1
|
Li Y, Xiong Z, Feng Y, Jiang H, Sun Y, Kwok MH. Facile Preparation of Silica/Tannic Acid/Zein Microcapsules Templated from Non-Aqueous Pickering Emulsions and their Application in Cargo Protection. Macromol Rapid Commun 2024; 45:e2400289. [PMID: 39073047 DOI: 10.1002/marc.202400289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Microcapsules have attracted significant attention in academia and industry due to their unique properties for protecting and controlling the release of active substances. However, based on water-insoluble biopolymers, developing a straightforward approach to prepare microcapsules with improved biocompatibility and functional shells remains a great challenge. In this study, zein, a water-insoluble protein, is employed to prepare robust microcapsules facilely using oil-in-aqueous ethanol Pickering emulsions as templates. First, the emulsion template is stabilized by hydrophobic silica nanoparticles with in situ surface modification of tannic acid. The zein is then precipitated at the interface in a controlled manner using antisolvent approach to obtain silica/tannic acid/zein (STZ) microcapsules. It is found that the concentration of zein and the presence of tannic acid played a significant role in the formation of STZ microcapsules with well-defined morphology and a robust shell. The uniform deposition of zein on the surface of template droplets is facilitated by the interactions between tannic acid and zein via hydrogen bond and electrostatic force. Finally, the resulting STZ microcapsules showed super resistance to ultraviolet (UV) radiation and high temperature for the unstable, lipophilic, and active substance of β-carotene.
Collapse
Affiliation(s)
- Yunxing Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhiqiang Xiong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yikai Feng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hang Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yajuan Sun
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Man-Hin Kwok
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
| |
Collapse
|
2
|
Biny L, Gerasimovich E, Karaulov A, Sukhanova A, Nabiev I. Functionalized Calcium Carbonate-Based Microparticles as a Versatile Tool for Targeted Drug Delivery and Cancer Treatment. Pharmaceutics 2024; 16:653. [PMID: 38794315 PMCID: PMC11124899 DOI: 10.3390/pharmaceutics16050653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Nano- and microparticles are increasingly widely used in biomedical research and applications, particularly as specific labels and targeted delivery vehicles. Silica has long been considered the best material for such vehicles, but it has some disadvantages limiting its potential, such as the proneness of silica-based carriers to spontaneous drug release. Calcium carbonate (CaCO3) is an emerging alternative, being an easily available, cost-effective, and biocompatible material with high porosity and surface reactivity, which makes it an attractive choice for targeted drug delivery. CaCO3 particles are used in this field in the form of either bare CaCO3 microbeads or core/shell microparticles representing polymer-coated CaCO3 cores. In addition, they serve as removable templates for obtaining hollow polymer microcapsules. Each of these types of particles has its specific advantages in terms of biomedical applications. CaCO3 microbeads are primarily used due to their capacity for carrying pharmaceutics, whereas core/shell systems ensure better protection of the drug-loaded core from the environment. Hollow polymer capsules are particularly attractive because they can encapsulate large amounts of pharmaceutical agents and can be so designed as to release their contents in the target site in response to specific stimuli. This review focuses first on the chemistry of the CaCO3 cores, core/shell microbeads, and polymer microcapsules. Then, systems using these structures for the delivery of therapeutic agents, including drugs, proteins, and DNA, are outlined. The results of the systematic analysis of available data are presented. They show that the encapsulation of various therapeutic agents in CaCO3-based microbeads or polymer microcapsules is a promising technique of drug delivery, especially in cancer therapy, enhancing drug bioavailability and specific targeting of cancer cells while reducing side effects. To date, research in CaCO3-based microparticles and polymer microcapsules assembled on CaCO3 templates has mainly dealt with their properties in vitro, whereas their in vivo behavior still remains poorly studied. However, the enormous potential of these highly biocompatible carriers for in vivo applications is undoubted. This last issue is addressed in depth in the Conclusions and Outlook sections of the review.
