1
|
Su X, Zhong H, Zeng Y, Zhang Y, Zhang B, Guo W, Huang Q, Ye Y. Dual-ligand-functionalized nanostructured lipid carriers as a novel dehydrocavidine delivery system for liver fibrosis therapy. Colloids Surf B Biointerfaces 2025; 246:114376. [PMID: 39551037 DOI: 10.1016/j.colsurfb.2024.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/12/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Liver fibrosis is a common stage of various chronic liver diseases, often developing into liver cirrhosis, and even liver cancer. Activated hepatic stellate cells (aHSCs) have been shown to promote the development of liver fibrosis. Therefore, dual-targeted combination therapy for liver may be an effective strategy for the treatment of liver fibrosis. PURPOSE In this study, the novel nanostructured lipid carriers (GA&GalNH2-DC-NLCs) were prepared for Dehydrocavidine (DC), glycyrrhetinic acid (GA) and galactose-PEG2000-NH2 (GalNH2) were selected as targeted ligand-modified nanostructured lipid carriers (NLCs), which enables dual-targeting to the liver for the treatment of liver fibrosis. STUDY DESIGN To study the targeting effect of GA&GalNH2-DC-NLCs on liver and its therapeutic effect on liver fibrosis, we established aHSC-T6 cell model and rat model of liver fibrosis for study. RESULTS GA&GalNH2-DC-NLCs promoted drug liver targeting efficiency and apoptosis rate by upregulating the expression of Bax. It showed that compared with no and/or GA-modified NLCs and GalNH2-modified NLCs, GA&GalNH2-DC-NLCs exhibited less extracellular matrix (ECM) deposition, induced apoptosis of aHSCs, and stronger anti-fibrosis effects in vivo. This may be due the fact that GA or GalNH2-modifified NLCs simultaneously block HSCs activation and inhibit the IL-6/STAT3 pathway. CONCLUSION GA&GalNH2-DC-NLCs is thus a potential strategy for liver fibrosis treatment.
Collapse
Affiliation(s)
- Xiaodan Su
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Huashuai Zhong
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Yongzhu Zeng
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Yuyan Zhang
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin 541199, China
| | - Wei Guo
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Qiujie Huang
- Department of Pharmacy, Guangxi University of Traditional Chinese Medicine, Nanning 530001, China.
| | - Yong Ye
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning 530021, China; Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Nanning 530021, China.
| |
Collapse
|
2
|
Andretta E, Costa A, Ventura E, Quintiliani M, Damiano S, Giordano A, Morrione A, Ciarcia R. Capsaicin Exerts Antitumor Activity in Mesothelioma Cells. Nutrients 2024; 16:3758. [PMID: 39519591 PMCID: PMC11547426 DOI: 10.3390/nu16213758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Mesothelioma is an aggressive cancer with limited treatment options. Mesothelioma therapy often involves a multimodal approach including surgery, radiotherapy and chemotherapy. However, the prognosis for patients remains poor. Difficult diagnosis, late symptoms when the tumor is in an advanced stage and the onset of chemotherapy resistance make mesothelioma difficult to treat. For this reason, it is essential to discover new pharmacological approaches. Capsaicin (CAPS) is the active compound of chili peppers. Based on CAPS's anticancer properties on various tumor lines and its chemo-sensitizing action on resistant cells, in this study, we evaluated the effects of CAPS on mesothelioma cells to assess its potential use in mesothelioma therapy. METHODS To evaluate antiproliferative effects of CAPS, we performed MTS assays on various mesothelioma cells, representative of all major mesothelioma subtypes. Transwell migration and wound-healing assays were used to examine the effect of CAPS on mesothelioma cell migration. We also determined the effects of CAPS on oncogenic signaling pathways by assessing the levels of AKT and MAPK activation. RESULTS In this study, we show that CAPS significantly reduces proliferation of both parental and cisplatin-resistant mesothelioma cells. CAPS promotes S-phase cell cycle arrest and inhibits lateral motility and migration of mesothelioma cells. Accordingly, CAPS suppresses AKT and ERK1/2 activation in MSTO-211H and NCI-H2052 cells. Our results support an antitumor effect of CAPS on cisplatin-resistant mesothelioma cells, suggesting that it may reduce resistance to cisplatin. CONCLUSIONS Our results could pave the way for further studies to evaluate the use of CAPS for mesothelioma treatment.
Collapse
Affiliation(s)
- Emanuela Andretta
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (R.C.)
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 4, 80126 Naples, Italy
| | - Aurora Costa
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Ventura
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
| | | | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (R.C.)
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (R.C.)
| |
Collapse
|
3
|
Chinreddy SR, Mashozhera NT, Rashrash B, Flores-Iga G, Nimmakayala P, Hankins GR, Harris RT, Reddy UK. Unraveling TRPV1's Role in Cancer: Expression, Modulation, and Therapeutic Opportunities with Capsaicin. Molecules 2024; 29:4729. [PMID: 39407657 PMCID: PMC11477668 DOI: 10.3390/molecules29194729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer is a global health challenge with rising incidence and mortality rates, posing significant concerns. The World Health Organization reports cancer as a leading cause of death worldwide, contributing to nearly one in six deaths. Cancer pathogenesis involves disruptions in cellular signaling pathways, resulting in uncontrolled cell growth and metastasis. Among emerging players in cancer biology, Transient Receptor Potential (TRP) channels, notably TRPV1, have garnered attention due to their altered expression in cancer cells and roles in tumorigenesis and progression. TRPV1, also known as the capsaicin receptor, is pivotal in cancer cell death and pain mediation, offering promise as a therapeutic target. Activation of TRPV1 triggers calcium influx and affects cell signaling linked to growth and death. Additionally, TRPV1 is implicated in cancer-induced pain and chemo-sensitivity, with upregulation observed in sensory neurons innervating oral cancers. Also, when capsaicin, a compound from chili peppers, interacts with TRPV1, it elicits a "hot" sensation and influences cancer processes through calcium influx. Understanding TRPV1's multifaceted roles in cancer may lead to novel therapeutic strategies for managing cancer-related symptoms and improving patient outcomes. The current review elucidates the comprehensive role of capsaicin in cancer therapy, particularly through the TRPV1 channel, highlighting its effects in various cells via different signaling pathways and discussing its limitations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Umesh K. Reddy
- Department of Biology, West Virginia State University, Institute, WV 25112, USA; (S.R.C.); (N.T.M.); (B.R.); (G.F.-I.); (P.N.); (G.R.H.); (R.T.H.)
| |
Collapse
|
4
|
Ashin ZF, Sadeghi-Mohammadi S, Vaezi Z, Najafi F, AdibAmini S, Sadeghizadeh M, Naderi-Manesh H. Synergistic effect of curcumin and tamoxifen loaded in pH-responsive gemini surfactant nanoparticles on breast cancer cells. BMC Complement Med Ther 2024; 24:337. [PMID: 39304876 DOI: 10.1186/s12906-024-04631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Drug combination therapy is preferred over monotherapy in clinical research to improve therapeutic effects. Developing a new nanodelivery system for cancer drugs can reduce side effects and provide several advantages, including matched pharmacokinetics and potential synergistic activity. This study aimed to examine and determine the efficiency of the gemini surfactants (GSs) as a pH-sensitive polymeric carrier and cell-penetrating agent in cancer cells to achieve dual drug delivery and synergistic effects of curcumin (Cur) combined with tamoxifen citrate (TMX) in the treatment of MCF-7 and MDA-MB-231 human BC cell lines. METHODS The synthesized NPs were self-assembled using a modified nanoprecipitation method. The functional groups and crystalline form of the nanoformulation were examined by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dynamic light scattering (DLS) used to assess zeta potential and particle size, and the morphological analysis determined by transmission electron microscopy (TEM). The anticancer effect was evaluated through an in vitro cytotoxicity MTT assay, flow cytometry analysis, and apoptosis analysis performed for mechanism investigation. RESULTS The tailored NPs were developed with a size of 252.3 ± 24.6 nm and zeta potential of 18.2 ± 4.4 mV capable of crossing the membrane of cancer cells. The drug loading and release efficacy assessment showed that the loading of TMX and Cur were 93.84% ± 1.95% and 90.18% ± 0.56%, respectively. In addition, the drug release was more controlled and slower than the free state. Polymeric nanocarriers improved controlled drug release 72.19 ± 2.72% of Tmx and 55.50 ± 2.86% of Cur were released from the Tmx-Cur-Gs NPs after 72 h at pH = 5.5. This confirms the positive effect of polymeric nanocarriers on the controlled drug release mechanism. moreover, the toxicity test showed that combination-drug delivery was much more greater than single-drug delivery in MCF-7 and MDA-MB-231 cell lines. Cellular imaging showed excellent internalization of TMX-Cur-GS NPs in both MCF-7 and MDA-MB-231 cells and synergistic anticancer effects, with combination indices of 0.561 and 0.353, respectively. CONCLUSION The combined drug delivery system had a greater toxic effect on cell lines than single-drug delivery. The synergistic effect of TMX and Cur with decreasing inhibitory concentrations could be a more promising system for BC-targeted therapy using GS NPs.
