1
|
Mei C, Duan L, Chang S, Guo X, Yu J. Generation of a vector conventional soliton via a graphene oxide saturable absorber. APPLIED OPTICS 2023; 62:5394-5398. [PMID: 37706855 DOI: 10.1364/ao.492928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/18/2023] [Indexed: 09/15/2023]
Abstract
We have experimentally observed an ultrashort conventional vector soliton in an erbium-doped fiber laser. The few-layered graphene oxide (GO) is used as a saturable absorber (SA). It is found that the saturable absorption characteristic of GO is polarization independent. Therefore, vector solitons can be obtained without polarization control by using such SA. By using a polarization beam splitter to split the mode-locked pulse obtained in the oscillator, two orthogonal polarization vector solitons with equal intensity and consistent characteristics can be obtained. It demonstrates that the initial soliton consists of two orthogonal polarization components. It is worth noting that these two orthogonal polarization component solitons improve the signal-to-noise ratio (SNR) of 3 dB compared with the initial soliton. The improvement in SNR is very significant and cannot be neglected. This phenomenon has not been reported before, to our knowledge. In addition, the conventional soliton generated by this mode-locked laser has a central wavelength of 1559 nm with 1.1 ps pulse duration. The mode-locking state of this laser can be self-started. After mode locking, the environmental stability is excellent. The experimental results indicate that GO as a broadband SA has great potential and application prospects in the field of vector soliton generation.
Collapse
|
2
|
Wang J, Li G, Liu S, Chai J, Wang Y, Cheng G, Zhang G, Liu Y, Li X. Nonlinear Absorption Response of Zirconium Carbide Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3317-3324. [PMID: 36602990 DOI: 10.1021/acsami.2c18652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Zirconium carbide (ZrC), a novel representative of the MXene family, has attracted considerable interest because of its outstanding physicochemical properties and potential applications in optoelectronic devices. For improving its performance as an optical modulator for ultrashort lasers, there is a call to continue studying the nonlinear optical behavior of MXene ZrC. Herein, for the first time, MXene ZrC films were fabricated on fused silica by magnetron sputtering deposition technology and used as a saturable absorber (SA) optical modulator in a passive Q-switched Nd:YAG laser. The saturation absorption behaviors of the prepared ZrC films were characterized by the Z-scan method. Their morphology, band structure, damage threshold, carrier recovery time, and saturation absorption properties were analyzed. The experimental results show that the MXene ZrC SA films exhibit excellent nonlinear optical characteristics, with a saturation intensity of 48.4 MW/cm2, a large modulation depth of 6.9%, and an ultrashort recovery time of 2.72 ps. In addition, the damage threshold of MXene ZrC SA films was estimated to be greater than 0.2516 J/cm2. By integrating the ZrC SA film optical modulator into the oscillator of the Nd:YAG laser, we achieved stable operation of the Q-switched laser with a central wavelength at 1.06 μm, with the shortest pulse width of 78 ns. The results of this study demonstrate the potential use of MXene ZrC SA films as optical modulators in ultrashort lasers.
