1
|
Li X, Gao Y, Nie J, Sun F. Construction of gradient ionogels by self-floatable hyperbranched organosilicon crosslinkers for multi-sensing and wirelessly monitoring physiological signals. J Colloid Interface Sci 2025; 678:703-712. [PMID: 39216397 DOI: 10.1016/j.jcis.2024.08.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Monitoring complex human movements requires the simultaneous detection of strain and pressure, which poses a challenge due to the difficulty in integrating high stretchability and compressive ability into a single material. Herein, a series of hyperbranched polysiloxane crosslinkers (HPSis) with self-floating abilities are designed and synthesized. Taking advantage of the self-floating capabilities of HPSis, ionogels with gradient composition distribution and conductivities are constructed by in situ one-step photopolymerization, and possess satisfactory stretchability, high compressibility and excellent resilience. The gradient-ionogel-based strain sensor exhibits extraordinary pressure sensitivity (19.33 kPa-1), high strain sensitivity (GF reaches 2.5) and temperature sensing ability, enabling the monitoring of the angles and direction of joint movements, transmitting Morse code and wirelessly detecting bioelectrical signals. This study may inspire the design of development of multi-function flexible electronics.
Collapse
Affiliation(s)
- Xuechun Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China; College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yanjing Gao
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China; College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Fang Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China; College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
2
|
Li X, Yang X, Li S, Lv H, Wang Z, Gao Z, Song H. 3D Printing of Thermo-Mechano-Responsive Photoluminescent Noncovalent Cross-Linked Ionogels with High-Stretchability and Ultralow-Hysteresis for Wearable Ionotronics and Anti-Counterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403252. [PMID: 38923177 DOI: 10.1002/smll.202403252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Ionogel has recently emerged as a promising ionotronic material due to its good ionic conductivity and flexibility. However, low stretchability and significant hysteresis under long-term loading limit their mechanical stability and repeatability. Developing ultralow hysteresis ionogels with high stretchability is of great significance. Here, a simple and effective strategy is developed to fabricate highly stretchable and ultralow-hysteresis noncovalent cross-linked ionogels based on phase separation by 3D printing of 2-hydroxypropyl acrylate (HPA) in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4). Ingeniously, the sea-island structure of the physically cross-linked network constructed by the smaller nanodomains and larger nanodomain clusters significantly minimizes the energy dissipation, endowing these ionogels with remarkable stretchability (>1000%), ultra-low hysteresis (as low as 0.2%), excellent temperature tolerance (-33-317 °C), extraordinary ionic conductivity (up to 1.7 mS cm-1), and outstanding durability (5000 cycles). Moreover, due to the formation of nanophase separation and cross-linking structure, the as-prepared ionogels exhibit unique thermochromic and multiple photoluminescent properties, which can synergistically be applied for anti-counterfeiting and encrypting. Importantly, flexible thermo-mechano-multimodal visual ionotronic sensors for strain and temperature sensing with highly stable and reproducible electrical response over 20 000 cycles are fabricated, showing synergistically optical and electrical output performances.
Collapse
Affiliation(s)
- Xin Li
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, P. R. China
- College of Materials Engineering, North China Institute of Aerospace Technology, Langfang, Hebei Province, 065000, P. R. China
| | - Xuemeng Yang
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, P. R. China
| | - Shuaijie Li
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, P. R. China
| | - Hongying Lv
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, P. R. China
| | - Zhuoer Wang
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, P. R. China
| | - Zhuoyou Gao
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, P. R. China
| | - Hongzan Song
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, P. R. China
| |
Collapse
|
3
|
Kuddushi M, Xu BB, Malek N, Zhang X. Review of ionic liquid and ionogel-based biomaterials for advanced drug delivery. Adv Colloid Interface Sci 2024; 331:103244. [PMID: 38959813 DOI: 10.1016/j.cis.2024.103244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Ionic liquids (ILs) play a crucial role in the design of novel materials. The ionic nature of ILs provides numerous advantages in drug delivery, acting as a green solvent or active ingredient to enhance the solubility, permeability, and binding efficiency of drugs. They could also function as a structuring agent in the development of nano/micro particles for drug delivery, including micelles, vesicles, gels, emulsion, and more. This review summarize the ILs and IL-based gel structures with their advanced drug delivery applications. The first part of review focuses on the role of ILs in drug formulation and the applications of ILs in drug delivery. The second part of review offers a comprehensive overview of recent drug delivery applications of IL-based gel. It aims to offer new perspectives and attract more attention to open up new avenues in the biomedical applications of ILs and IL-based gels.
Collapse
Affiliation(s)
- Muzammil Kuddushi
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Naved Malek
- Ionic Liquid Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 07, India
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada.
| |
Collapse
|
4
|
He X, Zhang B, Liu Q, Chen H, Cheng J, Jian B, Yin H, Li H, Duan K, Zhang J, Ge Q. Highly conductive and stretchable nanostructured ionogels for 3D printing capacitive sensors with superior performance. Nat Commun 2024; 15:6431. [PMID: 39085229 PMCID: PMC11291765 DOI: 10.1038/s41467-024-50797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Ionogels are promising material candidates for ionotronics due to their excellent ionic conductivity, stretchability, and thermal stability. However, it is challenging to develop 3D printable ionogels with both excellent electrical and mechanical properties. Here, we report a highly conductive and stretchable nanostructured (CSN) ionogel for 3D printing ionotronic sensors. We propose the photopolymerization-induced microphase separation strategy to prepare the CSN ionogels comprising continuous conducting nanochannels intertwined with cross-linked polymeric framework. The resultant CSN ionogels simultaneously achieves high ionic conductivity (over 3 S m-1), high stretchability (over 1500%), low degree of hysteresis (0.4% at 50% strain), wide-temperature-range thermostability (-72 to 250 °C). Moreover, its high compatible with DLP 3D printing enables the fabrication of complex ionogel micro-architectures with high resolution (up to 5 μm), which allows us to manufacture capacitive sensors with superior sensing performances. The proposed CSN ionogel paves an efficient way to manufacture the next-generation capacitive sensors with enhanced performance.
Collapse
Affiliation(s)
- Xiangnan He
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Biao Zhang
- Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, China
| | - Qingjiang Liu
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Hao Chen
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jianxiang Cheng
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Bingcong Jian
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Hanlin Yin
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Honggeng Li
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Ke Duan
- Department of Materials Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, China
| | - Jianwei Zhang
- Department of Materials Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, China
| | - Qi Ge
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
5
|
He C, Wu L, Gu G, Wei L, Yang C, Chen M. An Ionic Assisted Enhancement Strategy Enabled High Performance Flexible Pressure-Temperature Dual Sensor. NANO LETTERS 2024; 24:7040-7047. [PMID: 38804573 DOI: 10.1021/acs.nanolett.4c01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Flexible pressure sensors with a broad range and high sensitivity are greatly desired yet challenging to build. Herein, we have successfully fabricated a pressure-temperature dual sensor via an ionic assisted charge enhancement strategy. Benefiting from the immobilization effect for [EMIM+] [TFSI-] ion pairs and charge transfer between ionic liquid (IL) and HFMO (H10Fe3Mo21O51), the formed IL-HFMO-TPU pressure sensor shows a high sensitivity of 25.35 kPa-1 and broad sensing range (∼10 MPa), respectively. Furthermore, the sensor device exhibits high durability and stability (5000 cycles@1 MPa). The IL-HFMO-TPU sensor also shows the merit of good temperature sensing properties. Attributed to these superior properties, the proposed sensor device could detect pressure in an ultrawide sensing range (from Pa to MPa), including breathe and biophysical signal monitoring etc. The proposed ionic assisted enhancement approach is a generic strategy for constructing high performance flexible pressure-temperature dual sensor.