Collapse
Affiliation(s)
- Lara Biny
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France;
| | - Evgeniia Gerasimovich
- Life Improvement by Future Technologies (LIFT) Center, Laboratory of Optical Quantum Sensors, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Alyona Sukhanova
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France;
| | - Igor Nabiev
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France;
- Life Improvement by Future Technologies (LIFT) Center, Laboratory of Optical Quantum Sensors, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| |
Collapse
|
3
|
Mammen M, Hogg C, Craske D, Volodkin D. Formulation and Biodegradation of Surface-Supported Biopolymer-Based Microgels Formed via Hard Templating onto Vaterite CaCO 3 Crystals. MATERIALS (BASEL, SWITZERLAND) 2023; 17:103. [PMID: 38203957 PMCID: PMC10779910 DOI: 10.3390/ma17010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
In recent decades, there has been increased attention to the role of layer-by-layer assembled bio-polymer 3D structures (capsules, beads, and microgels) for biomedical applications. Such free-standing multilayer structures are formed via hard templating onto sacrificial cores such as vaterite CaCO3 crystals. Immobilization of these structures onto solid surfaces (e.g., implants and catheters) opens the way for the formulation of advanced bio-coating with a patterned surface. However, the immobilization step is challenging. Multiple approaches based mainly on covalent binding have been developed to localize these multilayer 3D structures at the surface. This work reports a novel strategy to formulate multilayer surface-supported microgels (ss-MG) directly on the surface via hard templating onto ss-CaCO3 pre-grown onto the surface via the direct mixing of Na2CO3 and CaCl2 precursor solutions. ss-MGs were fabricated using biopolymers: polylysine (PLL) as polycation and three polyanions-hyaluronic acid (HA), heparin sulfate (HS), and alginate (ALG). ss-MG biodegradation was examined by employing the enzyme trypsin. Our studies indicate that the adhesion of the ss-MG to the surface and its formation yield directly correlate with the mobility of biopolymers in the ss-MG, which decreases in the sequence of ALG > HA > HS-based ss-MGs. The adhesion of HS-based ss-MGs is only possible via heating during their formation. Dextran-loading increases ss-MG formation yield while reducing ss-MG shrinking. ss-MGs with higher polymer mobility possess slower biodegradation rates, which is likely due to diffusion limitations for the enzyme in more compact annealed ss-MGs. These findings provide valuable insights into the mechanisms underlying the formation and biodegradation of surface-supported biopolymer structures.
Collapse
Affiliation(s)
- Mariam Mammen
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK; (M.M.); (C.H.)
| | - Cain Hogg
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK; (M.M.); (C.H.)
| | - Dominic Craske
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Dmitry Volodkin
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK; (M.M.); (C.H.)
| |
Collapse
|
4
|
Chesneau C, Larue L, Belbekhouche S. Design of Tailor-Made Biopolymer-Based Capsules for Biological Application by Combining Porous Particles and Polysaccharide Assembly. Pharmaceutics 2023; 15:1718. [PMID: 37376165 DOI: 10.3390/pharmaceutics15061718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Various approaches have been described in the literature to demonstrate the possibility of designing biopolymer particles with well-defined characteristics, such as size, chemical composition or mechanical properties. From a biological point of view, the properties of particle have been related to their biodistribution and bioavailability. Among the reported core-shell nanoparticles, biopolymer-based capsules can be used as a versatile platform for drug delivery purposes. Among the known biopolymers, the present review focuses on polysaccharide-based capsules. We only report on biopolyelectrolyte capsules fabricated by combining porous particles as a template and using the layer-by-layer technique. The review focuses on the major steps of the capsule design, i.e., the fabrication and subsequent use of the sacrificial porous template, multilayer coating with polysaccharides, the removal of the porous template to obtain the capsules, capsule characterisation and the application of capsules in the biomedical field. In the last part, selected examples are presented to evidence the major benefits of using polysaccharide-based capsules for biological purposes.