Collapse
Affiliation(s)
- Zeinab Fotouhi Ashin
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Sanam Sadeghi-Mohammadi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Zahra Vaezi
- Department of Bioactive Compounds, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | | | - Majid Sadeghizadeh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
- Department of Bioactive Compounds, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Mikled P, Chavasiri W, Khongkow M. Dual folate/biotin-decorated liposomes mediated delivery of methylnaphthazarin for anti-cancer activity. Sci Rep 2024; 14:21796. [PMID: 39294264 PMCID: PMC11410993 DOI: 10.1038/s41598-024-72532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Chemotherapy is an effective strategy for mitigating the global challenge of cancer treatment, which often encounters drug resistance and negative side effects. Methylnaphthazarin (MNZ), a natural compound with promising anti-cancer properties, has been underexplored due to its poor aqueous solubility and low selectivity. This study introduces a novel approach to overcome these limitations by developing MNZ-encapsulating liposomes decorated with folate and biotin (F/B-LP-MNZ). This dual-targeting strategy aims to enhance the anti-cancer efficacy and specificity of MNZ delivery. Our innovative F/B-LP-MNZ formulation demonstrated excellent physicochemical properties, stability, and controlled drug release profiles. In vitro studies revealed that MNZ-loaded liposomes attenuate the toxicity associated with free MNZ while F/B-LP-MNZ significantly increased cytotoxicity against HeLa cells, which express high levels of folate and biotin receptors, compared to non-targeted liposomes. Enhanced cellular uptake and improved dynamic flow attachment further confirmed the superior specificity of F/B-LP in targeting cancer cells. Additionally, our results revealed that F/B-LP-MNZ effectively inhibits HeLa cell migration and adhesion through EMT suppression and apoptotic induction, indicating its potential to prevent cancer metastasis. These findings highlight the potential of dual folate and biotin receptors-targeting liposomes as an effective delivery system for MNZ, offering a promising new avenue for targeted cancer therapy.
Collapse
Affiliation(s)
- Pirun Mikled
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| |
Collapse
|
6
|
Rong J, Liu T, Yin X, Shao M, Zhu K, Li B, Wang S, Zhu Y, Zhang S, Yin L, Liu Q, Wang X, Zhang L. Co-delivery of camptothecin and MiR-145 by lipid nanoparticles for MRI-visible targeted therapy of hepatocellular carcinoma. J Exp Clin Cancer Res 2024; 43:247. [PMID: 39215325 PMCID: PMC11363558 DOI: 10.1186/s13046-024-03167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Camptothecin (CPT) is one of the frequently used small chemotherapy drugs for treating hepatocellular carcinoma (HCC), but its clinical application is limited due to severe toxicities and acquired resistance. Combined chemo-gene therapy has been reported to be an effective strategy for counteracting drug resistance while sensitizing cancer cells to cytotoxic agents. Thus, we hypothesized that combining CPT with miR-145 could synergistically suppress tumor proliferation and enhance anti-tumor activity. METHODS Lactobionic acid (LA) modified lipid nanoparticles (LNPs) were developed to co-deliver CPT and miR-145 into asialoglycoprotein receptors-expressing HCC in vitro and in vivo. We evaluated the synergetic antitumor effect of miR-145 and CPT using CCK8, Western blotting, apoptosis and wound scratch assay in vitro, and the mechanisms underlying the synergetic antitumor effects were further investigated. Tumor inhibitory efficacy, safety evaluation and MRI-visible ability were assessed using diethylnitrosamine (DEN) + CCl4-induced HCC mouse model. RESULTS The LA modification improved the targeting delivery of cargos to HCC cells and tissues. The LA-CMGL-mediated co-delivery of miR-145 and CPT is more effective on tumor inhibitory than LA-CPT-L or LA-miR-145-L treatment alone, both in vitro and in vivo, with almost no side effects during the treatment period. Mechanistically, miR-145 likely induces apoptosis by targeting SUMO-specific peptidase 1 (SENP1)-mediated hexokinase (HK2) SUMOylation and glycolysis pathways and, in turn, sensitizing the cancer cells to CPT. In vitro and in vivo tests confirmed that the loaded Gd-DOTA served as an effective T1-weighted contrast agent for noninvasive tumor detection as well as real-time monitoring of drug delivery and biodistribution. CONCLUSIONS The LA-CMGL-mediated co-delivery of miR-145 and CPT displays a synergistic therapy against HCC. The novel MRI-visible, actively targeted chemo-gene co-delivery system for HCC therapy provides a scientific basis and a useful idea for the development of HCC treatment strategies in the future.
Collapse
Affiliation(s)
- Jing Rong
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Tongtong Liu
- School of Pharmacy, Key Laboratory of Anti-inflammatory of Immune Medicines of Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Xiujuan Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Min Shao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Kun Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Bin Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Shiqi Wang
- School of Pharmacy, Key Laboratory of Anti-inflammatory of Immune Medicines of Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Yujie Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Saisai Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Likang Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Qi Liu
- School of Pharmacy, Key Laboratory of Anti-inflammatory of Immune Medicines of Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China.
| | - Xiao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China.
| | - Lei Zhang
- School of Pharmacy, Key Laboratory of Anti-inflammatory of Immune Medicines of Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
7
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
8
|
Yang M, Jiang G, Li Y, Chen W, Zhang S, Wang R. Paeoniflorin loaded liposomes modified with glycyrrhetinic acid for liver-targeting: preparation, characterization, and pharmacokinetic study. Pharm Dev Technol 2024; 29:176-186. [PMID: 38376879 DOI: 10.1080/10837450.2024.2319738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVE To enhance the retention times and therapeutic efficacy of paeoniflorin (PF), a liver-targeted drug delivery system has been developed using glycyrrhetinic acid (GA) as a ligand. SIGNIFICANCE The development and optimization of GA-modified PF liposomes (GPLs) have shown promising potential for targeted delivery to the liver, opening up new possibilities for liver disease treatment. METHODS This study aimed to identify the best prescriptions using single-factor experiments and response surface methodology. The formulation morphology was determined using transmission electron microscopy. Tissue distribution was observed through in vivo imaging, and pharmacokinetic studies were conducted. RESULTS The results indicated that GPLs, prepared using the thin film dispersion method and response surface optimization, exhibited well-dispersed and uniformly sized particles. The in vitro release rate of GPLs was slower compared to PF monomers, suggesting a sustained release effect. The liver-targeting ability of GA resulted in stronger fluorescence signals in the liver for targeted liposomes compared to non-targeted liposomes. Furthermore, pharmacokinetic studies demonstrated that GPLs significantly prolonged the residence time of PF in the bloodstream, thereby contributing to prolonged efficacy. CONCLUSION These findings suggest that GPLs are more effective than PF monomers in terms of controlling drug release and delivering drugs to specific targets, highlighting the potential of PF as a liver-protective drug.
Collapse
Affiliation(s)
- Menghuan Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Gang Jiang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yumeng Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Shantang Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Hefei, China
| | - Rulin Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|
9
|
Li Y, Deng X, Tan X, Li Q, Yu Z, Wu W, Ma X, Zeng J, Wang X. Protective role of curcumin in disease progression from non-alcoholic fatty liver disease to hepatocellular carcinoma: a meta-analysis. Front Pharmacol 2024; 15:1343193. [PMID: 38313314 PMCID: PMC10834658 DOI: 10.3389/fphar.2024.1343193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
Background: Pathological progression from non-alcoholic fatty liver disease (NAFLD) to liver fibrosis (LF) to hepatocellular carcinoma (HCC) is a common dynamic state in many patients. Curcumin, a dietary supplement derived from the turmeric family, is expected to specifically inhibit the development of this progression. However, there is a lack of convincing evidence. Methods: The studies published until June 2023 were searched in PubMed, Web of Science, Embase, and the Cochrane Library databases. The SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) approach was used to evaluate the certainty of evidence. StataSE (version 15.1) and Origin 2021 software programs were used to analyze the critical indicators. Results: Fifty-two studies involving 792 animals were included, and three disease models were reported. Curcumin demonstrates a significant improvement in key indicators across the stages of NAFLD, liver fibrosis, and HCC. We conducted a detailed analysis of common inflammatory markers IL-1β, IL-6, and TNF-α, which traverse the entire disease process. The research results reveal that curcumin effectively hinders disease progression at each stage by suppressing inflammation. Curcumin exerted hepatoprotective effects in the dose range from 100 to 400 mg/kg and treatment duration from 4 to 10 weeks. The mechanistic analysis reveals that curcumin primarily exerts its hepatoprotective effects by modulating multiple signaling pathways, including TLR4/NF-κB, Keap1/Nrf2, Bax/Bcl-2/Caspase 3, and TGF-β/Smad3. Conclusion: In summary, curcumin has shown promising therapeutic effects during the overall progression of NAFLD-LF-HCC. It inhibited the pathological progression by synergistic mechanisms related to multiple pathways, including anti-inflammatory, antioxidant, and apoptosis regulation.
Collapse
Affiliation(s)
- Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qianrong Li
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhi Yu
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenbin Wu
- Health Care Office of the Service Bureau of Agency for Offices Administration of the Central Military Commission, Beijing, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyin Wang
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Pardeshi S, Mohite P, Rajput T, Puri A. The Nanotech Potential of Curcumin in Pharmaceuticals: An Overview. Curr Drug Discov Technol 2024; 21:e260723219113. [PMID: 37493163 DOI: 10.2174/1570163820666230726125809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 07/27/2023]
Abstract
It is safe to use Curcumin as a cosmetic and therapeutic ingredient in pharmaceutical products. For the uses mentioned above and for fundamental research, it is essential to obtain pure Curcumin from plant sources. There is a requirement for effective extraction and purification techniques that adhere to green chemistry standards for efficiency improvement, process safety, and environmental friendliness. Several outstanding studies have looked into the extraction and purification of Curcumin. This review thoroughly covers the currently available curcumin extraction, synthesis, and transformation techniques. Additionally, Curcumin's poor solubility and low absorption in the human body have limited its potential for pharmaceutical use. However, recent developments in novel curcumin formulations utilizing nanotechnology delivery methods have provided new approaches to transport and maximize the human body's curcumin absorption efficiency. In this review, we explore the various curcumin nanoformulations and the potential medicinal uses of nano curcumin. Additionally, we review the necessary future research directions to recommend Curcumin as an excellent therapeutic candidate.