Collapse
Affiliation(s)
- Chenying He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lie Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Guoqiang Gu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Chunlei Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
6
|
Yu M, Chen S, Yu X. Reusable, Green, Portable Ionogels Based on Terpyridine-Imidazole Salt for Visual Monitoring of Pork Spoilage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11713-11722. [PMID: 38775965 DOI: 10.1021/acs.langmuir.4c01098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Ionogels have emerged as a promising approach because they combine the advantageous properties of ionic liquids and gels. Herein, a novel gelator bearing terpyridine and imidazolium salt units was designed and synthesized, which assembled into ionogels in three ionic liquids by a heating-cooling procedure. The properties of ionogels were characterized by FT-IR, UV-vis spectroscopy, POM, XRD, and rheology, and resonance light scattering and opacity measurements were conducted to investigate the gelation kinetics. Furthermore, the ionogels incorporating pH-sensitive dyes (BTB and MR) were exploited as colorimetric sensor to monitor total volatile basic nitrogen (TVB-N) of meat at -4 °C, which can easily and reliably estimate the quality of meat by naked eye recognition, and the results demonstrated a positive correlation between the color variation and TVB-N levels. Notably, the hydrophobic ionogel indicators are more suitable for potential application at high humidity thanks to their antiswelling advantage, which could prevent the inaccurate information produced by hydrogel indicators. In addition, the ionogels could be reused up to three times as colorimetric indicators, suggesting potential applications and competitiveness. Our research sheds new light on the novel application of ionogels in the food industry.
Collapse
Affiliation(s)
- Mingqi Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Shaorui Chen
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Xudong Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| |
Collapse
|
7
|
Hao S, Chen Z, Li H, Yuan J, Chen X, Sidorenko A, Huang J, Gu Y. Skin-Inspired, Highly Sensitive, Broad-Range-Response and Ultra-Strong Gradient Ionogels Prepared by Electron Beam Irradiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309931. [PMID: 38102094 DOI: 10.1002/smll.202309931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Skin, characterized by its distinctive gradient structure and interwoven fibers, possesses remarkable mechanical properties and highly sensitive attributes, enabling it to detect an extensive range of stimuli. Inspired by these inherent qualities, a pioneering approach involving the crosslinking of macromolecules through in situ electron beam irradiation (EBI) is proposed to fabricate gradient ionogels. Such a design offers remarkable mechanical properties, including excellent tensile properties (>1000%), exceptional toughness (100 MJ m-3), fatigue resistance, a broad temperature range (-65-200°C), and a distinctive gradient modulus change. Moreover, the ionogel sensor exhibits an ultra-fast response time (60 ms) comparable to skin, an incredibly low detection limit (1 kPa), and an exceptionally wide detection range (1 kPa-1 MPa). The exceptional gradient ionogel material holds tremendous promise for applications in the field of smart sensors, presenting a distinct strategy for fabricating flexible gradient materials.
Collapse
Affiliation(s)
- Shuai Hao
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhiyan Chen
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Haozhe Li
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jushigang Yuan
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xihao Chen
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Alexander Sidorenko
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Minsk, 220084, Belarus
| | - Jiang Huang
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yanlong Gu
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
8
|
Li Q, Yan F, Texter J. Polymerized and Colloidal Ionic Liquids─Syntheses and Applications. Chem Rev 2024; 124:3813-3931. [PMID: 38512224 DOI: 10.1021/acs.chemrev.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
9
|
Li HN, Zhang C, Yang HC, Liang HQ, Wang Z, Xu ZK. Solid-state, liquid-free ion-conducting elastomers: rising-star platforms for flexible intelligent devices. MATERIALS HORIZONS 2024; 11:1152-1176. [PMID: 38165799 DOI: 10.1039/d3mh01812a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Soft ionic conductors have emerged as a powerful toolkit to engineer transparent flexible intelligent devices that go beyond their conventional counterparts. Particularly, due to their superior capacities of eliminating the evaporation, freezing and leakage issues of the liquid phase encountered with hydrogels, organohydrogels and ionogels, the emerging solid-state, liquid-free ion-conducting elastomers have been largely recognized as ideal candidates for intelligent flexible devices. However, despite their extensive development, a comprehensive and timely review in this emerging field is lacking, particularly from the perspective of design principles, advanced manufacturing, and distinctive applications. Herein, we present (1) the design principles and intriguing merits of solid-state, liquid-free ion-conducting elastomers; (2) the methods to manufacture solid-state, liquid-free ion-conducting elastomers with preferential architectures and functions using advanced technologies such as 3D printing; (3) how to leverage solid-state, liquid-free ion-conducting elastomers in exploiting advanced applications, especially in the fields of flexible wearable sensors, bioelectronics and energy harvesting; (4) what are the unsolved scientific and technical challenges and future opportunities in this multidisciplinary field. We envision that this review will provide a paradigm shift to trigger insightful thinking and innovation in the development of intelligent flexible devices and beyond.
Collapse
Affiliation(s)
- Hao-Nan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Chao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Hao-Cheng Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Hong-Qing Liang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
10
|
Oh E, Kane AQ, Truby RL. Architected Poly(ionic liquid) Composites with Spatially Programmable Mechanical Properties and Mixed Conductivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10736-10745. [PMID: 38354100 DOI: 10.1021/acsami.3c18512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Structural electrolytes present advantages over liquid varieties, which are critical to myriad applications. In particular, structural electrolytes based on polymerized ionic liquids or poly(ionic liquids) (pILs) provide wide electrochemical windows, high thermal stability, nonvolatility, and modular chemistry. However, current methods of fabricating structural electrolytes from pILs and their composites present limitations. Recent advances have been made in 3D printing pIL electrolytes, but current printing techniques limit the complexity of forms that can be achieved, as well as the ability to control mechanical properties or conductivity. We introduce a method for fabricating architected pIL composites as structural electrolytes via embedded 3D (EMB3D) printing. We present a modular design for formulating ionic liquid (IL) monomer composite inks that can be printed into sparse, lightweight, free-standing lattices with different functionalities. In addition to characterizing the rheological and mechanical behaviors of IL monomer inks and pIL lattices, we demonstrate the self-sensing capabilities of our printed structural electrolytes during cyclic compression. Finally, we use our inks and printing method to spatially program self-sensing capabilities in pIL lattices through heterogeneous architectures as well as ink compositions that provide mixed ionic-electronic conductivity. Our free-form approach to fabricating structural electrolytes in complex, 3D forms with programmable, anisotropic properties has broad potential use in next-generation sensors, soft robotics, bioelectronics, energy storage devices, and more.