Collapse
Affiliation(s)
- Cléa Chesneau
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Laura Larue
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Sabrina Belbekhouche
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
5
|
Campbell J, Taghavi A, Preis A, Martin S, Skirtach AG, Franke J, Volodkin D, Vikulina A. Spontaneous shrinkage drives macromolecule encapsulation into layer-by-layer assembled biopolymer microgels. J Colloid Interface Sci 2023; 635:12-22. [PMID: 36577351 DOI: 10.1016/j.jcis.2022.12.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Recently, the anomalous shrinkage of surface-supported hyaluronate/poly-l-lysine (HA/PLL) microgels (µ-gels), which exceeds that reported for any other multilayer-based systems, has been reported [1]. The current study investigates the capability of these unique µ-gels for the encapsulation and retention of macromolecules, and proposes the shrinkage-driven assembly of biopolymer-based µ-gels as a novel tool for one-step surface biofunctionalization. EXPERIMENTS A set of dextrans (DEX) and their charged derivatives - carboxymethyl (CM)-DEX and diethylaminoethyl (DEAE)-DEX - has been utilized to evaluate the effects of macromolecular mass and net charge on µ-gel shrinkage and macromolecule entrapment. µ-gels formation on the surface of silicone catheters exemplifies their potential to tailor biointerfaces. FINDINGS Shrinkage-driven µ-gel formation strongly depends on the net charge and mass content of encapsulated macromolecules. Inclusion of neutral DEX decreases the degree of shrinkage several times, whilst charged DEXs adopt to the backbone of oppositely charged polyelectrolytes, resulting in shrinkage comparable to that of non-loaded µ-gels. Retention of CM-DEX in µ-gels is significantly higher compared to DEAE-DEX. These insights into the mechanisms of macromolecular entrapment into biopolymer-based µ-gels promotes fundamental understanding of molecular dynamics within the multilayer assemblies. Organization of biodegradable µ-gels at biomaterial surfaces opens avenues for their further exploitation in a diverse array of bioapplications.
Collapse
Affiliation(s)
- Jack Campbell
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom; Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 77, 90762 Fürth, Germany
| | - Aaron Taghavi
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Alexander Preis
- Institute for Factory Automation and Production Systems (FAPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 7-9, 91058 Erlangen, Germany
| | - Sina Martin
- Institute for Factory Automation and Production Systems (FAPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 7-9, 91058 Erlangen, Germany
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jörg Franke
- Institute for Factory Automation and Production Systems (FAPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 7-9, 91058 Erlangen, Germany
| | - Dmitry Volodkin
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom.
| | - Anna Vikulina
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 77, 90762 Fürth, Germany.
| |
Collapse
|
6
|
Mateos-Maroto A, E F Rubio J, Prévost S, Maestro A, Rubio RG, Ortega F, Guzmán E. Probing the effect of the capping polyelectrolyte on the internal structure of Layer-by-Layer decorated nanoliposomes. J Colloid Interface Sci 2023; 640:220-229. [PMID: 36863179 DOI: 10.1016/j.jcis.2023.02.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
HYPOTHESIS The internal organization of polyelectrolyte layers deposited on colloidal templates plays a very important role for the potential applications of these systems as capsules for drug delivery purposes. EXPERIMENTS The mutual arrangement of oppositely charged polyelectrolyte layers upon their deposition on positively charged liposomes has been studied by combining up three different scattering techniques and Electronic Spin Resonance, which has provided information about the inter-layer interactions and their effect on the final structure of the capsules. FINDINGS The sequential deposition of oppositely charged polyelectrolytes on the external leaflet of positively charged liposomes allows modulating the organization of the obtained supramolecular structures, impacting the packing and rigidity of the obtained capsules due to the change of the ionic cross-linking of the multi-layered film as a result of the specific charge of the last deposited layer. The possibility to modulate the properties of the LbL capsules by tuning the characteristics of the last deposited layers offers a very interesting route for the design of materials for encapsulation purposes with their properties controlled almost at will by changing the number of deposited layers and their chemistry.