Collapse
Affiliation(s)
- Sagar Pardeshi
- Department of Pharmaceutics AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra- 401404, India
| | - Popat Mohite
- Department of Pharmaceutical Chemistry, AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra-401404, India
| | - Tanavirsing Rajput
- Department of Pharmaceutical Chemistry, AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra-401404, India
| | - Abhijeet Puri
- Department of Pharmacognosy, AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra-401404, India
| |
Collapse
|
11
|
Huang S, Wang K, Hua Z, Abd El-Aty AM, Tan M. Size-controllable food-grade nanoparticles based on sea cucumber polypeptide with good anti-oxidative capacity to prolong lifespan in tumor-bearing mice. Int J Biol Macromol 2023; 253:127039. [PMID: 37742886 DOI: 10.1016/j.ijbiomac.2023.127039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Liver cancer, a malignancy with a rising global incidence, poses a significant challenge in achieving effective treatment outcomes. As food-derived nutrient, sea cucumber peptide (SCP) has shown promising anticancer effects. Therefore, we explored the nanodelivery systems to encapsulate SCP to enhance its stability in the gastrointestinal tract and improve absorption within the tumor microenvironment. This study aimed to develop size-controllable multifunctional nanoparticles using SCP, procyanidins (PCs), and vanillin through molecular assembly via a one-pot Mannich condensation approach. These food-grade nanoparticles demonstrated water solubility and exhibited a spherical structure with sizes ranging from 441 to 1360 nm, depending on the concentration of the reactants. In vitro cell experiments demonstrated that SCP nanoparticles modified with PCs effectively reduced the generation of reactive oxygen species from H2O2 and acrylamide while maintaining normal levels of mitochondrial membrane potential. Furthermore, in vivo nutrition intervention studies conducted on tumor-bearing mice revealed that mice treated with SCP nanoparticles exhibited a survival rate of 40 %, which was significantly higher than the 0 % and 20 % survival rates observed in the control and SCP-treated groups, respectively. These findings suggest that SCP nanoparticles, possessing antioxidative properties and controllable sizes, hold potential for precision nutrition in the field of cancer treatment.
Collapse
Affiliation(s)
- Shasha Huang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Kuiyou Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zheng Hua
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
12
|
Zhang T, Cheng X, Xiu J, Liu M, Liu S, Zhang B, Miao Q, Cun D, Yang C, Li K, Zhang J, Zhao X. pH-Responsive Injectable Multifunctional Pluronic F127/Gelatin-Based Hydrogels with Hydrogen Production for Treating Diabetic Wounds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55392-55408. [PMID: 37989251 DOI: 10.1021/acsami.3c12672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Diabetic chronic wounds remain a major clinical challenge with long-term inflammatory responses and extreme oxidative damage. Hence, a pH-responsive injectable multifunctional hydrogel [Gel/CUR-FCHO/Mg (GCM) micromotors] via a Schiff base reaction between gelatin and benzaldehyde-grafted Pluronic F127 drug-loaded micelles (FCHO) was fabricated for the first time. Dynamic Schiff base linkage endowed the GCM hydrogel with the ability to be self-healing, injectable, and pH-responsive for on-demand drug delivery at the wound site. Curcumin (CUR), a hydrophobic drug with antioxidative, anti-inflammatory, and antibacterial activities, was encapsulated into the hydrogel matrix by micellization (CUR-FCHO micelles). Simultaneously, magnesium-based micromotors (Mg micromotors) were physically entrapped into the system for providing active hydrogen (H2) to scavenge reactive oxygen species and alleviate inflammatory responses. As a result, the GCM micromotor hydrogel displayed an inherent antibacterial property, extraordinary antioxidative performance, and remarkable biocompatibility. In the diabetic mouse with a full-thickness cutaneous defect wound, the GCM hydrogel could remodel the inflammatory microenvironment and stimulate vascularization and collagen deposition, thereby facilitating wound closure and enhancing tissue regeneration, which offered a promising therapeutic option for diabetic chronic wound management.
Collapse
Affiliation(s)
- Tian Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Cheng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingya Xiu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Siyi Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bowen Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qi Miao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongyun Cun
- Department of Hepatobiliary Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, Shantou 515000, China
| | - Kexin Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiulong Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiuli Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
13
|
Azarifar Z, Amini R, Tanzadehpanah H, Afshar S, Najafi R. In vitro co-delivery of 5-fluorouracil and all-trans retinoic acid by PEGylated liposomes for colorectal cancer treatment. Mol Biol Rep 2023; 50:10047-10059. [PMID: 37902908 DOI: 10.1007/s11033-023-08888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/04/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Single-target inhibitors have not been successful in cancer treatment due to the development of drug resistance. Nevertheless, therapeutic agents capable of simultaneously inhibiting multiple targets have revealed encouraging results in inducing apoptosis and overcoming drug resistance in cancerous cells. Here, we designed a composite liposomal nano-carrier co-loading 5-Fluorouracil (5-FU) with all-trans retinoic acid (ATRA) to assess anticancer efficacy of the combined drugs in colorectal cancer (CRC). METHODS A PEGylated liposomal nano-carrier with phospholipid/cholesterol/DSPE-PEG (2000) was synthesized by the thin film hydration technique for co-delivery of ATRA and 5-FU. After characterizing, the role of 5-FU and ATRA co-loaded liposomal nano-carrier in proliferation, epithelial-mesenchymal transition (EMT), apoptosis, and cancer stem cells (CSCs) were investigated by using colony forming and MTT assay, RT-qPCR and Annexin V/PI kit. RESULTS The average size of liposomes (LPs) was < 150 nm with uniform size distribution. Drug release analyses indicated that both ATRA and 5-FU could simultaneously release from LPs in a sustained release manner. The synergistic inhibitory effects of ATRA and 5-FU loaded in LPs were verified with a combination index of 0.43. Dual drug LPs showed the highest cytotoxicity, enhanced inhibition of cell proliferation, increased apoptotic potential, decreased CSCs, and attenuated EMT-associated biomarkers. Also, dual drug LPs decreased β-catenin gene expression more than other liposomal formulations. CONCLUSION These findings suggest that using LPs to achieve a synergistic effect of ATRA and 5-FU is an effectual approach to increase the therapeutic effect of 5-FU toward CRC cells.
Collapse
Affiliation(s)
- Zahra Azarifar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
14
|
Li F, Zhao Y, Nie G. Nanotechnology-based combinational strategies toward the regulation of myofibroblasts and diseased microenvironment in liver fibrosis and hepatic carcinoma. NANO RESEARCH 2023; 16:13042-13055. [DOI: 10.1007/s12274-023-5809-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 01/03/2025]
|
15
|
Saeed RA, Maqsood M, Saeed RA, Muzammil HS, Khan MI, Asghar L, Nisa SU, Rabail R, Aadil RM. Plant-based foods and hepatocellular carcinoma: A review on mechanistic understanding. Crit Rev Food Sci Nutr 2023; 63:11750-11783. [PMID: 35796706 DOI: 10.1080/10408398.2022.2095974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regardless of etiology, hepatocarcinogenesis is frequently preceded by a distinctive sequence of chronic necroinflammation, compensatory hepatic regeneration, development of hepatic fibrosis, and ultimately cirrhosis. The liver being central immunomodulators, closely maintains immunotolerance. Any dysregulation in this management of immunotolerance is a hallmark of chronic hepatic disease and hepatocellular carcinoma (HCC). Apart from other malignancies, hepatocellular carcinoma accounts for 90% of liver cancers. Several emerging evidences have recognized diet as lifestyle associated risk factor in HCC development. However, natural compounds have the potential to fight hepatoma aggressiveness via inhibition of cellular proliferation and modulation of oncogenic pathways. This review aimed to identify the several plant-based foods for their protective role in HCC prevention by understating the molecular mechanisms involved in inhibition of progression and proliferation of cancer. Information from relevant publications in which several plant-based foods demonstrated protective potential against HCC has been integrated as well as evaluated. For data integration, Science direct, Google scholar, and Scopus websites were used. Nutrition-based approaches in the deterrence of several cancers offer a substantial benefit to currently used medical therapies and should be implemented more often as an adjunct to first-line medical therapy. Furthermore, the inclusion of these plant-based foods (vegetables, fruits, herbs, and spices) may improve general health and decline cancer incidence.
Collapse
Affiliation(s)
- Raakia Anam Saeed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Raafia Anam Saeed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Shehzad Muzammil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Laiba Asghar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Sahar Un Nisa
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
16
|
Han Q, Du L, Zhu L, Yu D. Review of the Application of Dual Drug Delivery Nanotheranostic Agents in the Diagnosis and Treatment of Liver Cancer. Molecules 2023; 28:7004. [PMID: 37894483 PMCID: PMC10608862 DOI: 10.3390/molecules28207004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/16/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Liver cancer has high incidence and mortality rates and its treatment generally requires the use of a combination treatment strategy. Therefore, the early detection and diagnosis of liver cancer is crucial to achieving the best treatment effect. In addition, it is imperative to explore multimodal combination therapy for liver cancer treatment and the synergistic effect of two liver cancer treatment drugs while preventing drug resistance and drug side effects to maximize the achievable therapeutic effect. Gold nanoparticles are used widely in applications related to optical imaging, CT imaging, MRI imaging, biomarkers, targeted drug therapy, etc., and serve as an advanced platform for integrated application in the nano-diagnosis and treatment of diseases. Dual-drug-delivery nano-diagnostic and therapeutic agents have drawn great interest in current times. Therefore, the present report aims to review the effectiveness of dual-drug-delivery nano-diagnostic and therapeutic agents in the field of anti-tumor therapy from the particular perspective of liver cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qinghe Han
- Radiology Department, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (Q.H.); (L.D.); (L.Z.)
| | - Lianze Du
- Radiology Department, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (Q.H.); (L.D.); (L.Z.)
| | - Lili Zhu
- Radiology Department, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (Q.H.); (L.D.); (L.Z.)
| | - Duo Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China
| |
Collapse
|
17
|
Luo K, Yang L, Yan C, Zhao Y, Li Q, Liu X, Xie L, Sun Q, Li X. A Dual-Targeting Liposome Enhances Triple-Negative Breast Cancer Chemoimmunotherapy through Inducing Immunogenic Cell Death and Inhibiting STAT3 Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302834. [PMID: 37264710 DOI: 10.1002/smll.202302834] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Immunotherapy gains increasing focus in treating triple-negative breast cancer (TNBC), while its efficacy is greatly restricted owing to low tumor immunogenicity and immunosuppressive tumor microenvironment (ITM). Herein, a LyP-1 and chondroitin sulfate (CS) dual-modified liposome co-loaded with paclitaxel (PTX) and cryptotanshinone (CTS), namely CS/LyP-1-PC Lip, is engineered for TNBC chemoimmunotherapy via induction of immunogenic cell death (ICD) and inhibition of signal transducer and activator of transcript-3 (STAT3) activation. CS/LyP-1-PC Lip enhances cellular uptake through p32 and CD44 dual receptor-mediated endocytosis. Within the tumor, the CS layer is continuously detached by hyaluronidase to release drugs. Subsequently, CTS sensitizes the cytotoxicity of PTX to 4T1 tumor cells. PTX induces ICD of tumor cells and facilitates infiltration of cytotoxic T lymphocyte to provoke immune response. Meanwhile, the concomitant delivery of CTS inhibits STAT3 activation to decrease infiltration of regulatory T cell, M2-type tumor-associated macrophage, and myeloid-derived suppressor cell, thus reversing ITM. Markedly, the dual-targeting liposome shows superior anti-tumor efficacy in subcutaneous TNBC mice and significant lung metastasis suppression in tumor metastasis model. Overall, this work offers a feasible combination regimen and a promising nanoplatform for the development of TNBC chemoimmunotherapy.