Collapse
Affiliation(s)
- EunBi Oh
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexander Q Kane
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan L Truby
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Robotics and Biosystems, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Patel V, Das E, Bhargava A, Deshmukh S, Modi A, Srivastava R. Ionogels for flexible conductive substrates and their application in biosensing. Int J Biol Macromol 2024; 254:127736. [PMID: 38183203 DOI: 10.1016/j.ijbiomac.2023.127736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 01/07/2024]
Abstract
Ionogels are highly conductive gels made from ionic liquids dispersed in a matrix made of organic or inorganic materials. Ionogels are known for high ionic conductivity, flexibility, high thermal and electrochemical stability. These characteristics make them suitable for sensing and biosensing applications. This review discusses about the two main constituents, ionic liquids and matrix, used to make ionogels and effect of these materials on the characteristics of ionogels. Here, the material properties like mechanical, electrochemical and stability are discussed for both polymer matrix and ionic liquid. We have briefly described about the fabrication methods like 3D printing, sol-gel, blade coating, spin coating, aerosol jet printing etc., used to make films or coating of these ionogels. The advantages and disadvantages of each method are also briefly summarized. Finally, the last section provides a few examples of application of flexible ionogels in areas like wearables, human-machine interface, electronic skin and detection of biological molecules.
Collapse
Affiliation(s)
- Vinay Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India
| | - Eatu Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India
| | - Ameesha Bhargava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India
| | - Sharvari Deshmukh
- MIT School of Bioengineering Sciences and Research, MIT ADT University, Loni Kalbhor, Pune 412201, India
| | - Anam Modi
- G.N. Khalsa College, Matunga, Mumbai 400019, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076, India.
| |
Collapse
|
12
|
Zhang Y, Yan H, Yu R, Yuan J, Yang K, Liu R, He Y, Feng W, Tian W. Hyperbranched Dynamic Crosslinking Networks Enable Degradable, Reconfigurable, and Multifunctional Epoxy Vitrimer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306350. [PMID: 37933980 PMCID: PMC10787098 DOI: 10.1002/advs.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 11/08/2023]
Abstract
Degradation and reprocessing of thermoset polymers have long been intractable challenges to meet a sustainable future. Star strategies via dynamic cross-linking hydrogen bonds and/or covalent bonds can afford reprocessable thermosets, but often at the cost of properties or even their functions. Herein, a simple strategy coined as hyperbranched dynamic crosslinking networks (HDCNs) toward in-practice engineering a petroleum-based epoxy thermoset into degradable, reconfigurable, and multifunctional vitrimer is provided. The special characteristics of HDCNs involve spatially topological crosslinks for solvent adaption and multi-dynamic linkages for reversible behaviors. The resulting vitrimer displays mild room-temperature degradation to dimethylacetamide and can realize the cycling of carbon fiber and epoxy powder from composite. Besides, they have supra toughness and high flexural modulus, high transparency as well as fire-retardancy surpassing their original thermoset. Notably, it is noted in a chance-following that ethanol molecule can induce the reconstruction of vitrimer network by ester-exchange, converting a stiff vitrimer into elastomeric feature, and such material records an ultrahigh modulus (5.45 GPa) at -150 °C for their ultralow-temperature condition uses. This is shaping up to be a potentially sustainable advanced material to address the post-consumer thermoset waste, and also provide a newly crosslinked mode for the designs of high-performance polymer.
Collapse
Affiliation(s)
- Yuanbo Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hongxia Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Ruizhi Yu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Junshan Yuan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Kaiming Yang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Rui Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yanyun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Weixu Feng
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
13
|
Zhang L, Wang S, Wang Q, Shao H, Jin Z. Dendritic Solid Polymer Electrolytes: A New Paradigm for High-Performance Lithium-Based Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303355. [PMID: 37269533 DOI: 10.1002/adma.202303355] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Indexed: 06/05/2023]
Abstract
Li-ions battery is widely used and recognized, but its energy density based on organic electrolytes has approached the theoretical upper limit, while the use of organic electrolytes also brings some safety hazards (leakage and flammability). Polymer electrolytes (PEs) are expected to fundamentally solve the safety problem and improve energy density. Therefore, Li-ions battery based on solid PE has become a research hotspot in recent years. However, low ionic conductivity and poor mechanical properties, as well as a narrow electrochemical window limit its further development. Dendritic PEs with unique topology structure has low crystallinity, high segmental mobility, and reduced chain entanglement, providing a new avenue for designing high-performance PEs. In this review, the basic concept and synthetic chemistry of dendritic polymers are first introduced. Then, this story will turn to how to balance the mechanical properties, ionic conductivity, and electrochemical stability of dendritic PEs from synthetic chemistry. In addition, accomplishments on dendritic PEs based on different synthesis strategies and recent advances in battery applications are summarized and discussed. Subsequently, the ionic transport mechanism and interfacial interaction are deeply analyzed. In the end, the challenges and prospects are outlined to promote further development in this booming field.
Collapse
Affiliation(s)
- Lei Zhang
- School of Materials and Chemical Engineering, Chuzhou University, 1528 Fengle Avenue, Chuzhou, 239099, China
| | - Shi Wang
- School of Materials and Chemical Engineering, Chuzhou University, 1528 Fengle Avenue, Chuzhou, 239099, China
- State Key Laboratory of Organic Electronics & Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High-Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qian Wang
- Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Huaiyu Shao
- Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, N23-4022, Avenida da Universidad, Taipa, Maca, 519000, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High-Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
14
|
Lei L, Wang H, Jia Q, Tian Y, Wang S. Highly stretchable, supersensitive, and self-adhesive ionohydrogels using waterborne polyurethane micelles as cross-linkers for wireless strain sensors. J Mater Chem B 2023; 11:7478-7489. [PMID: 37455619 DOI: 10.1039/d3tb00495c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Due to the rapid development of multi-functional flexible wearable sensors, the development prospects of ionohydrogels with excellent mechanical properties and high sensitivity are necessary. In this work, a novel waterborne polyurethane (WPU) micelle with reactive groups on the surface has been prepared as a crosslinker and then reacted with polyacrylamide (PAM) to obtain a polyacrylamide-polyurethane/ionic liquid (PAM-WPU/IL) ionohydrogel. With the aid of ion-dipole interaction and crosslinks in the composite, the ionohydrogel exhibited ultrastretchability (up to 2927%), good mechanical resilience, and excellent self-adhesion strength (46.01 kPa). Furthermore, the ionohydrogel was used as a strain sensor for monitoring human movement with high strain sensitivity (gauge factor = 35). It is believed that this study provides a new idea for designing a multifunctional ionohydrogel for use in wearable electronics.