Collapse
Affiliation(s)
- Jiang Wang
- School of Artificial intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen518057, China
| | - Guangying Li
- School of Artificial intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an710072, China
| | - Sicong Liu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an710119, China
| | - Junshuai Chai
- Key Laboratory of Microelectronics & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing100029, China
| | - Yonggang Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an710119, China
| | - Guanghua Cheng
- School of Artificial intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an710072, China
| | - Guodong Zhang
- School of Artificial intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an710072, China
| | - Yuanshan Liu
- School of Artificial intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an710072, China
| | - Xuelong Li
- School of Artificial intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an710072, China
| |
Collapse
|
3
|
Luo Y, Li M, Tang J, Zang J, Wang Y, Liu T, Fang Y. Interfacially confined preparation of fumaronitrile-based nanofilms exhibiting broadband saturable absorption properties. J Colloid Interface Sci 2022; 627:569-577. [PMID: 35870409 DOI: 10.1016/j.jcis.2022.07.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022]
Abstract
Interfacial nanofilms with nonlinear optical (NLO) properties were prepared via confined dynamic condensation of 4,4'-methylenedianiline (MDA) with the synthesized 2,3-bis(4-(bis(4-formylphenyl)amino)phenyl)fumaronitrile (BTFA). Investigated using the open-aperture Z-scan technique, BTFA showed reverse saturable absorption ascribed to the synergetic mechanisms of two-photon and excited-state absorption. In contrast, the as-prepared nanofilms demonstrated broadband saturable absorption within the spectral range of 720∼1700 nm. The characteristics of nonlinear absorption coefficient (β) decreased along with increasing the incident pulse intensity. Taking advantage of the flexibility and post-machinability properties, the folding layers of the nanofilms offered the feasibility to fine-tune the specific NLO responses. The optimal β value was found to be -10.1 cm/MW for eight-layer nanofilm as well as the normalized transmittance increased up to 35-fold at 800 nm. Utilized as a conceptual saturable absorber, the representative modulation depth and saturation intensity were observed to be around 2.4% and 7.37 GW/cm2 at 800 nm, respectively, comparable to traditional two-dimensional (2D) materials. Aiming to clarify the possible underlying physical processes, a four-level model was employed to illustrate the fast relaxation of the excited states. Present work demonstrates that proper design of building blocks combined with interfacially confined dynamic condensation enables rational development of high-performance NLO materials.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Min Li
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Jiaqi Tang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Jianyang Zang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Yonggang Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, PR China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| |
Collapse
|
4
|
Electrospun Donor/Acceptor Nanofibers for Efficient Photocatalytic Hydrogen Evolution. NANOMATERIALS 2022; 12:nano12091535. [PMID: 35564245 PMCID: PMC9101664 DOI: 10.3390/nano12091535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022]
Abstract
We prepared a series of one-dimensional conjugated-material-based nanofibers with different morphologies and donor/acceptor (D/A) compositions by electrospinning for efficient photocatalytic hydrogen evolution. It was found that homogeneous D/A heterojunction nanofibers can be obtained by electrospinning, and the donor/acceptor ratio can be easily controlled. Compared with the single-component-based nanofibers, the D/A-based nanofibers showed a 34-fold increase in photocatalytic efficiency, attributed to the enhanced exciton dissociation in the nanofibrillar body. In addition, the photocatalytic activity of these nanofibers can be easily optimized by modulating the diameter. The results show that the diameter of the nanofibers can be conveniently controlled by the electrospinning feed rate, and the photocatalytic effect increases with decreasing fiber diameter. Consequently, the nanofibers with the smallest diameter exhibit the most efficient photocatalytic hydrogen evolution, with the highest release rate of 24.38 mmol/(gh). This work provides preliminary evidence of the advantages of the electrospinning strategy in the construction of D/A nanofibers with controlled morphology and donor/acceptor composition, enabling efficient hydrogen evolution.
Collapse
|
5
|
Liu S, Cui N, Liu S, Wang P, Dong L, Chen B, Zhang N, Zhang K, Wang Y. Nonlinear optical properties and passively Q-switched laser application of a layered molybdenum carbide at 639 nm. OPTICS LETTERS 2022; 47:1830-1833. [PMID: 35363746 DOI: 10.1364/ol.454047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Molybdenum carbide (Mo2C) exhibits enormous potential applications in various optoelectronic and photonic fields due to its remarkably electrical and optical characteristics. Here, we fabricate a high-quality Mo2C film by the radio frequency magnetron sputtering deposition method. The nonlinear optical response and ultrafast dynamics are thoroughly studied based on open-aperture Z-scan and nondegenerate pump-probe experimental measurements. The open-aperture Z-scan experimental result exhibits a modulation depth of 8.5% and a saturation fluence of 0.28 mJ/cm2. Simultaneously, the relaxation time constant is fitted by a biexponential decay function, showing an ultrafast intraband carrier recovery time of 0.58 ps at 530 nm. Consequently, by employing the Mo2C film as a saturable absorber (SA), stable Q-switched Pr:YLF laser pulses with the shortest pulse width of 160 ns are generated at 639 nm. Our experimental results demonstrate excellent nonlinear optical properties of the layered Mo2C in the visible region and will further advance their potential applications in visible nonlinear optics.