Collapse
Affiliation(s)
- Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
18
|
Hussain A, Kumar A, Uttam V, Sharma U, Sak K, Saini RV, Saini AK, Haque S, Tuli HS, Jain A, Sethi G. Application of curcumin nanoformulations to target folic acid receptor in cancer: Recent trends and advances. ENVIRONMENTAL RESEARCH 2023; 233:116476. [PMID: 37348632 DOI: 10.1016/j.envres.2023.116476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Curcumin, derived from turmeric, has a strong anticancer potential known for millennia. The development of this phytochemical as a medicine has been hampered by several significant deficiencies, including its poor water solubility and low bioavailability. This review article discusses possibilities to overcome these bottlenecks by focusing on this natural polyphenol's nanoformulation. Moreover, preparation of curcumin conjugates containing folates as ligands for folic acid receptors can add a new important dimension in this field, allowing specific targeting of cancer cells, considering the significantly higher expression of these receptors in malignant tissues compared to normal cells. It is highly expected that simultaneous improvement of different aspects of curcumin in fighting against such a complex and multifaceted disease like cancer. Therefore, we can better comprehend cancer biology by developing a mechanistic understanding of curcumin, which will also inspire the scientific community to develop new pharmacological models, and exploration of emerging directions to revitalize application of natural products in cancer therapy.
Collapse
Affiliation(s)
- Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, 345050, Dubai, United Arab Emirates
| | - Ajay Kumar
- University Center for Research & Development (UCRD), Chandigarh University, Mohali, 140413, Punjab, India; Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, Punjab, India
| | - Vivek Uttam
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Bathinda, Punjab, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Bathinda, Punjab, India
| | | | - Reena V Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Adesh K Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India; Faculty of Agriculture, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Bathinda, Punjab, India.
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
19
|
Zhu Y, Xiao W, Zhong W, Xi C, Ye J, Zhang Q, Wu H, Du S. Study of the skin-penetration promoting effect and mechanism of combined system of curcumin liposomes prepared by microfluidic chip and skin penetrating peptides TD-1 for topical treatment of primary melanoma. Int J Pharm 2023; 643:123256. [PMID: 37482229 DOI: 10.1016/j.ijpharm.2023.123256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
The transdermal drug delivery system (TDDS) is an effective strategy for the treatment of melanoma with fewer side effects and good biocompatible, but the skin penetration of drugs should be further promoted. Here, we proposed a new system that combined curcumin liposomes (Cur-Lips) with skin-penetrating peptides to promote skin penetration ability. However, the preparation of Cur-Lips has drawbacks of instability and low entrapment efficiency by the traditional methods. We thus innovatively designed and applied a microfluidic chip to optimize the preparation of Cur-Lips. Cur-Lips exhibited a particle size of 106.22 ± 4.94 nm with a low polydispersity index (<0.3) and high entrapment efficiency of 99.33 ± 1.05 %, which were prepared by the microfluidic chip. The Cur-Lips increased the skin penetration capability of Cur by 2.76 times compared to its solution in vitro skin penetration experiment. With the help of skin-penetrating peptide TD-1, the combined system further promoted the skin penetration capability by 4.48 times. The (TD-1 + Cur-Lips) system also exhibited a superior inhibition effect of the tumor to B16F10 in vitro. Furthermore, the topical application of (TD-1 + Cur-Lips) gel suppressed melanoma growth in vivo, and induced tumor cell apoptosis in tumor tissues. The skin-penetration promotion mechanism of the system was investigated. It was proved that the system could interact with the lipids and keratin on the stratum corneum to promote the Cur distribute into the stratum corneum through hair follicles and sweat glands. We proved that the microfluidic chips had unique advantages for the preparation of liposomes. The innovative combined system of liposomes and biological transdermal enhancers can effectively promote the skin penetration effect of drugs and have great potential for the prevention and treatment of melanoma.
Collapse
Affiliation(s)
- Yingyin Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wuqing Xiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wanling Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Cheng Xi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jinhong Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Qing Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Huichao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
20
|
Dai Z, Zhang Y, Meng Y, Li S, Suonan Z, Sun Y, Ji J, Shen Q, Zheng H, Xue Y. Targeted delivery of nutraceuticals derived from food for the treatment of obesity and its related complications. Food Chem 2023; 418:135980. [PMID: 36989644 DOI: 10.1016/j.foodchem.2023.135980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Nutraceuticals which are abundant in foods have attracted much attention due to their bioactive activities of anti-obesity, anti-hyperlipidemia and anti-atherosclerosis. Unfortunately, the poor bioavailability severely undermines their envisioned benefits. Therefore, there is an urgent need to develop suitable delivery systems to promote the benefits of their biological activity. Targeted drug delivery system (TDDS) is a novel drug delivery system that can selectively concentrate drugs on targets in the body, improve the bioavailability of agents and reduce side effects. This emerging drug delivery system provides a new strategy for the treatment of obesity with nutraceuticals and would be a promising alternative to be widely used in the food field. This review summarizes the recent studies on the application in the targeted delivery of nutraceuticals for treating obesity and its related complications, especially the available receptors and their corresponding ligands for TDDS and the evaluation methods of the targeting ability.
Collapse
|
21
|
Wang Y, Yin Z, Gao L, Ma B, Shi J, Chen H. Lipid Nanoparticles-Based Therapy in Liver Metastasis Management: From Tumor Cell-Directed Strategy to Liver Microenvironment-Directed Strategy. Int J Nanomedicine 2023; 18:2939-2954. [PMID: 37288351 PMCID: PMC10243353 DOI: 10.2147/ijn.s402821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023] Open
Abstract
Metastasis to the liver, as one of the most frequent metastatic patterns, was associated with poor prognosis. Major drawbacks of conventional therapies in liver metastasis were the lack of metastatic-targeting ability, predominant systemic toxicities and incapability of tumor microenvironment modulations. Lipid nanoparticles-based strategies like galactosylated, lyso-thermosensitive or active-targeting chemotherapeutics liposomes have been explored in liver metastasis management. This review aimed to summarize the state-of-art lipid nanoparticles-based therapies in liver metastasis management. Clinical and translational studies on the lipid nanoparticles in treating liver metastasis were searched up to April, 2023 from online databases. This review focused not only on the updates in drug-encapsulated lipid nanoparticles directly targeting metastatic cancer cells in treating liver metastasis, but more importantly on research frontiers in drug-loading lipid nanoparticles targeting nonparenchymal liver tumor microenvironment components in treating liver metastasis, which showed promise for future clinical oncological practice.
Collapse
Affiliation(s)
- Yuhan Wang
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Zhenyu Yin
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Lei Gao
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Bin Ma
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Jianming Shi
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Hao Chen
- Department of Surgical Oncology, Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, People’s Republic of China
| |
Collapse
|
22
|
Tang P, Shen T, Wang H, Zhang R, Zhang X, Li X, Xiao W. Challenges and opportunities for improving the druggability of natural product: Why need drug delivery system? Biomed Pharmacother 2023; 164:114955. [PMID: 37269810 DOI: 10.1016/j.biopha.2023.114955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Bioactive natural products (BNPs) are the marrow of medicinal plants, which are the secondary metabolites of organisms and have been the most famous drug discovery database. Bioactive natural products are famous for their enormous number and great safety in medical applications. However, BNPs are troubled by their poor druggability compared with synthesis drugs and are challenged as medicine (only a few BNPs are applied in clinical settings). In order to find a reasonable solution to improving the druggability of BNPs, this review summarizes their bioactive nature based on the enormous pharmacological research and tries to explain the reasons for the poor druggability of BNPs. And then focused on the boosting research on BNPs loaded drug delivery systems, this review further concludes the advantages of drug delivery systems on the druggability improvement of BNPs from the perspective of their bioactive nature, discusses why BNPs need drug delivery systems, and predicts the next direction.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Tianze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Hairong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
23
|
Wang H, Chen L, Cai Q, Wu S, Shen W, Hu Z, Huang W, Jin W. Formation, digestion properties, and physicochemical stability of the rice bran oil body carrier system. Food Chem 2023; 409:135283. [PMID: 36571900 DOI: 10.1016/j.foodchem.2022.135283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Rice bran is a major by-product of rice processing with abundant nutrient content. Oil bodies (OBs), which are fat particles with unique physicochemical stability, are specialized organelles for the storage of oils and fats in plant tissues. In this study, we extracted OBs from rice bran, to evaluate the function of hydrophobic nutrients efficiently delivered by OBs. The carrier system was prepared by sonicating curcumin with medium chain triglycerides (MCT) into rice bran oil bodies (RBOBs). Emulsions comprising different RBOB mass fractions were characterized. The results showed that the highest encapsulation efficiency (EE, 87.67%), optimal particle size (190 nm), and best storage stability were achieved with the 1.5 wt% RBOBs. Based on activity evaluation data, the carrier system can achieve sustained oil release in the intestine and shows high bioaccessibility (61.04%; IC50 in Caco-2 cells was 77.21 μg/mL), which is important for promoting grain by-product utilization.