Collapse
Affiliation(s)
- Lingling Lei
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Qihan Jia
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yali Tian
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610065, P. R. China.
| | - Shuang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
15
|
Li X, Sun F. An Ultrastretchable Gradient Ionogel Induced by a Self-Floating Strategy for Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37717-37727. [PMID: 37523492 DOI: 10.1021/acsami.3c06894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The fabrication of gradient ionogels for flexible strain sensors remains challenging because of the complex preparation procedures, and it is still difficult to prepare highly stretchable ionogels (strain > 10000%). In this study, a strategy is proposed to successfully fabricate gradient ionogels and apply them to flexible strain sensors by utilizing the self-floating character of the polysiloxane cross-linker. A gradient ionogel with ultrahigh stretchability (>14000%) is prepared via a one-step in situ photopolymerization process of the precursor with long-chain poly(dimethylsiloxane) bis(2-methyl acrylate) (PDMSMA). PDMSMA, which has a self-floating ability and excellent flexibility, induces a gradient composition distribution in the ionogel, thereby endowing the ionogel with superior stretchability and gradient changes in conductivity and adhesivity from the top to the bottom layer. Because of multiple molecular interactions, the bottom surface of the ionogel possesses good resilience and self-adhesion, whereas the top surface, which has a high PDMSMA content, shows a nonsticky performance. As a result, a singular gradient ionogel having both a sticky bottom surface and a nonsticky top surface is achieved. Furthermore, the flexible strain sensor that is created based on these gradient ionogels exhibits high sensitivity (its gauge factor reaching 5.08), a wide detection range (1-1500%), fast response times, and good linearity. Notably, the detection signal remains repeatable over 1000 uninterrupted strain cycles. The fabricated strain sensor was further utilized to monitor joint movements and physiological signals. This work provides a facile strategy for fabricating gradient ionogels and shows their application potential in the field of flexible electronics.
Collapse
Affiliation(s)
- Xuechun Li
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Fang Sun
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Anqing Research Institute, Beijing University of Chemical Technology, Anqing 246000, People's Republic of China
| |
Collapse
|
16
|
Shmool TA, Martin LK, Jirkas A, Matthews RP, Constantinou AP, Vadukul DM, Georgiou TK, Aprile FA, Hallett JP. Unveiling the Rational Development of Stimuli-Responsive Silk Fibroin-Based Ionogel Formulations. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:5798-5808. [PMID: 37576585 PMCID: PMC10413859 DOI: 10.1021/acs.chemmater.3c00303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/20/2023] [Indexed: 08/15/2023]
Abstract
We present an approach for the rational development of stimuli-responsive ionogels which can be formulated for precise control of multiple unique ionogel features and fill niche pharmaceutical applications. Ionogels are captivating materials, exhibiting self-healing characteristics, tunable mechanical and structural properties, high thermal stability, and electroconductivity. However, the majority of ionogels developed require complex chemistry, exhibit high viscosity, poor biocompatibility, and low biodegradability. In our work, we overcome these limitations. We employ a facile production process and strategically integrate silk fibroin, the biocompatible ionic liquids (ILs) choline acetate ([Cho][OAc]), choline dihydrogen phosphate ([Cho][DHP]), and choline chloride ([Cho][Cl]), traditional pharmaceutical excipients, and the model antiepileptic drug phenobarbital. In the absence of ILs, we failed to observe gel formation; yet in the presence of ILs, thermoresponsive ionogels formed. Systems were assessed via visual tests, transmission electron microscopy, confocal reflection microscopy, dynamic light scattering, zeta potential and rheology measurements. We formed diverse ionogels of strengths ranging between 18 and 642 Pa. Under 25 °C storage, formulations containing polyvinylpyrrolidone (PVP) showed an ionogel formation period ranging over 14 days, increasing in the order of [Cho][DHP], [Cho][OAc], and [Cho][Cl]. Formulations lacking PVP showed an ionogel formation period ranging over 32 days, increasing in the order of [Cho][OAc], [Cho][DHP] and [Cho][Cl]. By heating from 25 to 60 °C, immediately following preparation, thermoresponsive ionogels formed below 41 °C in the absence of PVP. Based on our experimental results and density functional theory calculations, we attribute ionogel formation to macromolecular crowding and confinement effects, further enhanced upon PVP inclusion. Holistically, applying our rational development strategy enables the production of ionogels of tunable physicochemical and rheological properties, enhanced drug solubility, and structural and energetic stability. We believe our rational development approach will advance the design of biomaterials and smart platforms for diverse drug delivery applications.
Collapse
Affiliation(s)
- Talia A. Shmool
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Laura K. Martin
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.
| | - Andreas Jirkas
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Richard P. Matthews
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
- Department
of Bioscience, School of Health, Sports and Bioscience, University of East London, Stratford, London E15 4LZ, U.K.
| | - Anna P. Constantinou
- Department
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Devkee M. Vadukul
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Theoni K. Georgiou
- Department
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Francesco A. Aprile
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Jason P. Hallett
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| |
Collapse
|
17
|
Liu Y, Zeng Q, Li Z, Chen A, Guan J, Wang H, Wang S, Zhang L. Recent Development in Topological Polymer Electrolytes for Rechargeable Lithium Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206978. [PMID: 36999829 DOI: 10.1002/advs.202206978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Indexed: 05/27/2023]
Abstract
Solid polymer electrolytes (SPEs) are still being considered as a candidate to replace liquid electrolytes for high-safety and flexible lithium batteries due to their superiorities including light-weight, good flexibility, and shape versatility. However, inefficient ion transportation of linear polymer electrolytes is still the biggest challenge. To improve ion transport capacity, developing novel polymer electrolytes are supposed to be an effective strategy. Nonlinear topological structures such as hyperbranched, star-shaped, comb-like, and brush-like types have highly branched features. Compared with linear polymer electrolytes, topological polymer electrolytes possess more functional groups, lower crystallization, glass transition temperature, and better solubility. Especially, a large number of functional groups are beneficial to dissociation of lithium salt for improving the ion conductivity. Furthermore, topological polymers have strong design ability to meet the requirements of comprehensive performances of SPEs. In this review, the recent development in topological polymer electrolytes is summarized and their design thought is analyzed. Outlooks are also provided for the development of future SPEs. It is expected that this review can raise a strong interest in the structural design of advanced polymer electrolyte, which can give inspirations for future research on novel SPEs and promote the development of next-generation high-safety flexible energy storage devices.