Collapse
Affiliation(s)
- Ana Mateos-Maroto
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| | - José E F Rubio
- Centro de Espectroscopía y Correlación, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
| | - Sylvain Prévost
- Institut Laue-Langevin, 71 Avenue des Martyrs, CEDEX 9, 38042 Grenoble, France
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU)-Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018-San, Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009-Bilbao, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain; Unidad de Materia Condensada. Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain; Unidad de Materia Condensada. Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| |
Collapse
|
7
|
Li J, Parakhonskiy BV, Skirtach AG. A decade of developing applications exploiting the properties of polyelectrolyte multilayer capsules. Chem Commun (Camb) 2023; 59:807-835. [PMID: 36472384 DOI: 10.1039/d2cc04806j] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transferring the layer-by-layer (LbL) coating approach from planar surfaces to spherical templates and subsequently dissolving these templates leads to the fabrication of polyelectrolyte multilayer capsules. The versatility of the coatings of capsules and their flexibility upon bringing in virtually any material into the coatings has quickly drawn substantial attention. Here, we provide an overview of the main developments in this field, highlighting the trends in the last decade. In the beginning, various methods of encapsulation and release are discussed followed by a broad range of applications, which were developed and explored. We also outline the current trends, where the range of applications is continuing to grow, including addition of whole new and different application areas.
Collapse
Affiliation(s)
- Jie Li
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan V Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
8
|
Le HV, Le Cerf D. Colloidal Polyelectrolyte Complexes from Hyaluronic Acid: Preparation and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204283. [PMID: 36260830 DOI: 10.1002/smll.202204283] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Hyaluronic acid (HA) is a naturally occurring polysaccharide which has been extensively exploited in biomedical fields owing to its outstanding biocompatibility. Self-assembly of HA and polycations through electrostatic interactions can generate colloidal polyelectrolyte complexes (PECs), which can offer a wide range of applications while being relatively simple to prepare with rapid and "green" processes. The advantages of colloidal HA-based PECs stem from the combined benefits of nanomedicine, green chemistry, and the inherent properties of HA, namely high biocompatibility, biodegradability, and biological targeting capability. Accordingly, colloidal PECs from HA have received increasing attention in the recent years as high-performance materials for biomedical applications. Considering their potential, this review is aimed to provide a comprehensive understanding of colloidal PECs from HA in complex with polycations, from the most fundamental aspects of the preparation process to their various biomedical applications, notably as nanocarriers for delivering small molecule drugs, nucleic acids, peptides, proteins, and bioimaging agents or the construction of multifunctional platforms.
Collapse
Affiliation(s)
- Huu Van Le
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, Rouen, 76000, France
| | - Didier Le Cerf
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, Rouen, 76000, France
| |
Collapse
|
9
|
Kotoulas KT, Campbell J, Skirtach AG, Volodkin D, Vikulina A. Surface Modification with Particles Coated or Made of Polymer Multilayers. Pharmaceutics 2022; 14:2483. [PMID: 36432674 PMCID: PMC9697854 DOI: 10.3390/pharmaceutics14112483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The coating of particles or decomposable cores with polyelectrolytes via Layer-by-Layer (LbL) assembly creates free-standing LbL-coated functional particles. Due to the numerous functions that their polymers can bestow, the particles are preferentially selected for a plethora of applications, including, but not limited to coatings, cargo-carriers, drug delivery vehicles and fabric enhancements. The number of publications discussing the fabrication and usage of LbL-assembled particles has consistently increased over the last vicennial. However, past literature fails to either mention or expand upon how these LbL-assembled particles immobilize on to a solid surface. This review evaluates examples of LbL-assembled particles that have been immobilized on to solid surfaces. To aid in the formulation of a mechanism for immobilization, this review examines which forces and factors influence immobilization, and how the latter can be confirmed. The predominant forces in the immobilization of the particles studied here are the Coulombic, capillary, and adhesive forces; hydrogen bonding as well as van der Waal's and hydrophobic interactions are also considered. These are heavily dependent on the factors that influenced immobilization, such as the particle morphology and surface charge. The shape of the LbL particle is related to the particle core, whereas the charge was dependant on the outermost polyelectrolyte in the multilayer coating. The polyelectrolytes also determine the type of bonding that a particle can form with a solid surface. These can be via either physical (non-covalent) or chemical (covalent) bonds; the latter enforcing a stronger immobilization. This review proposes a fundamental theory for immobilization pathways and can be used to support future research in the field of surface patterning and for the general modification of solid surfaces with polymer-based nano- and micro-sized polymer structures.