Collapse
Affiliation(s)
- Han Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Lu Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Qiaoyu Cai
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Shuang Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Wangyang Shen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Zhongze Hu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Wenjing Huang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China.
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China.
| |
Collapse
|
24
|
Li Z, Yu H, Liu C, Wang C, Zeng X, Yan J, Sun Y. Efficiency co-delivery of ellagic acid and oxygen by a non-invasive liposome for ameliorating diabetic retinopathy. Int J Pharm 2023; 641:122987. [PMID: 37207860 DOI: 10.1016/j.ijpharm.2023.122987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023]
Abstract
Diabetic retinopathy (DR) is one of the serious complications of diabetes, which has become the fourth leading cause of vision loss worldwide. Current treatment of DR relies on intravitreal injections of antiangiogenic agents, which has made considerable achievements in reducing visual impairment. However, long-term invasive injections require advanced technology and can lead to poor patient compliance as well as the incidence of ocular complications including bleeding, endophthalmitis, retinal detachment and others. Hence, we developed non-invasive liposomes (EA-Hb/TAT&isoDGR-Lipo) for efficiency co-delivery of ellagic acid and oxygen, which can be administered intravenously or by eye drops. Among that, ellagic acid (EA), as an aldose reductase inhibitor, could remove excessive reactive oxygen species (ROS) induced by high glucose for preventing retinal cell apoptosis, as well as reduce retinal angiogenesis through the blockage of VEGFR2 signaling pathway; carried oxygen could ameliorate DR hypoxia, and further enhanced the anti-neovascularization efficacy. Our results showed that EA-Hb/TAT&isoDGR-Lipo not only effectively protected retinal cells from high glucose-induced damage, but also inhibited VEGF-induced vascular endothelial cells migration, invasion, and tube formation in vitro. In addition, in a hypoxic cell model, EA-Hb/TAT&isoDGR-Lipo could reverse retinal cell hypoxia, thereby reducing the expression of VEGF. Significantly, after being administered as an injection or eye drops, EA-Hb/TAT&isoDGR-Lipo obviously ameliorated the structure (central retinal thickness and retinal vascular network) of retina by eliminating ROS and down-regulating the expression of GFAP, HIF-1α, VEGF and p-VEGFR2 in a DR mouse model. In summary, EA-Hb/TAT&isoDGR-Lipo holds great potentials in improvement of DR, which provides a novel approach for the treatment of DR.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Hongli Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Changduo Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Xianhu Zeng
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
25
|
Ahmady AR, Solouk A, Saber-Samandari S, Akbari S, Ghanbari H, Brycki BE. Capsaicin-loaded alginate nanoparticles embedded polycaprolactone-chitosan nanofibers as a controlled drug delivery nanoplatform for anticancer activity. J Colloid Interface Sci 2023; 638:616-628. [PMID: 36774875 DOI: 10.1016/j.jcis.2023.01.139] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023]
Abstract
Nanocarrier-based drug delivery systems have been designed into various structures that can effectively prevent cancer progression and improve the therapeutic cancer index. However, most of these delivery systems are designed to be simple nanostructures with several limitations, including low stability and burst drug release features. A nano-in-nano delivery technique is explored to address the aforementioned concerns. Accordingly, this study investigated the release behavior of a novel nanoparticles-in-nanofibers delivery system composed of capsaicin-loaded alginate nanoparticles embedded in polycaprolactone-chitosan nanofiber mats. First, alginate nanoparticles were prepared with different concentrations of cationic gemini surfactant and using nanoemulsion templates. The optimized formulation of alginate nanoparticles was utilized for loading capsaicin and exhibited a diameter of 19.42 ± 1.8 nm and encapsulation efficiency of 98.7 % ± 0.6 %. Likewise, blend polycaprolactone-chitosan nanofibers were prepared with different blend ratios of their solutions (i.e., 100:0, 80:20, 60:40) by electrospinning method. After the characterization of electrospun mats, the optimal nanofibers were employed for embedding capsaicin-loaded alginate nanoparticles. Our findings revealed that embedding capsaicin-loaded alginate nanoparticles in polycaprolactone-chitosan nanofibers, prolonged capsaicin release from 120 h to more than 500 h. Furthermore, the results of in vitro analysis demonstrated that the designed nanoplatform could effectively inhibit the proliferation of MCF-7 human breast cells while being nontoxic to human dermal fibroblasts (HDF). Collectively, the prepared nanocomposite drug delivery platform might be promising for the long-term and controlled release of capsaicin for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Azin Rashidy Ahmady
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran
| | - Atefeh Solouk
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Saeed Saber-Samandari
- New Technologies Research Center (NTRC), Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran.
| | - Somaye Akbari
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hadi Ghanbari
- ENT and Head and Neck Research Center, Department of Otolaryngology, Head and Neck Surgery, The Five Senses Institute, Hazrat Rasoul Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Bogumil E Brycki
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland
| |
Collapse
|
26
|
Xia Y, Xu R, Ye S, Yan J, Kumar P, Zhang P, Zhao X. Microfluidic Formulation of Curcumin-Loaded Multiresponsive Gelatin Nanoparticles for Anticancer Therapy. ACS Biomater Sci Eng 2023. [PMID: 37140447 DOI: 10.1021/acsbiomaterials.3c00318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Current anticancer research shows that a combination of multiple treatment methods can greatly improve the killing of tumor cells. Using the latest microfluidic swirl mixer technology, combined with chemotherapy and photothermal-ablation therapy, we developed multiresponsive targeted antitumor nanoparticles (NPs) made of folate-functionalized gelatin NPs under 200 nm in size and with encapsulated CuS NPs, Fe3O4 NPs, and curcumin (Cur). By exploring gelatin's structure, adjusting its concentration and pH, and fine-tuning the fluid dynamics in the microfluidic device, the best preparation conditions were obtained for gelatin NPs with an average particle size of 90 ± 7 nm. The comparative targeting of the drug delivery system (DDS) was demonstrated on lung adenocarcinoma A549 cells (low level of folate receptors) and breast adenocarcinoma MCF-7 cells (high level of folate receptors). Folic acid helps achieve targeting and accurate delivery of NPs to the MCF-7 tumor cells. The synergistic photothermal ablation and curcumin's anticancer activity are achieved through infrared light irradiation (980 nm), while Fe3O4 is guided with an external magnetic field to target gelatin NPs and accelerate the uptake of drugs, thus efficiently killing tumor cells. The method described in this work is simple, easy to repeat, and has great potential to be scaled up for industrial production and subsequent clinical use.
Collapse
Affiliation(s)
- Yu Xia
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Ruicheng Xu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Siyuan Ye
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jiaxuan Yan
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Piyush Kumar
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Peng Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| |
Collapse
|
27
|
Dytrych P, Kejík Z, Hajduch J, Kaplánek R, Veselá K, Kučnirová K, Skaličková M, Venhauerová A, Hoskovec D, Martásek P, Jakubek M. Therapeutic potential and limitations of curcumin as antimetastatic agent. Biomed Pharmacother 2023; 163:114758. [PMID: 37141738 DOI: 10.1016/j.biopha.2023.114758] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
Treatment of metastatic cancer is one of the biggest challenges in anticancer therapy. Curcumin is interesting nature polyphenolic compound with unique biological and medicinal effects, including repression of metastases. High impact studies imply that curcumin can modulate the immune system, independently target various metastatic signalling pathways, and repress migration and invasiveness of cancer cells. This review discusses the potential of curcumin as an antimetastatic agent and describes potential mechanisms of its antimetastatic activity. In addition, possible strategies (curcumin formulation, optimization of the method of administration and modification of its structure motif) to overcome its limitation such as low solubility and bioactivity are also presented. These strategies are discussed in the context of clinical trials and relevant biological studies.
Collapse
Affiliation(s)
- Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| |
Collapse
|
28
|
Gong J, Shi T, Liu J, Pei Z, Liu J, Ren X, Li F, Qiu F. Dual-drug codelivery nanosystems: An emerging approach for overcoming cancer multidrug resistance. Biomed Pharmacother 2023; 161:114505. [PMID: 36921532 DOI: 10.1016/j.biopha.2023.114505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Multidrug resistance (MDR) promotes tumor recurrence and metastasis and heavily reduces anticancer efficiency, which has become a primary reason for the failure of clinical chemotherapy. The mechanisms of MDR are so complex that conventional chemotherapy usually fails to achieve an ideal therapeutic effect and even accelerates the occurrence of MDR. In contrast, the combination of chemotherapy with dual-drug has significant advantages in tumor therapy. A novel dual-drug codelivery nanosystem, which combines dual-drug administration with nanotechnology, can overcome the application limitation of free drugs. Both the characteristics of nanoparticles and the synergistic effect of dual drugs contribute to circumventing various drug-resistant mechanisms in tumor cells. Therefore, developing dual-drug codelivery nanosystems with different multidrug-resistant mechanisms has an important reference value for reversing MDR and enhancing the clinical antitumor effect. In this review, the advantages, principles, and common codelivery nanocarriers in the application of dual-drug codelivery systems are summarized. The molecular mechanisms of MDR and the dual-drug codelivery nanosystems designed based on different mechanisms are mainly introduced. Meanwhile, the development prospects and challenges of codelivery nanosystems are also discussed, which provide guidelines to exploit optimized combined chemotherapy strategies in the future.