Collapse
Affiliation(s)
- Yu Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghui Zeng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenfeng Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anqi Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiazhu Guan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Honghao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Wang
- State Key Laboratory of Organic Electronics & Information Displays (SKLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Liaoyun Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Hao S, Yang C, Yang X, Li T, Ma L, Jiao Y, Song H. Highly Tough, Stretchable, and Recyclable Ionogels with Crosslink-Enhanced Emission Characteristics for Anti-Counterfeiting and Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16132-16143. [PMID: 36921264 DOI: 10.1021/acsami.3c02352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Traditional luminescent ionogels often suffer from poor mechanical properties and a lack of recyclability and regeneration, which limits their further application and sustainable development. Herein, a luminescent ionogel with strong mechanical properties and good recyclability has been designed and fabricated by introducing dynamic coordination bonds via in situ one-step crosslinking of acrylic acid in ionic liquid of 1-ethyl-3-methylimidazolium diethylphosphate by zinc dimethacrylate. Due to the special crosslinking of dynamic coordination bonds along with the hydrogen bond interaction, the as-prepared ionogel displays excellent stretchability and toughness, good self-adhesiveness, fast self-healability, and recyclability. Interestingly, the obtained ionogels exhibit tunable photoluminescence caused by the crosslink-enhanced emission (CEE) effect from the coordination bonds. Importantly, ionogels can be applied in information storage, information encryption, anti-counterfeiting due to their simple and in situ preparation method, and their special fluorescence performances. Moreover, an ionogel-based wearable sensor has rapid response time and a high gauge factor of 3.22 within a wide strain range from 1 to 700%, which can monitor various human movements accurately from subtle to large-scale motions. This paper offers a promising way to fabricate sustainable functional ionic liquid-based composites with CEE characteristics via an in situ one-step polymerization method.
Collapse
Affiliation(s)
- Shuai Hao
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Chen Yang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Xuemeng Yang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Tianci Li
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Lianhua Ma
- College of Quality and Technical Supervision, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Yunhong Jiao
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Hongzan Song
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| |
Collapse
|
19
|
Clement N, Kandasubramanian B. 3D Printed Ionogels In Sensors. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2126784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Navya Clement
- Polymer Science, CIPET: Institute of Petrochemical Technology (IPT), HIL Colony, Edayar Road, Pathalam, Eloor, Udyogmandal P.O, Kochi 683501, India
| | | |
Collapse
|
20
|
Fan X, Liu S, Jia Z, Koh JJ, Yeo JCC, Wang CG, Surat'man NE, Loh XJ, Le Bideau J, He C, Li Z, Loh TP. Ionogels: recent advances in design, material properties and emerging biomedical applications. Chem Soc Rev 2023; 52:2497-2527. [PMID: 36928878 DOI: 10.1039/d2cs00652a] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Ionic liquid (IL)-based gels (ionogels) have received considerable attention due to their unique advantages in ionic conductivity and their biphasic liquid-solid phase property. In ionogels, the negligibly volatile ionic liquid is retained in the interconnected 3D pore structure. On the basis of these physical features as well as the chemical properties of well-chosen ILs, there is emerging interest in the anti-bacterial and biocompatibility aspects. In this review, the recent achievements of ionogels for biomedical applications are summarized and discussed. Following a brief introduction of the various types of ILs and their key physicochemical and biological properties, the design strategies and fabrication methods of ionogels are presented by means of different confining networks. These sophisticated ionogels with diverse functions, aimed at biomedical applications, are further classified into several active domains, including wearable strain sensors, therapeutic delivery systems, wound healing and biochemical detections. Finally, the challenges and possible strategies for the design of future ionogels by integrating materials science with a biological interface are proposed.
Collapse
Affiliation(s)
- Xiaotong Fan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Siqi Liu
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. China. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - J Justin Koh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jayven Chee Chuan Yeo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Chen-Gang Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Nayli Erdeanna Surat'man
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Xian Jun Loh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jean Le Bideau
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000 Nantes, France.
| | - Chaobin He
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore. .,Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. China. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
21
|
Zhao X, Xu J, Zhang J, Guo M, Wu Z, Li Y, Xu C, Yin H, Wang X. Fluorescent double network ionogels with fast self-healability and high resilience for reliable human motion detection. MATERIALS HORIZONS 2023; 10:646-656. [PMID: 36533533 DOI: 10.1039/d2mh01325h] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fascinating properties are displayed by high-performance ionogel-based flexible strain sensors, thereby gaining increasing attention in various applications ranging from human motion monitoring to soft robotics. However, the integration of excellent properties such as optical and mechanical properties and satisfactory sensing performance for one ionogel sensor is still a challenge. In particular, fatigue-resistant and self-healing properties are essential to continuous sensing. Herein, we design a flexible ion-conductive sensor based on a multifunctional ionogel with a double network using polyacrylamide, amino-modified agarose, 1,3,5-benzenetricarboxaldehyde and 1-ethyl-3-methylimidazolium chloride. The ionogel exhibits comprehensive properties including high transparency (>95%), nonflammability, strong adhesion and good temperature tolerance (about -96 to 260 °C), especially adaptive for extreme conditions. The dynamic imine bonds and abundant hydrogen bonds endow the ionogel with excellent self-healing capability, to realize rapid self-repair within minutes, as well as good mechanical properties and ductility to dissipate input energy and realize high resilience. Notably, unexpected fluorescence has been observed for the ionogel because of the gelation-induced emission phenomenon. Flexible strain sensors prepared directly from ionogels can sensitively monitor and differentiate various human motions, exhibiting a fast response time (38 ms), high sensitivity (gauge factor = 3.13 at 800% strain), good durability (>1000 cycles) and excellent stability over a wide temperature range (-30 to 80 °C). Therefore, the prepared ionogel as a high-performance flexible strain sensor in this study shows tremendous potential in wearable devices and soft ionotronics.
Collapse
Affiliation(s)
- Xiangjie Zhao
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Jiaheng Xu
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an 271000, P. R. China
| | - Jingyue Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Mengru Guo
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Zhelun Wu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Yueyue Li
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Chao Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Hongzong Yin
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Xiaolin Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| |
Collapse
|
22
|
Qu M, Lv Y, Ge J, Zhang B, Wu Y, Shen L, Liu Q, Yan M, He J. Hydrophobic and Multifunctional Strain, Pressure and Temperature Sensor Based on TPU/SiO2-ILs Ionogel for Human motion monitoring, Liquid Drop Monitoring, Underwater Applications. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
23
|
Deng Z, Liu Y, Dai Z. Gel Electrolytes for Electrochemical Actuators and Sensors Applications. Chem Asian J 2023; 18:e202201160. [PMID: 36537994 DOI: 10.1002/asia.202201160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Advanced functional materials, especially gel electrolytes, play a very important role in the preparation of electrochemical actuators and sensors, and have received extensive attention. In this review, a general classification of gel electrolytes is firstly introduced according to the type of medium. Then, the research progress of gel electrolytes with different types used to fabricate electrochemical actuators is summarized. Next, the current research progress of gel electrolytes used in different types of electrochemical sensors, including strain sensors, stress sensors, and gas sensors is introduced. Finally, the future challenges and development prospects of electrochemical actuators and sensors based on gel electrolytes are discussed. The huge application prospects of gel electrolyte are worthy of further focusing by researchers, which will have an indispensable impact on human life and development.
