responses from a 0.2 to 22 μM RS concentration range (R2 = 0.999). The overall results of this sensing podium have shown excellent stability, good recovery, and a low detection limit of 0.2 μM. With excellent sensing performance achieved, the practicability of the sensor has been evaluated to detect RS in commercial hair color samples as well as in tap water and river water samples. Therefore, we envision that our hybrid nanostructures synthesized by the structural integration strategy will open new horizons in material synthesis and biosensing platforms.
Collapse
Affiliation(s)
- Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yun Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Ayesha Aziz
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China
| | - Ghazala Ashraf
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Muhammad Asif
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
41
|
Devi RK, Muthusankar G, Chen SM, Gopalakrishnan G. In situ formation of Co 3O 4 nanoparticles embedded N-doped porous carbon nanocomposite: a robust material for electrocatalytic detection of anticancer drug flutamide and supercapacitor application. Mikrochim Acta 2021; 188:196. [PMID: 34036435 DOI: 10.1007/s00604-021-04860-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/13/2021] [Indexed: 11/27/2022]
Abstract
The one-step synthesis of heteroatom-doped porous carbons is reported with the in situ formation of cobalt oxide nanoparticles for dual electrochemical applications (i.e., electrochemical sensor and supercapacitor). A single molecular template of zeolitic imidazole framework-67 (ZIF-67) was utilized for the solid-state synthesis of cobalt oxide nanoparticle-decorated nitrogen-doped porous carbon (Co3O4@NPC) nanocomposite through a facile calcination treatment. For the first time, Co3O4@NPC nanocomposite derived from ZIF-67 has been applied as an electrode material for the efficient electrochemical detection of anticancer drug flutamide (FLU). The cyclic voltammetry studies were performed in the operating potential from 0.15 to - 0.65 V (vs. Ag/AgCl). Interestingly, the fabricated drug sensor exhibited a very low reduction potential (- 0.42 V) compared to other reported sensors. The fabricated sensor exhibited good analytical performance in terms of low detection limit (12 nM), wide linear range (0.5 to 400 μM), and appreciable recovery results (~ 98%, RSD 1.7% (n = 3)) in a human urine sample. Hereafter, we also examined the supercapacitor performance of the Co3O4@NPC-modified Ni foam in a 1M KOH electrolyte, and noticeable a specific capacitance of 525 F g-1 at 1.5 A g-1 was attained, with long-term cycling stability. The Co3O4@NPC nanocomposite supercapacitor experiments outperform the associated MOF-derived carbons and the Co3O4-based nanostructure-modified electrodes.
Collapse
Affiliation(s)
- Ramadhass Keerthika Devi
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, Republic of China
| | - Ganesan Muthusankar
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan.,Department of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, Republic of China.
| | - Gopu Gopalakrishnan
- Department of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| |
Collapse
|
42
|
Karaman C, Karaman O, Atar N, Yola ML. Electrochemical immunosensor development based on core-shell high-crystalline graphitic carbon nitride@carbon dots and Cd 0.5Zn 0.5S/d-Ti 3C 2T x MXene composite for heart-type fatty acid-binding protein detection. Mikrochim Acta 2021; 188:182. [PMID: 33959811 DOI: 10.1007/s00604-021-04838-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Acute myocardial infarction (AMI) is a significant health problem owing to its high mortality rate. Heart-type fatty acid-binding protein (h-FABP) is an important biomarker in the diagnosis of AMI. In this work, an electrochemical h-FABP immunosensor was developed based on Cd0.5Zn0.5S/d-Ti3C2Tx MXene (MXene: Transition metal carbide or nitride) composite as signal amplificator and core-shell high-crystalline graphitic carbon nitride@carbon dots (hc-g-C3N4@CDs) as electrochemical sensor platform. Firstly, a facile calcination technique was applied to the preparation of hc-g-C3N4@CDs and immobilization of primary antibody was performed on hc-g-C3N4@CDs surface. Then, the conjugation of the second antibody to Cd0.5Zn0.5S/d-Ti3C2Tx MXene was carried out by strong π-π and electrostatic interactions. The prepared electrochemical h-FABP immunosensor was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD) method, Fourier-transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The prepared electrochemical h-FABP immunosensor indicated a good sensitivity with detection limit (LOD) of 3.30 fg mL-1 in the potential range +0.1 to +0.5 V. Lastly, low-cost, satisfactory stable, and environmentally friendly immunosensor was presented for the diagnosis of acute myocardial infarction.
Collapse
Affiliation(s)
- Ceren Karaman
- Vocational School of Technical Sciences, Department of Electricity and Energy, Akdeniz University, Antalya, Turkey
| | - Onur Karaman
- Vocational School of Health Services, Department of Medical Imaging Techniques, Akdeniz University, Antalya, Turkey
| | - Necip Atar
- Faculty of Engineering, Department of Chemical Engineering, Pamukkale University, Denizli, Turkey
| | - Mehmet Lütfi Yola
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Hasan Kalyoncu University, Gaziantep, Turkey.
| |
Collapse
|
43
|
Chaudhary C, Kumar S, Chandra R. Hierarchical structure of molybdenum disulfide-reduced graphene oxide nanocomposite for the development of a highly efficient serotonin biosensing platform. NEW J CHEM 2021. [DOI: 10.1039/d1nj03534g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molybdenum disulfide-reduced graphene oxide nanocomposite based immunosensor for the serotonin detection.
Collapse
Affiliation(s)
- Chhaya Chaudhary
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Suveen Kumar
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi-110007, India
- Dr B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| |
Collapse
|
44
|
Joseph XB, Ezhilarasi JC, Wang SF, Elanthamilan E, Sriram B, Merlin JP. Fabrication of Co 3O 4 nanoparticle-decorated porous activated carbon electrode for the electrochemical detection of 4-nitrophenol. NEW J CHEM 2021. [DOI: 10.1039/d1nj02642a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Preparation of Co3O4@BVFC for the electrochemical detection of 4-NP.
Collapse
Affiliation(s)
- Xavier Benadict Joseph
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - J. Christy Ezhilarasi
- Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620017, Tamil Nadu, India
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - E. Elanthamilan
- Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620017, Tamil Nadu, India
| | - Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - J. Princy Merlin
- Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620017, Tamil Nadu, India
| |
Collapse
|