Collapse
Affiliation(s)
- Konstantinos T. Kotoulas
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Jack Campbell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 77, 90762 Fürth, Germany
| | - Andre G. Skirtach
- Bio-Nanotechnology Laboratory, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Dmitry Volodkin
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Anna Vikulina
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 77, 90762 Fürth, Germany
| |
Collapse
|
10
|
Cao L, Huang Y, Parakhonskiy B, Skirtach AG. Nanoarchitectonics beyond perfect order - not quite perfect but quite useful. NANOSCALE 2022; 14:15964-16002. [PMID: 36278502 DOI: 10.1039/d2nr02537j] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoarchitectonics, like architectonics, allows the design and building of structures, but at the nanoscale. Unlike those in architectonics, and even macro-, micro-, and atomic-scale architectonics, the assembled structures at the nanoscale do not always follow the projected design. In fact, they do follow the projected design but only for self-assembly processes producing structures with perfect order. Here, we look at nanoarchitectonics allowing the building of nanostructures without a perfect arrangement of building blocks. Here, fabrication of structures from molecules, polymers, nanoparticles, and nanosheets to polymer brushes, layer-by-layer assembly structures, and hydrogels through self-assembly processes is discussed, where perfect order is not necessarily the aim to be achieved. Both planar substrate and spherical template-based assemblies are discussed, showing the challenging nature of research in this field and the usefulness of such structures for numerous applications, which are also discussed here.
Collapse
Affiliation(s)
- Lin Cao
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Yanqi Huang
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
11
|
Tan C, Dima C, Huang M, Assadpour E, Wang J, Sun B, Kharazmi MS, Jafari SM. Advanced CaCO3-derived delivery systems for bioactive compounds. Adv Colloid Interface Sci 2022; 309:102791. [DOI: 10.1016/j.cis.2022.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
|
12
|
Dextrans and dextran derivatives as polyelectrolytes in layer-by-layer processing materials – A review. Carbohydr Polym 2022; 293:119700. [DOI: 10.1016/j.carbpol.2022.119700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
|
13
|
Zafar B, Campbell J, Cooke J, Skirtach AG, Volodkin D. Modification of Surfaces with Vaterite CaCO 3 Particles. MICROMACHINES 2022; 13:473. [PMID: 35334765 PMCID: PMC8954061 DOI: 10.3390/mi13030473] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
Former studies have demonstrated a strong interest toward the crystallization of CaCO3 polymorphs in solution. Nowadays, CaCO3 crystallization on solid surfaces is extensively being studied using biomolecules as substrates for the control of the growth aiming at various applications of CaCO3. Calcium carbonate exists in an amorphous state, as three anhydrous polymorphs (aragonite, calcite and vaterite), and as two hydrated polymorphs (monohydrocalcite and ikaite). The vaterite polymorph is considered as one of the most attractive forms due to its large surface area, biocompatibility, mesoporous nature, and other features. Based on physical or chemical immobilization approaches, vaterite can be grown directly on solid surfaces using various (bio)molecules, including synthetic polymers, biomacromolecules such as proteins and peptides, carbohydrates, fibers, extracellular matrix components, and even biological cells such as bacteria. Herein, the progress on the modification of solid surfaces by vaterite CaCO3 crystals is reviewed, focusing on main findings and the mechanism of vaterite growth initiated by various substances mentioned above, as well as the discussion of the applications of such modified surfaces.
