1
|
Strain A, Kratzberg N, Vu D, Miller E, Wakabayashi KI, Melvin A, Kato N. COP5/HKR1 changes ciliary beat pattern and biases cell steering during chemotaxis in Chlamydomonas reinhardtii. Sci Rep 2024; 14:30354. [PMID: 39639079 PMCID: PMC11621555 DOI: 10.1038/s41598-024-81455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
This study investigates the control of ciliary beat patterns during ammonium chemotaxis in the model ciliate microalga Chlamydomonas reinhardtii. Screening the chemotaxis response of mutant strains with ciliary defects revealed that a strain lacking CAV2, the alpha subunit of the voltage-gated calcium channel, is deficient in ammonium chemotaxis. CAV2 regulates the switching of the ciliary beat pattern from the asymmetric to the symmetric waveform. Strains lacking COP5/HKR1 (chlamyopsin 5/histidine kinase rhodopsin 1) are also deficient in ammonium chemotaxis. Conversely, strains defective in phototaxis perform ammonium chemotaxis normally. Cell motility analysis revealed wild-type cells reduce the incidences of switching the ciliary beat pattern from the asymmetric to symmetric waveform when swimming up the ammonium gradient. In contrast, the COP5/HKR1 disrupted strain does not bias ciliary beat pattern switching in the gradient. This finding reveals that COP5/HKR1 plays a critical role in Chlamydomonas chemotaxis signaling transduction, similarly to animal chemotaxis. On the other hand, ciliary beat pattern switching induces randomized directional changes, analogous to run-and-tumble chemotaxis of bacteria and archaea. This study reveals that Chlamydomonas signaling transduction is similar to the eukaryotic mechanism, yet the cellular locomotion follows the bacteria and archaea mechanism.
Collapse
Affiliation(s)
- Alexis Strain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Nathan Kratzberg
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Dan Vu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Emmaline Miller
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ken-Ichi Wakabayashi
- Department of Industrial Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Adam Melvin
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
2
|
Sorouri F, Hosseini P, Sharifzadeh M, Kiani S, Khoobi M. In Situ Cross-Linkable Hyaluronic-Ferulic Acid Conjugate Containing Bucladesine Nanoparticles Promotes Neural Regeneration after Spinal Cord Injury. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42251-42270. [PMID: 37647536 DOI: 10.1021/acsami.3c08366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Dysfunctional clinical outcomes following spinal cord injury (SCI) result from glial scar formation, leading to the inhibition of new axon growth and impaired regeneration. Nevertheless, nerve regeneration after SCI is possible, provided that the state of neuron development in the injured environment is improved. Hence, biomaterial-based therapy would be a promising strategy to endow a desirable environment for tissue repair. Herein, we designed a novel multifunctional injectable hydrogel with antioxidant, neuroprotective, and neuroregenerative effects. Bucladesine-encapsulated chitosan nanoparticles (BCS NPs) were first prepared and embedded in a matrix of thiol-functionalized hyaluronic acid modified with ferulic acid (HASH-FA). The target hydrogel (HSP-F/BCS) was then created through Michael-type addition between HASH-FA containing BCS NPs and four-arm polyethylene glycol-maleimide (4-Arm-PEG-Mal). The obtained hydrogel with shear thinning behavior showed viscoelastic and mechanical properties similar to the normal nerve tissue. FA conjugation significantly improved the antioxidant activity of HA, and suppressed intracellular ROS formation. In situ injection of the HSP-F/BCS hydrogel in a rat contusion model of SCI inhibited glial scar progression, reduced microglia/macrophage infiltration, promoted angiogenesis, and induced myelinated axon regeneration. As a result, a significant improvement in motor performance was observed compared to other experimental groups. Taken together, the HSP-F/BCS hydrogel developed in this study could be a promising system for SCI repair.
Collapse
Affiliation(s)
- Farzaneh Sorouri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran 14176-14411, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16656-59911, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Parastoo Hosseini
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16656-59911, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Sahar Kiani
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16656-59911, Iran
| | - Mehdi Khoobi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran 14176-14411, Iran
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| |
Collapse
|
3
|
Nelson G, Strain A, Isu A, Rahnama A, Wakabayashi KI, Melvin AT, Kato N. Cells collectively migrate during ammonium chemotaxis in Chlamydomonas reinhardtii. Sci Rep 2023; 13:10781. [PMID: 37402785 DOI: 10.1038/s41598-023-36818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/10/2023] [Indexed: 07/06/2023] Open
Abstract
The mechanisms governing chemotaxis in Chlamydomonas reinhardtii are largely unknown compared to those regulating phototaxis despite equal importance on the migratory response in the ciliated microalga. To study chemotaxis, we made a simple modification to a conventional Petri dish assay. Using the assay, a novel mechanism governing Chlamydomonas ammonium chemotaxis was revealed. First, we found that light exposure enhances the chemotactic response of wild-type Chlamydomonas strains, yet phototaxis-incompetent mutant strains, eye3-2 and ptx1, exhibit normal chemotaxis. This suggests that Chlamydomonas transduces the light signal pathway in chemotaxis differently from that in phototaxis. Second, we found that Chlamydomonas collectively migrate during chemotaxis but not phototaxis. Collective migration during chemotaxis is not clearly observed when the assay is conducted in the dark. Third, the Chlamydomonas strain CC-124 carrying agg1-, the AGGREGATE1 gene (AGG1) null mutation, exhibited a more robust collective migratory response than strains carrying the wild-type AGG1 gene. The expression of a recombinant AGG1 protein in the CC-124 strain suppressed this collective migration during chemotaxis. Altogether, these findings suggest a unique mechanism; ammonium chemotaxis in Chlamydomonas is mainly driven by collective cell migration. Furthermore, it is proposed that collective migration is enhanced by light and suppressed by the AGG1 protein.