Collapse
Affiliation(s)
- Zhenzhen Deng
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering at Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering at Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering at Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
24
|
Wu Y, Ren Y, Liang Y, Li Y. Semi-IPN ionogel based on poly (ionic liquids)/xanthan gum for highly sensitive pressure sensor. Int J Biol Macromol 2022; 223:327-334. [PMID: 36343835 DOI: 10.1016/j.ijbiomac.2022.10.263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
In this paper, a novel ionogel with semi-interpenetrating poly (ionic liquids)/xanthan gum (PIL/XG) polymer network (semi-IPN) was prepared by using a simple one-pot method. The structure and the pressure sensing performance have been systematically investigated. It was found that introducing a low content (0.3-3.1 wt%) of XG significantly promoted the mechanical performance of ionogels with little effect on the ionic conductivity. The optimized PIL/XG containing 2.2 wt% XG exhibited high compression strength (761.0 kPa) and ionic conductivity (0.63 S/m at 25 °C). Such ionogels showed a liner response (0-100 kPa) and high sensitivity value of 6.86 kPa-1 in a capacitive mode. Meanwhile, as a resistive sensor, PIL/XG exhibited a wide response range to dynamic pressure ranges with stable repeatability. Furthermore, this ionogel exhibited excellent bactericidal properties against both gram-positive bacteria and gram-negative bacteria. This research provides a potential approach for developing ionogels based on semi-IPN with pressure-sensitive and anti-bacterial properties.
Collapse
Affiliation(s)
- Yantong Wu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Rd., 311121 Hangzhou, PR China
| | - Yuanyuan Ren
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Rd., 311121 Hangzhou, PR China
| | - Yuanyuan Liang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Rd., 311121 Hangzhou, PR China.
| | - Yongjin Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Rd., 311121 Hangzhou, PR China.
| |
Collapse
|
25
|
Poh WC, Eh ALS, Wu W, Guo X, Lee PS. Rapidly Photocurable Solid-State Poly(ionic liquid) Ionogels For Thermally Robust and Flexible Electrochromic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206952. [PMID: 36255145 DOI: 10.1002/adma.202206952] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Formation of ionogels through in situ polymerization can effectively improve electrolyte processability; however, the curing process has been slow and oxygen-sensitive. Considering the low oxygen solubility of poly(ionic liquid)s (PILs), in situ polymerized ionogels are designed to realize excellent electrolytes. Herein, two in situ polymerized ionogels (PIL A & PIL B) are formulated, and they can be rapidly photocured within a minute. The ionogels are highly transparent, stretchable, and exhibit excellent physicochemical stability, including thermal, electrochemical, and air stability, allowing them to perform in various conditions. Benefitting from these properties, two high-performance electrochromic devices (ECDs) are assembled, with iron-centered coordination polymer (FeCP) and tungsten oxide (P-WO3 ) electrochromic materials, achieving high color contrast (45.2% and 56.4%), fast response time (1.5/1.9 and 1.7/6.4 s), and excellent cycling endurance (>90% retention over 3000 cycles). Attributed to the thermal robustness of the ionogels, the ECDs can also be operated over a wide temperature range (-20 to 100 °C). With the use of deformable substrates (e.g., ultrathin ITO glass), curved electrochromic eye protector and flexible electrochromic displays are realized, highlighting their potential use in futuristic wearables.
Collapse
Affiliation(s)
- Wei Church Poh
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Alice Lee-Sie Eh
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore
| | - Wenting Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiaoyu Guo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore
| |
Collapse
|
26
|
Advanced Formulations Based on Poly(ionic liquid) Materials for Additive Manufacturing. Polymers (Basel) 2022; 14:polym14235121. [PMID: 36501514 PMCID: PMC9735564 DOI: 10.3390/polym14235121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Innovation in materials specially formulated for additive manufacturing is of great interest and can generate new opportunities for designing cost-effective smart materials for next-generation devices and engineering applications. Nevertheless, advanced molecular and nanostructured systems are frequently not possible to integrate into 3D printable materials, thus limiting their technological transferability. In some cases, this challenge can be overcome using polymeric macromolecules of ionic nature, such as polymeric ionic liquids (PILs). Due to their tuneability, wide variety in molecular composition, and macromolecular architecture, they show a remarkable ability to stabilize molecular and nanostructured materials. The technology resulting from 3D-printable PIL-based formulations represents an untapped array of potential applications, including optoelectronic, antimicrobial, catalysis, photoactive, conductive, and redox applications.
Collapse
|
27
|
Gao Y, Wu L, Zhou J, Ma X, Fang Y, Fang X, Dou Q. Hydrophobic deep eutectic solvent‐based ionic conductive gels with highly stretchable, fatigue‐resistant and adhesive performances for reliable flexible strain sensors. J Appl Polym Sci 2022. [DOI: 10.1002/app.53285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yifeng Gao
- College of Materials Science and Engineering Nanjing Tech University Nanjing People's Republic of China
| | - Linlin Wu
- College of Materials Science and Engineering Nanjing Tech University Nanjing People's Republic of China
| | - Jiacheng Zhou
- College of Materials Science and Engineering Nanjing Tech University Nanjing People's Republic of China
| | - Xiaofeng Ma
- College of Science Nanjing Forestry University Nanjing People's Republic of China
| | - Ying Fang
- College of Materials Science and Engineering Nanjing Tech University Nanjing People's Republic of China
| | - Xianli Fang
- College of Materials Science and Engineering Nanjing Tech University Nanjing People's Republic of China
| | - Qiang Dou
- College of Materials Science and Engineering Nanjing Tech University Nanjing People's Republic of China
| |
Collapse
|
28
|
Park JM, Lim S, Sun JY. Materials development in stretchable iontronics. SOFT MATTER 2022; 18:6487-6510. [PMID: 36000330 DOI: 10.1039/d2sm00733a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stretchable iontronics have recently been developed as an ideal interface to promote the interaction between humans and devices. Since the materials that use ions as charge carriers are typically transparent and stretchable, they have been used to fabricate devices with diverse functions with intrinsic transparency and stretchability. With the development of device design, material design has also been investigated to mitigate the issues associated with ionic materials, such as their weak mechanical properties, poor electrical properties, or poor environmental stabilities. In this review, we describe the recent progress on the design of materials in stretchable iontronics. By classifying stretchable ionic materials into three types of components (ionic conductors, ionic semiconductors, and ionic insulators), the issues each component has and the strategies to solve them are introduced, specifically in terms of molecular interactions. We then discuss the existing hurdles and challenges to be handled and shine light on the possibilities and opportunities from the insight of molecular interactions.
Collapse
Affiliation(s)
- Jae-Man Park
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sungsoo Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
29
|
Dai J, Qin H, Dong WX, Cong HP, Yu SH. Autonomous Self-Healing of Highly Stretchable Supercapacitors at All Climates. NANO LETTERS 2022; 22:6444-6453. [PMID: 35748657 DOI: 10.1021/acs.nanolett.2c01635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Realizing autonomous self-healing and high stretchability of flexible supercapacitors over a wide temperature range remains a big challenge because of simultaneous incorporation of self-healing, stretchable and temperature-tolerant elements into a device as well as unfavorable electrochemical kinetics in harsh conditions. Here, we demonstrate for the first time an autonomous self-healing and intrinsically stretchable supercapacitor that can work at all-climate environments assembled by universally self-healing and highly stretchable organohydrogel electrodes with record-high temperature-invariant conductivity of ∼965 S/cm. Benefiting from multiple hydrogen bonding and dynamic metal coordination combined with electrochemistry-favorable components and integrated device configuration, the supercapacitor exhibits outstanding long-term stability, high stretchability, instantaneous and complete capacitive self-healability, and real-time mechanical healing at harsh temperatures from -35 to 80 °C. The superiorities in stretchability, self-healability, and all-climate tolerance enable the supercapacitor presented here as the best performer among the flexible supercapacitors reported to date.