Collapse
Affiliation(s)
- Jianing Gong
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taoran Shi
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinfeng Liu
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zerong Pei
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
29
|
Shelash Al-Hawary SI, Abdalkareem Jasim S, M Kadhim M, Jaafar Saadoon S, Ahmad I, Romero Parra RM, Hasan Hammoodi S, Abulkassim R, M Hameed N, K Alkhafaje W, Mustafa YF, Javed Ansari M. Curcumin in the treatment of liver cancer: From mechanisms of action to nanoformulations. Phytother Res 2023; 37:1624-1639. [PMID: 36883769 DOI: 10.1002/ptr.7757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 03/09/2023]
Abstract
Liver cancer is the sixth most prevalent cancer and ranks third in cancer-related death, after lung and colorectal cancer. Various natural products have been discovered as alternatives to conventional cancer therapy strategies, including radiotherapy, chemotherapy, and surgery. Curcumin (CUR) with antiinflammatory, antioxidant, and antitumor activities has been associated with therapeutic benefits against various cancers. It can regulate multiple signaling pathways, such as PI3K/Akt, Wnt/β-catenin, JAK/STAT, p53, MAPKs, and NF-ĸB, which are involved in cancer cell proliferation, metastasis, apoptosis, angiogenesis, and autophagy. Due to its rapid metabolism, poor oral bioavailability, and low solubility in water, CUR application in clinical practices is restricted. To overcome these limitations, nanotechnology-based delivery systems have been applied to use CUR nanoformulations with added benefits, such as reducing toxicity, improving cellular uptake, and targeting tumor sites. Besides the anticancer activities of CUR in combating various cancers, especially liver cancer, here we focused on the CUR nanoformulations, such as micelles, liposomes, polymeric, metal, and solid lipid nanoparticles, and others, in the treatment of liver cancer.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-Anbar-Ramadi, Iraq
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq.,Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | | | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Baghdad, Iraq
| | - Waleed K Alkhafaje
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| |
Collapse
|
30
|
Song X, Feng Z, Peng Y, Yu S, Du X, Huang P, Wang W, Xing J. Nanogels co-loading paclitaxel and curcumin prepared in situ through photopolymerization at 532 nm for synergistically suppressing breast tumors. J Mater Chem B 2023; 11:1798-1807. [PMID: 36727624 DOI: 10.1039/d2tb02254k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Combined chemotherapy plays an increasingly important and practical role in the clinical treatment of malignant tumor. In this study, paclitaxel (PTX) and curcumin (Cur) are simultaneously encapsulated into nanogels (termed as NG-PC) in situ by microemulsion photopolymerization at 532 nm for synergistically suppressing breast tumors. NG-PC with a size of 180 nm and a low polydispersity index (PDI < 0.2) presents a controlled and cumulative release of PTX and Cur within 90 h. Moreover, NG-PC displays a remarkable killing effect against 4T1 and MCF-7 cells. In vivo antitumor evaluation on 4T1 tumor-bearing mice demonstrates that NG-PC has significantly higher ability to inhibit tumor growth, inducing necrosis, apoptosis and suppression of proliferation than that of a single drug. Our research provides a facile method to prepare a nano-drug delivery platform with excellent drug co-loading ability and synergistic antitumor effect.
Collapse
Affiliation(s)
- Xiaoyan Song
- Tiangong University, School of Material Science and Engineering, Tianjin 300387, P. R. China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Yuanyuan Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Siyuan Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Xinjing Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
31
|
Ezhilarasan D, Najimi M. Deciphering the possible reciprocal loop between hepatic stellate cells and cancer cells in the tumor microenvironment of the liver. Crit Rev Oncol Hematol 2023; 182:103902. [PMID: 36621514 DOI: 10.1016/j.critrevonc.2022.103902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
Activated hepatic stellate cells (HSCs)/myofibroblasts are the important sources of cancer-associated fibroblasts in the liver tumor microenvironment (TME). The crosstalk between activated HSCs and tumor cells mediates HCC progression, metastasis, tumor cell survival, angiogenesis and chemoresistance. In TME, HCC cells secrete various soluble factors responsible for the phenotypic activation of quiescent HSCs. Tumor cells use activated HSC-derived extracellular matrix (ECM) for migration and invasion. Further, in liver TME, activated HSCs and sinusoidal endothelial cells engage in a crosstalk that causes the secretion of angiogenesis and metastasis-related growth factors and cytokines. Activated HSCs and immune cells crosstalk to decrease immune surveillance in the liver TME by increasing the population of T regulatory cells and M2 macrophages or myeloid-derived suppressor cells. Thus, HSCs play a vital role in liver TME cell interactions. Therefore, a deep understanding of HSCs activation and their crosstalk with cancer and immune cells in TME may lead to the development of novel therapeutic strategies to target HCC.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India.
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels 1200, Belgium
| |
Collapse
|
32
|
Salehiabar M, Ghaffarlou M, Mohammadi A, Mousazadeh N, Rahimi H, Abhari F, Rashidzadeh H, Nasehi L, Rezaeejam H, Barsbay M, Ertas YN, Nosrati H, Kavetskyy T, Danafar H. Targeted CuFe 2O 4 hybrid nanoradiosensitizers for synchronous chemoradiotherapy. J Control Release 2023; 353:850-863. [PMID: 36493951 DOI: 10.1016/j.jconrel.2022.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/08/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Multifunctional nanoplatforms based on novel bimetallic nanoparticles have emerged as effective radiosensitizers owing to their potential capability in cancer cells radiosensitization. Implementation of chemotherapy along with radiotherapy, known as synchronous chemoradiotherapy, can augment the treatment efficacy. Herein, a tumor targeted nanoradiosensitizer with synchronous chemoradiotion properties, termed as CuFe2O4@BSA-FA-CUR, loaded with curcumin (CUR) and modified by bovine serum albumin (BSA) and folic acid (FA) was developed to enhance tumor accumulation and promote the anti-cancer activity while attenuating adverse effects. Both copper (Cu) and iron (Fe) were utilized in the construction of these submicron scale entities, therefore strong radiosensitization effect is anticipated by implementation of these two metals. The structure-function relationships between constituents of nanomaterials and their function led to the development of nanoscale materials with great radiosensitizing capacity and biosafety. BSA was used to anchor Fe and Cu ions but also to improve colloidal stability, blood circulation time, biocompatibility, and further functionalization. Moreover, to specifically target tumor sites and enhance cellular uptake, FA was conjugated onto the surface of hybrid bimetallic nanoparticles. Finally, CUR as a natural chemotherapeutic agent was encapsulated into the developed bimetallic nanoparticles. With incorporation of all abovementioned stages into one multifunctional nanoplatform, CuFe2O4@BSA-FA-CUR is produced for synergistic chemoradiotherapy with positive outcomes. In vitro investigation revealed that these nanoplatforms bear excellent biosafety, great tumor cell killing ability and radiosensitizing capacity. In addition, high cancer-suppression efficiency was observed through in vivo studies. It is worth mentioning that co-use of CuFe2O4@BSA-FA-CUR nanoplatforms and X-ray radiation led to complete tumor ablation in almost all of the treated mice. No mortality or radiation-induced normal tissue toxicity were observed following administration of CuFe2O4@BSA-FA-CUR nanoparticles which highlights the biosafety of these submicron scale entities. These results offer powerful evidence for the potential capability of CuFe2O4@BSA-FA-CUR in radiosensitization of malignant tumors and opens up a new avenue of research in this area.
Collapse
Affiliation(s)
- Marziyeh Salehiabar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine
| | | | - Ali Mohammadi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Navid Mousazadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Rahimi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Abhari
- Department of Radiology, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan 45139- 56184, Iran
| | - Hamid Rashidzadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Nasehi
- Department of Medical Laboratory, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Rezaeejam
- Department of Radiology, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan 45139- 56184, Iran
| | - Murat Barsbay
- Hacettepe University, Department of Chemistry, Beytepe, Ankara 06800, Türkiye
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye; Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye
| | - Hamed Nosrati
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine.
| | - Taras Kavetskyy
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine; Department of Materials Engineering, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland; Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine.
| | - Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine.
| |
Collapse
|
33
|
Yang Q, Xu J, Gu J, Shi H, Zhang J, Zhang J, Chen Z, Fang X, Zhu T, Zhang X. Extracellular Vesicles in Cancer Drug Resistance: Roles, Mechanisms, and Implications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201609. [PMID: 36253096 PMCID: PMC9731723 DOI: 10.1002/advs.202201609] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived nanosized vesicles that mediate cell-to-cell communication via transporting bioactive molecules and thus are critically involved in various physiological and pathological conditions. EVs contribute to different aspects of cancer progression, such as cancer growth, angiogenesis, metastasis, immune evasion, and drug resistance. EVs induce the resistance of cancer cells to chemotherapy, radiotherapy, targeted therapy, antiangiogenesis therapy, and immunotherapy by transferring specific cargos that affect drug efflux and regulate signaling pathways associated with epithelial-mesenchymal transition, autophagy, metabolism, and cancer stemness. In addition, EVs modulate the reciprocal interaction between cancer cells and noncancer cells in the tumor microenvironment (TME) to develop therapy resistance. EVs are detectable in many biofluids of cancer patients, and thus are regarded as novel biomarkers for monitoring therapy response and predicting prognosis. Moreover, EVs are suggested as promising targets and engineered as nanovehicles to deliver drugs for overcoming drug resistance in cancer therapy. In this review, the biological roles of EVs and their mechanisms of action in cancer drug resistance are summarized. The preclinical studies on using EVs in monitoring and overcoming cancer drug resistance are also discussed.