Collapse
Affiliation(s)
- Bushra Zafar
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (B.Z.); (J.C.); (J.C.)
| | - Jack Campbell
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (B.Z.); (J.C.); (J.C.)
| | - Jake Cooke
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (B.Z.); (J.C.); (J.C.)
| | - Andre G. Skirtach
- Nanotechnology Laboratory, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Dmitry Volodkin
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (B.Z.); (J.C.); (J.C.)
| |
Collapse
|
14
|
Iqbal MJ, Riaz MS, Talha K, Shoukat R, Mahmood S, Ammar M, Li H. Synthesis and transformation of calcium carbonate polymorphs with chiral purine nucleotides. NEW J CHEM 2022; 46:22612-22620. [DOI: 10.1039/d2nj03813g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Crystallization of CaCO3 polymorphs is controlled using the chiral purine nucleotides adenosine triphosphate (ATP) and guanosine triphosphate (GTP). The effects of ATP and GTP on the transformation of calcite into vaterite are investigated.
Collapse
Affiliation(s)
- Muhammad Javed Iqbal
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Muhammad Sohail Riaz
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Khalid Talha
- Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Rizwan Shoukat
- The University of Cagliari, Department of Mechanical, Chemical and Materials Engineering, via Marengo 2, 09123, Cagliari, CA, Italy
| | - Sajid Mahmood
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Muhammad Ammar
- Department of Chemical Engineering Technology, Government College University, Faisalabad, 38000, Pakistan
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
15
|
Ghiman R, Pop R, Rugina D, Focsan M. Recent progress in preparation of microcapsules with tailored structures for bio-medical applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Pharmaceutical formulation and polymer chemistry for cell encapsulation applied to the creation of a lab-on-a-chip bio-microsystem. Ther Deliv 2021; 13:51-65. [PMID: 34821516 DOI: 10.4155/tde-2021-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microencapsulation of formulation designs further expands the field and offers the potential for use in developing bioartificial organs via cell encapsulation. Combining formulation design and encapsulation requires ideal excipients to be determined. In terms of cell encapsulation, an environment which allows growth and functionality is paramount to ensuring cell survival and incorporation into a bioartificial organ. Hence, excipients are examined for both individual properties and benefits, and compatibility with encapsulated active materials. Polymers are commonly used in microencapsulation, offering protection from the immune system. Bile acids are emerging as a tool to enhance delivery, both biologically and pharmaceutically. Therefore, this review will focus on bile acids and polymers in formulation design via microencapsulation, in the field of bioartificial organ development.
Collapse
|
17
|
Kalenichenko D, Nifontova G, Karaulov A, Sukhanova A, Nabiev I. Designing Functionalized Polyelectrolyte Microcapsules for Cancer Treatment. NANOMATERIALS 2021; 11:nano11113055. [PMID: 34835819 PMCID: PMC8620290 DOI: 10.3390/nano11113055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022]
Abstract
The engineering of delivery systems for drugs and contrasting labels ensuring the simultaneous imaging and treatment of malignant tumors is an important hurdle in developing new tools for cancer therapy and diagnosis. Polyelectrolyte microcapsules (MCs), formed by nanosized interpolymer complexes, represent a promising platform for the designing of multipurpose agents, functionalized with various components, including high- and low-molecular-weight substances, metal nanoparticles, and organic fluorescent dyes. Here, we have developed size-homogenous MCs with different structures (core/shell and shell types) and microbeads containing doxorubicin (DOX) as a model anticancer drug, and fluorescent semiconductor nanocrystals (quantum dots, QDs) as fluorescent nanolabels. In this study, we suggest approaches to the encapsulation of DOX at different stages of the MC synthesis and describe the optimal conditions for the optical encoding of MCs with water-soluble QDs. The results of primary characterization of the designed microcarriers, including particle analysis, the efficacy of DOX and QDs encapsulation, and the drug release kinetics are reported. The polyelectrolyte MCs developed here ensure a modified (prolonged) release of DOX, under conditions close to normal and tumor tissues; they possess a bright fluorescence that paves the way to their exploitation for the delivery of antitumor drugs and fluorescence imaging.