Collapse
Affiliation(s)
- Jing Dai
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Haili Qin
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wen-Xuan Dong
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huai-Ping Cong
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
30
|
High-strength, stretchable, and self-recoverable copolymer-supported deep eutectic solvent gels based on dense and dynamic hydrogen bonding for high-voltage and safe flexible supercapacitors. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Rong L, Xie X, Yuan W, Fu Y. Superior, Environmentally Tolerant, Flexible, and Adhesive Poly(ionic liquid) Gel as a Multifaceted Underwater Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29273-29283. [PMID: 35704849 DOI: 10.1021/acsami.2c06846] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, gel-based sensors have been widely considered and fully developed. However, it is of vital importance, yet rather challenging to achieve a multifaceted gel, which can unify the advantages of favorable conductivity, high adhesion, excellent environmental resistance, and so forth and be applied in various harsh conditions. Herein, an ideal, extremely stable, adhesive, conductive poly(ionic liquid) gel (PILG) was designed via a one-step photoinitiated radical polymerization based on 1-vinyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide (VBIm-NTf2) cross-linked with ethylene glycol dimethacrylate (EGDMA) in methyltributylammonium bis(trifluoromethanesulfonyl)imide (N1444-NTf2) medium. There are abundant hydrophobic butyl chains and fluorinated groups in VBIm-NTf2 and N1444-NTf2, which can impart the PILG with stable conductivity, excellent environmental tolerance, and adhesion even in water due to the ion-dipole and ion-ion interactions. The resulting PILG can be assembled as a soft and smart sensor that can be applied in specific conditions such as underwater or undersea and even in dynamic water, achieving a stable signal transmission. Meanwhile, the PILG can be utilized as a flexible electrode to convey ECG signals in air or water whether it is in the static or dynamic state. Therefore, it is envisioned that this novel PILG will serve as a hopeful electrical device for signal detection and healthy management in specific environments.
Collapse
Affiliation(s)
- Liduo Rong
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Xiaoyun Xie
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Yang Fu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, People's Republic of China
| |
Collapse
|
32
|
Li T, Liu F, Yang X, Hao S, Cheng Y, Li S, Zhu H, Song H. Muscle-Mimetic Highly Tough, Conductive, and Stretchable Poly(ionic liquid) Liquid Crystalline Ionogels with Ultrafast Self-Healing, Super Adhesive, and Remarkable Shape Memory Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29261-29272. [PMID: 35699738 DOI: 10.1021/acsami.2c06662] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we report a simple method for preparing muscle-mimetic highly tough, conductive, and stretchable liquid crystalline ionogels which contains only one poly(ionic liquid) (PIL) in an ionic liquid via in situ free radical photohomopolymerization by using nitrogen gas instead of air atmosphere. Due to eliminating the inhibition caused by dissolved oxygen, the polymerization under nitrogen gas has much higher molecular weight, lower critical sol-gel concentration, and stronger mechanical properties. More importantly, benefiting from the unique loofah-like microstructures along with the strong internal ionic interactions, entanglements of long PIL chains and liquid crystalline domains, the ionogels show special optical anisotropic, superstretchability (>8000%), high fracture strength (up to 16.52 MPa), high toughness (up to 39.22 MJ/m3), and have ultrafast self-healing, ultrastrong adhesive, and excellent shape memory properties. Due to its excellent stretchability and good conductive-strain responsiveness, the as-prepared ionogel can be easily applied for high-performance flexible and wearable sensors for motion detecting. Therefore, this paper provides an effective route and developed method to generate highly stretchable conductive liquid crystalline ionogels/elastomers that can be used in widespread flexible and wearable electronics.
Collapse
Affiliation(s)
- Tianci Li
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Fang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuemeng Yang
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Shuai Hao
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Yan Cheng
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Shuaijie Li
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Hongnan Zhu
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Hongzan Song
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| |
Collapse
|
33
|
Li Q, Liu Z, Zheng S, Li W, Ren Y, Li L, Yan F. Three-Dimensional Printable, Highly Conductive Ionic Elastomers for High-Sensitivity Iontronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26068-26076. [PMID: 35638096 DOI: 10.1021/acsami.2c06682] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of hydrogels and ionic gels for applications in fields such as soft electronics and wearable sensors is limited by liquid evaporation or leakage. Ionic conductors without volatile liquids are better choices for flexible and transparent devices. Here, a liquid polymer electrolyte (LPE) is prepared from a mixture of lithium bis(trifluoromethane)sulfonimide and polyethylene glycol (PEG) above the melting point of PEG. A three-dimensional (3D) printable solvent-free ionic elastomer (IE) is introduced by photopolymerization of ethyl acrylate and hydroxyethyl acrylate in the prepared LPE. The conductivity is significantly improved by the presence of a high content of the lithium salt. Dynamic cross-linking networks improve the stretchability and resilience of the elastomer. The pattern design capability of the IE is provided by light-curing 3D printing. These features demonstrate that the IE has broad application prospects in flexible sensors, ion skins, and soft robots.
Collapse
Affiliation(s)
- Qingning Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Sijie Zheng
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yongyuan Ren
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lingling Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
34
|
Yang X, Lv S, Li T, Hao S, Zhu H, Cheng Y, Li S, Song H. Dual Thermo-Responsive and Strain-Responsive Ionogels for Smart Windows and Temperature/Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20083-20092. [PMID: 35468277 DOI: 10.1021/acsami.2c03142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, a stretchable, dual thermo-responsive and strain-responsive ionogel has been synthesized by one-step photopolymerization. The obtained ionogel shows an ultrahigh stretchability (∼3000%), a high ionic conductivity (up to 3.1 mS/cm), and a good temperature tolerance (-40 to 300 °C). Importantly, these ionogels show an upper critical solution temperature-type phase transition with a wide tunable phase-transition temperature (17.5-42.5 °C) and reversible color/transparency switching. In particular, the as-prepared ionogel-based flexible/wearable temperature monitors and smart windows show an excellent designability and programmability, temperature modulation ability, and thermal responsiveness. Moreover, the ionogels-based strain sensors have temperature- and strain-dual responsibility and a broad strain-sensing range (1-700%), which can effectively monitor various motions. This strategy of fabricating dual thermo- and strain-responsive ionogels by using a one-step method and only one polymer holds great promise for the next generation of multifunctional stimuli-responsive materials.