Collapse
Affiliation(s)
- Qiurong Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jing Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jianmei Gu
- Departmemt of Clinical Laboratory MedicineNantong Tumor HospitalNantongJiangsu226361China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Jianye Zhang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical PharmacologySchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong511436China
| | - Zhe‐Sheng Chen
- College of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Xinjian Fang
- Department of OncologyLianyungang Hospital Affiliated to Jiangsu UniversityLianyungangJiangsu222000China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care MedicineYixing Hospital affiliated to Jiangsu UniversityYixingJiangsu214200China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| |
Collapse
|
34
|
Modulation of Macrophages Using Nanoformulations with Curcumin to Treat Inflammatory Diseases: A Concise Review. Pharmaceutics 2022; 14:pharmaceutics14102239. [PMID: 36297677 PMCID: PMC9611033 DOI: 10.3390/pharmaceutics14102239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Curcumin (Cur), a traditional Chinese medicine extracted from natural plant rhizomes, has become a candidate drug for the treatment of diseases due to its anti-inflammatory, anticancer, antioxidant, and antibacterial activities. However, the poor water solubility and low bioavailability of Cur limit its therapeutic effects for clinical applications. A variety of nanocarriers have been successfully developed to improve the water solubility, in vivo distribution, and pharmacokinetics of Cur, as well as to enhance the ability of Cur to polarize macrophages and relieve macrophage oxidative stress or anti-apoptosis, thus accelerating the therapeutic effects of Cur on inflammatory diseases. Herein, we review the design and development of diverse Cur nanoformulations in recent years and introduce the biomedical applications and potential therapeutic mechanisms of Cur nanoformulations in common inflammatory diseases, such as arthritis, neurodegenerative diseases, respiratory diseases, and ulcerative colitis, by regulating macrophage behaviors. Finally, the perspectives of the design and preparation of future nanocarriers aimed at efficiently exerting the biological activity of Cur are briefly discussed.
Collapse
|
35
|
Merritt JC, Richbart SD, Moles EG, Cox AJ, Brown KC, Miles SL, Finch PT, Hess JA, Tirona MT, Valentovic MA, Dasgupta P. Anti-cancer activity of sustained release capsaicin formulations. Pharmacol Ther 2022; 238:108177. [PMID: 35351463 PMCID: PMC9510151 DOI: 10.1016/j.pharmthera.2022.108177] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Capsaicin (trans-8-methyl-N-vanillyl-6-noneamide) is a hydrophobic, lipophilic vanilloid phytochemical abundantly found in chili peppers and pepper extracts. Several convergent studies show that capsaicin displays robust cancer activity, suppressing the growth, angiogenesis and metastasis of several human cancers. Despite its potent cancer-suppressing activity, the clinical applications of capsaicin as a viable anti-cancer drug have remained problematic due to its poor bioavailability and aqueous solubility properties. In addition, the administration of capsaicin is associated with adverse side effects like gastrointestinal cramps, stomach pain, nausea and diarrhea and vomiting. All these hurdles may be circumvented by encapsulation of capsaicin in sustained release drug delivery systems. Most of the capsaicin-based the sustained release drugs have been tested for their pain-relieving activity. Only a few of these formulations have been investigated as anti-cancer agents. The present review describes the physicochemical properties, bioavailability, and anti-cancer activity of capsaicin-sustained release agents. The asset of such continuous release capsaicin formulations is that they display better solubility, stability, bioavailability, and growth-suppressive activity than the free drug. The encapsulation of capsaicin in sustained release carriers minimizes the adverse side effects of capsaicin. In summary, these capsaicin-based sustained release drug delivery systems have the potential to function as novel chemotherapies, unique diagnostic imaging probes and innovative chemosensitization agents in human cancers.
Collapse
Affiliation(s)
- Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Emily G Moles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Ashley J Cox
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Paul T Finch
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Joshua A Hess
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Maria T Tirona
- Department of Hematology-Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Monica A Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States.
| |
Collapse
|
36
|
Wu J, Qi C, Wang H, Wang Q, Sun J, Dong J, Yu G, Gao Z, Zhang B, Tian G. Curcumin and berberine co-loaded liposomes for anti-hepatocellular carcinoma therapy by blocking the cross-talk between hepatic stellate cells and tumor cells. Front Pharmacol 2022; 13:961788. [PMID: 36188590 PMCID: PMC9515508 DOI: 10.3389/fphar.2022.961788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/18/2022] [Indexed: 12/09/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a major component of the tumor microenvironment (TME). In hepatocellular carcinoma (HCC), quiescent hepatic stellate cells (HSCs) could be activated to become CAFs, which play a critical role in tumor progression and drug resistance. Therefore, recent efforts have been focused on combining anti-HSC and pro-apoptotic activities to improve anti-tumor efficacy of drugs. In this study, glycyrrhetinic acid and hyaluronic acid–modified liposomes (GA-HA-Lip) were prepared for co-delivery of curcumin (CUR) and berberine (BBR) for the treatment of HCC. Furthermore, we established the LX-2+BEL-7402 co-cultured cell model and implanted the m-HSCs+H22 cells into a mouse to evaluate the anti-tumor effect of CUR&BBR/GA-HA-Lip both in vitro and in vivo. The results showed that CUR&BBR/GA-HA-Lip could accumulate in tumor tissues and be taken up by HSCs and BEL-7402 cells simultaneously. Compared with free CUR, the combination therapy based on GA-HA-Lip exhibits stronger pro-apoptotic and anti-proliferation effect both in vitro and in vivo. The anti-tumor mechanistic study revealed that CUR&BBR/GA-HA-Lip could inhibit the activation of HSCs and restrain drug resistance of tumor cells. In summary, CUR&BBR/GA-HA-Lip could be a promising nano-sized formulation for anti-tumor therapy.
Collapse
Affiliation(s)
- Jingliang Wu
- School of Nursing, Weifang University of Science and Technology, Weifang, China
| | - Cuiping Qi
- School of Nursing, Weifang University of Science and Technology, Weifang, China
- School of Nursing, Weifang Medical University, Weifang, China
| | - Hao Wang
- Department of Oncology, Weifang People’s Hospital, Weifang, China
| | - Qing Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Jingui Sun
- School of Nursing, Weifang University of Science and Technology, Weifang, China
| | - Jinping Dong
- School of Nursing, Weifang University of Science and Technology, Weifang, China
| | - Guohua Yu
- Department of Oncology, Weifang People’s Hospital, Weifang, China
| | - Zhiqin Gao
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
- *Correspondence: Bo Zhang, ; Guixiang Tian,
| | - Guixiang Tian
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
- *Correspondence: Bo Zhang, ; Guixiang Tian,
| |
Collapse
|
37
|
Adetunji TL, Olawale F, Olisah C, Adetunji AE, Aremu AO. Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer. Front Oncol 2022; 12:908487. [PMID: 35912207 PMCID: PMC9326111 DOI: 10.3389/fonc.2022.908487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 12/23/2022] Open
Abstract
Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is one of the most important natural products in the genus Capsicum. Due to its numerous biological effects, there has been extensive and increasing research interest in capsaicin, resulting in increased scientific publications in recent years. Therefore, an in-depth bibliometric analysis of published literature on capsaicin from 2001 to 2021 was performed to assess the global research status, thematic and emerging areas, and potential insights into future research. Furthermore, recent research advances of capsaicin and its combination therapy on human cancer as well as their potential mechanisms of action were described. In the last two decades, research outputs on capsaicin have increased by an estimated 18% per year and were dominated by research articles at 93% of the 3753 assessed literature. In addition, anti-cancer/pharmacokinetics, cytotoxicity, in vivo neurological and pain research studies were the keyword clusters generated and designated as thematic domains for capsaicin research. It was evident that the United States, China, and Japan accounted for about 42% of 3753 publications that met the inclusion criteria. Also, visibly dominant collaboration nodes and networks with most of the other identified countries were established. Assessment of the eligible literature revealed that the potential of capsaicin for mitigating cancer mainly entailed its chemo-preventive effects, which were often linked to its ability to exert multi-biological effects such as anti-mutagenic, antioxidant and anti-inflammatory activities. However, clinical studies were limited, which may be related to some of the inherent challenges associated with capsaicin in the limited clinical trials. This review presents a novel approach to visualizing information about capsaicin research and a comprehensive perspective on the therapeutic significance and applications of capsaicin in the treatment of human cancer.
Collapse
Affiliation(s)
- Tomi Lois Adetunji
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Femi Olawale
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Chijioke Olisah
- Department of Botany and Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
| | | | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
38
|
Prasad S, Saha P, Chatterjee B, Chaudhary AA, Lall R, Srivastava AK. Complexity of Tumor Microenvironment: Therapeutic Role of Curcumin and Its Metabolites. Nutr Cancer 2022; 75:1-13. [PMID: 35818029 DOI: 10.1080/01635581.2022.2096909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tumor microenvironment (TME) is a complex network of cellular and non-cellular components surrounding the tumor. The cellular component includes fibroblasts, adipocytes, endothelial cells, and immune cells, while non-cellular components are tumor vasculature, extracellular matrix and signaling molecules. The tumor cells have constant close interaction with their surrounding TME components that facilitate their growth, survival, and metastasis. Targeting a complex TME network and its interaction with the tumor can offer a novel strategy to disrupt cancer cell progression. Curcumin, from turmeric rhizome, is recognized as a safe and effective natural therapeutic agent against multiple diseases including cancer. Here the effects of curcumin and its metabolites on tumor-TME interaction modulating ability have been described. Curcumin and its metabolites regulate TME by inhibiting the growth of its cellular components such as cancer-associated adipocytes, cancer-associated fibroblast, tumor endothelial cells, tumor-stimulating immune cells, and inducing anticancer immune cells. They also inhibit the interplay of tumor cells to TME by suppressing non-cellular components such as extracellular matrix, and associated tumor promoting signaling-pathways. In addition, curcumin inhibits the inflammatory environment, suppresses angiogenic factors, and increases antioxidant status in TME. Overall, curcumin has the capability to regulate TME components and their interaction with tumor cells.