Collapse
|
6
|
Dai Y, Yu Q, Yang X, Guo K, Zhang Y, Zhang Y, Zhang J, Li J, Chen J, Deng H, Xian T, Wang X, Wu J, Zhang K. Controllable Synthesis of Narrow-Gap van der Waals Semiconductor Nb 2GeTe 4 with Asymmetric Architecture for Ultrafast Photonics. ACS NANO 2022; 16:4239-4250. [PMID: 35191693 DOI: 10.1021/acsnano.1c10241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultrafast photonics has become an interdisciplinary topic of great consequence due to the spectacular progress of compact and efficient ultrafast pulse generation. Wide spectrum bandwidth is the key element for ultrafast pulse generation due to the Fourier transform limitation. Herein, monoclinic Nb2GeTe4, an emerging class of ternary narrow-gap semiconductors, was used as a real saturable absorber (SA), which manifests superior wide-range optical absorption. The crystallization form and growth mechanism of Nb2GeTe4 were revealed by a thermodynamic phase diagram. Furthermore, the Nb2GeTe4-SA showed reliable saturation intensity and larger modulation depth, ascribed to a built-in electric field driven by the asymmetric crystal architecture confirmed via X-ray diffraction, polarized Raman spectra, and scanning transmission electron microscopy. Based on the Nb2GeTe4-SA, femtosecond mode-locked operation with good overall performance was achieved by a properly designed ring cavity. These results suggest that Nb2GeTe4 shows great promise for ultrafast photonic applications and arouse interests in exploring the intriguing properties of the ternary van der Waals material family.
Collapse
Affiliation(s)
- Yongping Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Qiang Yu
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Xiaoxin Yang
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kun Guo
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Yan Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Yushuang Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Junrong Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Jie Li
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Jie Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
- Shanghai IC R&D Center, Shanghai 201210, China
| | - Haiqin Deng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Tianhao Xian
- State Key Laboratory of Advanced Optical Communication System and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao Wang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Kai Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
7
|
Ahmed S, Qiao J, Cheng PK, Saleque AM, Ivan MNAS, Alam TI, Tsang YH. Two-Dimensional Gallium Sulfide as a Novel Saturable Absorber for Broadband Ultrafast Photonics Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61518-61527. [PMID: 34793123 DOI: 10.1021/acsami.1c18155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) gallium sulfide (GaS) offers a plethora of exceptional electrical and optical properties, allowing it to be used in a wide range of applications, including photodetectors, hydrogen generation, and nonlinear optical devices. In this paper, ultrathin 2D GaS nanosheets are synthesized using the liquid-phase exfoliation method, and the structure, morphology, and chemical composition of the as-prepared nanosheets are extensively investigated. After depositing 2D GaS nanosheets on side polished fibers, successful saturable absorbers (SAs) are fabricated for the first time. The realized modulation depths are 10 and 5.3% at 1 and 1.5 μm, respectively, indicating the wideband saturable absorption performance of the prepared SAs. By integrating GaS-SAs into three different wavelength-based fiber laser cavities, stable mode-locked pulses are achieved, having pulse durations of 46.22 ps (1 μm), 614 fs (1.5 μm), and 1.02 ps (2 μm), respectively. Additionally, different orders of harmonic mode-locked pulses with the highest repetition rate of 0.55 GHz (45th order) and Q-switched pulses with the shortest pulse duration of 2.2 μs are obtained in the telecommunication waveband. These findings suggest that 2D GaS has a lot of potential for broadband ultrafast photonics in nonlinear photonics devices.
Collapse
Affiliation(s)
- Safayet Ahmed
- Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon 99077, Hong Kong
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, Guangdong 518057, People's Republic of China
| | - Junpeng Qiao
- Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon 99077, Hong Kong
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, Guangdong 518057, People's Republic of China
| | - Ping Kwong Cheng
- Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon 99077, Hong Kong
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, Guangdong 518057, People's Republic of China
| | - Ahmed Mortuza Saleque
- Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon 99077, Hong Kong
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, Guangdong 518057, People's Republic of China
| | - Md Nahian Al Subri Ivan
- Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon 99077, Hong Kong
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, Guangdong 518057, People's Republic of China
| | - Tawsif Ibne Alam
- Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon 99077, Hong Kong
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, Guangdong 518057, People's Republic of China
| | - Yuen Hong Tsang
- Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon 99077, Hong Kong
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, Guangdong 518057, People's Republic of China
| |
Collapse
|