Collapse
Affiliation(s)
- Xuemeng Yang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Shufang Lv
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Tianci Li
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Shuai Hao
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Hongnan Zhu
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Yan Cheng
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Shuaijie Li
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Hongzan Song
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| |
Collapse
|
35
|
Stretchable and self-healable double-network ionogel with strong adhesion and temperature tolerance for information encryption. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Hao S, Li T, Yang X, Song H. Ultrastretchable, Adhesive, Fast Self-Healable, and Three-Dimensional Printable Photoluminescent Ionic Skin Based on Hybrid Network Ionogels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2029-2037. [PMID: 34958556 DOI: 10.1021/acsami.1c21325] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing multifunctional stretchable ionic skin (I-Skin) to mimic the sensations of the human skin is of great interest and shows promising potential in wearable sensors and human-machine interfaces (HMIs). However, common ionogels prepared with small-molecule cross-linkers and single networks can hardly satisfy the requirements of adjustable mechanical properties, strong adhesion, fast self-healability, and good stability in extreme environments. Herein, an ultrastretchable (>10,000%), ultrastrong adhesive (>6.8 MPa), ultrafast self-healable (10 s), high thermally stable (-60 to 250 °C), and three-dimensional (3D)-printable photoluminescent ionogel with shape memory properties has been designed. The ionogel consists of hyperbranched polymer covalent-cross-linked poly(zwitterionic ionic liquid)-co-poly(acrylic acid) and multiple dynamic bonding cross-linked networks. The excellent performance of the ionogel-based high-stretchable strain sensor and the triboelectric nanogenerator (TENG)-based self-powered touch sensor is further demonstrated over a wide temperature range (-40 to 150 °C). More importantly, ionogel-based I-Skin can work as an HMI for human gesture recognition and real-time wireless control of robots under extreme vacuum conditions and can also self-heal immediately along with function recovery after mechanical damage.
Collapse
Affiliation(s)
- Shuai Hao
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Tianci Li
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Xuemeng Yang
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Hongzan Song
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| |
Collapse
|
37
|
Sultana S, Ahmed K, Jiwanti PK, Wardhana BY, Shiblee MDNI. Ionic Liquid-Based Gels for Applications in Electrochemical Energy Storage and Conversion Devices: A Review of Recent Progress and Future Prospects. Gels 2021; 8:2. [PMID: 35049537 PMCID: PMC8774367 DOI: 10.3390/gels8010002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022] Open
Abstract
Ionic liquids (ILs) are molten salts that are entirely composed of ions and have melting temperatures below 100 °C. When immobilized in polymeric matrices by sol-gel or chemical polymerization, they generate gels known as ion gels, ionogels, ionic gels, and so on, which may be used for a variety of electrochemical applications. One of the most significant research domains for IL-based gels is the energy industry, notably for energy storage and conversion devices, due to rising demand for clean, sustainable, and greener energy. Due to characteristics such as nonvolatility, high thermal stability, and strong ionic conductivity, IL-based gels appear to meet the stringent demands/criteria of these diverse application domains. This article focuses on the synthesis pathways of IL-based gel polymer electrolytes/organic gel electrolytes and their applications in batteries (Li-ion and beyond), fuel cells, and supercapacitors. Furthermore, the limitations and future possibilities of IL-based gels in the aforementioned application domains are discussed to support the speedy evolution of these materials in the appropriate applicable sectors.
Collapse
Affiliation(s)
- Sharmin Sultana
- Department of Chemistry, Faculty of Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh;
| | - Kumkum Ahmed
- College of Engineering, Shibaura Institute of Technology, 3 Chome-7-5 Toyosu, Tokyo 135-8548, Japan
| | - Prastika Krisma Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia; (P.K.J.); (B.Y.W.)
| | - Brasstira Yuva Wardhana
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia; (P.K.J.); (B.Y.W.)
| | - MD Nahin Islam Shiblee
- Department of Mechanical Systems Engineering, Yamagata University, 4 Chome-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan;
| |
Collapse
|
38
|
Su J, Li S, Chen Y, Cui Y, He M. 3D Photoprintable Antistatic Materials with Polymerizable Deep Eutectic Solvents. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiahui Su
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shaohui Li
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yonglong Chen
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yanyan Cui
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Minghui He
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
39
|
Zhuo Y, Chen J, Xiao S, Li T, Wang F, He J, Zhang Z. Gels as emerging anti-icing materials: a mini review. MATERIALS HORIZONS 2021; 8:3266-3280. [PMID: 34842262 DOI: 10.1039/d1mh00910a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gel materials have drawn great attention recently in the anti-icing research community due to their remarkable potential for reducing ice adhesion, inhibiting ice nucleation, and restricting ice propagation. Although the current anti-icing gels are in their infancy and far from practical applications due to poor durability, their outstanding prospect of icephobicity has already shed light on a new group of emerging anti-icing materials. There is a need for a timely review to consolidate the new trends and foster the development towards dedicated applications. Starting from the stage of icing, we first survey the relevant anti-icing strategies. The latest anti-icing gels are then categorized by their liquid phases into organogels, hydrogels, and ionogels. At the same time, the current research focuses, anti-icing mechanisms and shortcomings affiliated with each category are carefully analysed. Based upon the reported state-of-the-art anti-icing research and our own experience in polymer-based anti-icing materials, suggestions for the future development of the anti-icing gels are presented, including pathways to enhance durability, the need to build up the missing fundamentals, and the possibility to enable stimuli-responsive properties. The primary aim of this review is to motivate researchers in both the anti-icing and gel research communities to perform a synchronized effort to rapidly advance the understanding and making of gel-based next generation anti-icing materials.
Collapse
Affiliation(s)
- Yizhi Zhuo
- NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway.
| | - Jianhua Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Senbo Xiao
- NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway.
| | - Tong Li
- NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway.
| | - Feng Wang
- NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway.
| | - Jianying He
- NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway.
| | - Zhiliang Zhang
- NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway.
| |
Collapse
|
40
|
Liao M, Chen Y, Brook MA. Spatially Controlled Highly Branched Vinylsilicones. Polymers (Basel) 2021; 13:polym13060859. [PMID: 33799627 PMCID: PMC8000532 DOI: 10.3390/polym13060859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 01/18/2023] Open
Abstract
Branched silicones possess interesting properties as oils, including their viscoelastic behavior, or as precursors to controlled networks. However, highly branched silicone polymers are difficult to form reliably using a “grafting to” strategy because functional groups may be bunched together preventing complete conversion for steric reasons. We report the synthesis of vinyl-functional highly branched silicone polymers based, at their core, on the ability to spatially locate functional vinyl groups along a silicone backbone at the desired frequency. Macromonomers were created and then polymerized using the Piers–Rubinsztajn reaction with dialkoxyvinylsilanes and telechelic HSi-silicones; molecular weights of the polymerized macromonomers were controlled by the ratio of the two reagents. The vinyl groups were subjected to iterative (two steps, one pot) hydrosilylation with alkoxysilane and Piers–Rubinsztajn reactions, leading to high molecular weight, highly branched silicones after one or two iterations. The vinyl-functional products can optionally be converted to phenyl/methyl-modified branched oils or elastomers.
Collapse
|