Collapse
Affiliation(s)
| | - Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Bilash Chatterjee
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSUI), Riyadh, Saudi Arabia
| | - Rajiv Lall
- Noble Pharma, LLC, Menomonie, Wisconsin, USA
| | - Amit K Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
39
|
Xu R, Tomeh MA, Ye S, Zhang P, Lv S, You R, Wang N, Zhao X. Novel microfluidic swirl mixers for scalable formulation of curcumin loaded liposomes for cancer therapy. Int J Pharm 2022; 622:121857. [PMID: 35623489 DOI: 10.1016/j.ijpharm.2022.121857] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022]
Abstract
Liposomes have been widely used in nanomedicine for the delivery of hydrophobic and hydrophilic anticancer agents. The most common applications of these formulations are vaccines and anticancer formulations (e.g., mRNA, small molecule drugs). However, large-scale production with precise control of size and size distribution of the lipid-based drug delivery systems (DDSs) is one of the major challenges in the pharmaceutical industry. In this study, we used newly designed microfluidic swirl mixers with simple 3D mixing chamber structures to prepare liposomes at a larger scale (up to 320 mL/min or 20 L/h) than the commercially available devices. This design demonstrated high productivity and better control of liposome size and polydispersity index (PDI) than conventional liposome preparation methods. The microfluidic swirl mixer devices were used to produce curcumin-loaded liposomes under different processing conditions which were later characterized and studied in vitro to evaluate their efficiency as DDSs. The obtained results demonstrated that the liposomes can effectively deliver curcumin into cancer cells. Therefore, the microfluidic swirl mixers are promising devices for reproducible and scalable manufacturing of DDSs.
Collapse
Affiliation(s)
- Ruicheng Xu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Siyuan Ye
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Peng Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Rongrong You
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Nan Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
40
|
Speciale A, Muscarà C, Molonia MS, Cristani M, Cimino F, Saija A. Recent Advances in Glycyrrhetinic Acid-Functionalized Biomaterials for Liver Cancer-Targeting Therapy. Molecules 2022; 27:1775. [PMID: 35335138 PMCID: PMC8954912 DOI: 10.3390/molecules27061775] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the most common causes of cancer mortality worldwide. Chemotherapy and radiotherapy are the conventional therapies generally employed in patients with liver tumors. The major issue associated with the administration of chemotherapeutics is their high toxicity and lack of selectivity, leading to systemic toxicity that can be detrimental to the patient's quality of life. An important approach to the development of original liver-targeted therapeutic products takes advantage of the employment of biologically active ligands able to bind specific receptors on the cytoplasmatic membranes of liver cells. In this perspective, glycyrrhetinic acid (GA), a pentacyclic triterpenoid present in roots and rhizomes of licorice, has been used as a ligand for targeting the liver due to the expression of GA receptors on the sinusoidal surface of mammalian hepatocytes, so it may be employed to modify drug delivery systems (DDSs) and obtain better liver or hepatocyte drug uptake and efficacy. In the current review, we focus on the most recent and interesting research advances in the development of GA-based hybrid compounds and DDSs developed for potential employment as efficacious therapeutic options for the treatment of hepatic cancer.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (C.M.); (M.S.M.); (M.C.); (A.S.)
| | | |
Collapse
|
41
|
Sun Y, Xie Y, Tang H, Ren Z, Luan X, Zhang Y, Zhu M, Lv Z, Bao H, Li Y, Liu R, Shen Y, Zheng Y, Pei J. In vitro and in vivo Evaluation of a Novel Estrogen-Targeted PEGylated Oxaliplatin Liposome for Gastric Cancer. Int J Nanomedicine 2022; 16:8279-8303. [PMID: 34992365 PMCID: PMC8712509 DOI: 10.2147/ijn.s340180] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/07/2021] [Indexed: 12/31/2022] Open
Abstract
Background Chemotherapy is still the main first-line treatment for advanced metastatic gastric cancer, but it has the limitations of serious side effects and drug resistance. Conventional liposome has been substantially used as drug carriers, but they lack targeting character with lower drug bioavailability in tumor tissues. Based on the above problems, a novel estrogen-targeted PEGylated liposome loaded with oxaliplatin (ES-SSL-OXA) was prepared to further improve the metabolic behavior, the safety profile, and the anti-tumor efficacy of oxaliplatin. Methods Four kinds of oxaliplatin (OXA) liposomes were prepared by film hydration method. The obtained formulations were characterized in terms of entrapment efficiency (EE), particle size, and so on by HPLC and DLS (dynamic light scanning). The morphology of ES-SSL-OXA was detected by transmission electron microscope (TEM). The in vitro and in vivo targeting effect of ES-SSL-OXA was verified by fluorescence microscopy and in vivo imaging system in gastric cancer cells (SGC-7901) and tumor-bearing athymic mice. The in vitro and in vivo antitumor efficacies of ES-SSL-OXA were investigated on SGC-7901 cells and athymic tumor-bearing mice. Pharmacokinetic, biodistribution, and acute toxicity tests of ES-SSL-OXA were performed on ICR mice. Results The ES-SSL-OXA exhibited an average particle size of about 153.37 nm with an encapsulation efficiency of 46.20% and low leakage rates at 4°C and 25°C. In vivo and in vitro targeting study confirmed that ES-SSL-OXA could effectively target the tumor site. The antitumor activity demonstrated the strongest inhibition in tumor growth of ES-SSL-OXA. Pharmacokinetics and acute toxicity study showed that ES-SSL-OXA could significantly improve the metabolic behavior and toxicity profile of oxaliplatin. Conclusion In this study, a novel estrogen-targeted long-acting liposomal formulation of OXA was successfully prepared. ES fragment effectively targeted the delivery system to tumor tissues which highly express estrogen receptor, providing a promising therapeutic method for gastric cancer in clinic.
Collapse
Affiliation(s)
- Yuxin Sun
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Yizhuo Xie
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Huan Tang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Zhihui Ren
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Xue Luan
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Yan Zhang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Ming Zhu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Zhe Lv
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Han Bao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Yan Li
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Rui Liu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Yujia Shen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Yucui Zheng
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| | - Jin Pei
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, ChangChun, People's Republic of China
| |
Collapse
|
42
|
Shen LM, Li MC, Wei WJ, Guan X, Liu J. In Vitro Neuroprotective Effects of Macrophage Membrane-Derived Curcumin-Loaded Carriers against 1-Methyl-4-phenylpyridinium-Induced Neuronal Damage. ACS OMEGA 2021; 6:32133-32141. [PMID: 34870034 PMCID: PMC8637945 DOI: 10.1021/acsomega.1c04894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Curcumin (CUR) possesses neuroprotective effects. However, its clinical therapeutic efficacy is limited because of its low systemic bioavailability due to poor water solubility and fast metabolism. Herein, we designed biomimetic therapeutic nanovesicles (NVs) with enhanced performance and biocompatibility for the intracellular delivery of hydrophobic CUR. Cell membrane NVs were constructed to function as drug carriers by the serial extrusion of macrophages using filters with decreasing pore sizes. Various CUR loading strategies were also evaluated. Furthermore, the neuroprotective effects of the CUR-loaded NVs (NVs-CUR) against 1-methyl-4-phenylpyridinium (MPP+)-induced neuronal degeneration were studied thoroughly. CUR-loaded NVs were readily taken up by neurons in vitro, and the survival rate of MPP+-induced primary neurons increased from 65.37 ± 6.37 to 90.91 ± 3.18% after pretreatment with NVs-CUR. Compared with traditional Parkinson's disease chemotherapeutic treatment, NV formulations can improve the bioavailability of this drug. NVs are expected to become a new and effective drug-delivery platform for further applications in the field of central nervous system therapy.
Collapse
Affiliation(s)
- Li-Ming Shen
- Stem
Cell Clinical Research Center, The First
Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian 116011, China
| | - Meng-Chu Li
- Stem
Cell Clinical Research Center, The First
Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian 116011, China
| | - Wen-Juan Wei
- Stem
Cell Clinical Research Center, The First
Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian 116011, China
| | - Xin Guan
- Stem
Cell Clinical Research Center, The First
Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian 116011, China
| | - Jing Liu
- Stem
Cell Clinical Research Center, The First
Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian 116011, China
- Dalian
Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech
Park, Dalian 116023, China
| |
Collapse
|
43
|
Wang F, Li Y, Jiang H, Li C, Li Z, Qi C, Li Z, Gao Z, Zhang B, Wu J. Dual-Ligand-Modified Liposomes Co-Loaded with Anti-Angiogenic and Chemotherapeutic Drugs for Inhibiting Tumor Angiogenesis and Metastasis. Int J Nanomedicine 2021; 16:4001-4016. [PMID: 34135585 PMCID: PMC8200177 DOI: 10.2147/ijn.s309804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Tumor angiogenesis has been proven to potentiate tumor growth and metastasis; therefore, the strategies targeting tumor-related angiogenesis have great potentials in antitumor therapy. METHODS Here, the GA&Gal dual-ligand-modified liposomes co-loaded with curcumin and combretastatin A-4 phosphate (CUCA/GA&Gal-Lip) were prepared and characterized. A novel "BEL-7402+HUVEC" co-cultured cell model was established to mimic tumor microenvironment. The cytotoxicity and migration assays were performed against the novel co-cultured model. Angiogenesis ability was evaluated by tube formation test, and in vivo metastatic ability was evaluated by lung metastasis test. RESULTS The result demonstrated that dual-ligand-modified liposomes showed greater inhibition of tumor angiogenesis and metastasis in comparison with other combined groups. Significantly, the mechanism analysis revealed that curcumin and combretastatin A-4 phosphate could inhibit tumor angiogenesis and metastasis via down-regulation of VEGF and VEGFR2 expression, respectively, and that GA&Gal-Lip could improve antitumor effect by GA/Gal-mediated active-targeting delivery. CONCLUSION CUCA/GA&Gal-Lip hold great potentials in hepatoma-targeting delivery of antitumor drugs and can achieve anti-angiogenic and anti-metastatic effects by simultaneously blocking VEGF/VEGFR2 signal pathway, therefore exhibiting superior anti-hepatoma efficacy.
Collapse
Affiliation(s)
- Fangqing Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Yanying Li
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Hong Jiang
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Chenglei Li
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Zhaohuan Li
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Cuiping Qi
- School of Nursing, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Zhipeng Li
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Zhiqin Gao
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Jingliang Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, People’s Republic of China
| |
Collapse
|