Collapse
Affiliation(s)
- Daria Kalenichenko
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France; (D.K.); (G.N.)
- Laboratory of Nano-Bioengineering, Institute for Physics and Engineering in Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France; (D.K.); (G.N.)
- Laboratory of Nano-Bioengineering, Institute for Physics and Engineering in Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France; (D.K.); (G.N.)
- Correspondence: (A.S.); (I.N.)
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France; (D.K.); (G.N.)
- Laboratory of Nano-Bioengineering, Institute for Physics and Engineering in Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
- Correspondence: (A.S.); (I.N.)
| |
Collapse
|
18
|
Mesoporous One-Component Gold Microshells as 3D SERS Substrates. BIOSENSORS-BASEL 2021; 11:bios11100380. [PMID: 34677336 PMCID: PMC8533941 DOI: 10.3390/bios11100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful analytical tool for label-free analysis that has found a broad spectrum of applications in material, chemical, and biomedical sciences. In recent years, a great interest has been witnessed in the rational design of SERS substrates to amplify Raman signals and optionally allow for the selective detection of analytes, which is especially essential and challenging for biomedical applications. In this study, hard templating of noble metals is proposed as a novel approach for the design of one-component tailor-made SERS platforms. Porous Au microparticles were fabricated via dual ex situ adsorption of Au nanoparticles and in situ reduction of HAuCl4 on mesoporous sacrificial microcrystals of vaterite CaCO3. Elimination of the microcrystals at mild conditions resulted in the formation of stable mesoporous one-component Au microshells. SERS performance of the microshells at very low 0.4 µW laser power was probed using rhodamine B and bovine serum albumin showing enhancement factors of 2 × 108 and 8 × 108, respectively. The proposed strategy opens broad avenues for the design and scalable fabrication of one-component porous metal particles that can serve as superior SERS platforms possessing both excellent plasmonic properties and the possibility of selective inclusion of analyte molecules and/or SERS nanotags for highly specific SERS analysis.
Collapse
|
19
|
Vikulina AS, Campbell J. Biopolymer-Based Multilayer Capsules and Beads Made via Templating: Advantages, Hurdles and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2502. [PMID: 34684943 PMCID: PMC8537085 DOI: 10.3390/nano11102502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
One of the undeniable trends in modern bioengineering and nanotechnology is the use of various biomolecules, primarily of a polymeric nature, for the design and formulation of novel functional materials for controlled and targeted drug delivery, bioimaging and theranostics, tissue engineering, and other bioapplications. Biocompatibility, biodegradability, the possibility of replicating natural cellular microenvironments, and the minimal toxicity typical of biogenic polymers are features that have secured a growing interest in them as the building blocks for biomaterials of the fourth generation. Many recent studies showed the promise of the hard-templating approach for the fabrication of nano- and microparticles utilizing biopolymers. This review covers these studies, bringing together up-to-date knowledge on biopolymer-based multilayer capsules and beads, critically assessing the progress made in this field of research, and outlining the current challenges and perspectives of these architectures. According to the classification of the templates, the review sequentially considers biopolymer structures templated on non-porous particles, porous particles, and crystal drugs. Opportunities for the functionalization of biopolymer-based capsules to tailor them toward specific bioapplications is highlighted in a separate section.
Collapse
Affiliation(s)
- Anna S. Vikulina
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg, 1, 14476 Potsdam, Germany
- Bavarian Polymer Institute, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Dr.-Mack-Straße, 77, 90762 Fürth, Germany
| | - Jack Campbell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| |
Collapse
|