Collapse
Affiliation(s)
- Gabela Nelson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alexis Strain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Atsuko Isu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Alireza Rahnama
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ken-Ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
4
|
Qing LS, Wang TT, Luo HY, Du JL, Wang RY, Luo P. Microfluidic strategies for natural products in drug discovery: Current status and future perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Khan AH, Zhou SP, Moe M, Ortega Quesada BA, Bajgiran KR, Lassiter HR, Dorman JA, Martin EC, Pojman JA, Melvin AT. Generation of 3D Spheroids Using a Thiol-Acrylate Hydrogel Scaffold to Study Endocrine Response in ER + Breast Cancer. ACS Biomater Sci Eng 2022; 8:3977-3985. [PMID: 36001134 PMCID: PMC9472224 DOI: 10.1021/acsbiomaterials.2c00491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Culturing cancer cells in a three-dimensional (3D) environment
better recapitulates in vivo conditions by mimicking
cell-to-cell interactions and mass transfer limitations of metabolites,
oxygen, and drugs. Recent drug studies have suggested that a high
rate of preclinical and clinical failures results from mass transfer
limitations associated with drug entry into solid tumors that 2D model
systems cannot predict. Droplet microfluidic devices offer a promising
alternative to grow 3D spheroids from a small number of cells to reduce
intratumor heterogeneity, which is lacking in other approaches. Spheroids
were generated by encapsulating cells in novel thiol–acrylate
(TA) hydrogel scaffold droplets followed by on-chip isolation of single
droplets in a 990- or 450-member trapping array. The TA hydrogel rapidly
(∼35 min) polymerized on-chip to provide an initial scaffold
to support spheroid development followed by a time-dependent degradation.
Two trapping arrays were fabricated with 150 or 300 μm diameter
traps to investigate the effect of droplet size and cell seeding density
on spheroid formation and growth. Both trapping arrays were capable
of ∼99% droplet trapping efficiency with ∼90% and 55%
cellular encapsulation in trapping arrays containing 300 and 150 μm
traps, respectively. The oil phase was replaced with media ∼1
h after droplet trapping to initiate long-term spheroid culturing.
The growth and viability of MCF-7 3D spheroids were confirmed for
7 days under continuous media flow using a customized gravity-driven
system to eliminate the need for syringe pumps. It was found that
a minimum of 10 or more encapsulated cells are needed to generate
a growing spheroid while fewer than 10 parent cells produced stagnant
3D spheroids. As a proof of concept, a drug susceptibility study was
performed treating the spheroids with fulvestrant followed by interrogating
the spheroids for proliferation in the presence of estrogen. Following
fulvestrant exposure, the spheroids showed significantly less proliferation
in the presence of estrogen, confirming drug efficacy.
Collapse
Affiliation(s)
- Anowar H Khan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sophia P Zhou
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Margaret Moe
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Braulio A Ortega Quesada
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Khashayar R Bajgiran
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Haley R Lassiter
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - James A Dorman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Elizabeth C Martin
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - John A Pojman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
6
|
Hu P, Ly KL, Pham LPH, Pottash AE, Sheridan K, Wu HC, Tsao CY, Quan D, Bentley WE, Rubloff GW, Sintim HO, Luo X. Bacterial chemotaxis in static gradients quantified in a biopolymer membrane-integrated microfluidic platform. LAB ON A CHIP 2022; 22:3203-3216. [PMID: 35856590 PMCID: PMC9756273 DOI: 10.1039/d2lc00481j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemotaxis is a fundamental bacterial response mechanism to changes in chemical gradients of specific molecules known as chemoattractant or chemorepellent. The advancement of biological platforms for bacterial chemotaxis research is of significant interest for a wide range of biological and environmental studies. Many microfluidic devices have been developed for its study, but challenges still remain that can obscure analysis. For example, cell migration can be compromised by flow-induced shear stress, and bacterial motility can be impaired by nonspecific cell adhesion to microchannels. Also, devices can be complicated, expensive, and hard to assemble. We address these issues with a three-channel microfluidic platform integrated with natural biopolymer membranes that are assembled in situ. This provides several unique attributes. First, a static, steady and robust chemoattractant gradient was generated and maintained. Second, because the assembly incorporates assembly pillars, the assembled membrane arrays connecting nearby pillars can be created longer than the viewing window, enabling a wide 2D area for study. Third, the in situ assembled biopolymer membranes minimize pressure and/or chemiosmotic gradients that could induce flow and obscure chemotaxis study. Finally, nonspecific cell adhesion is avoided by priming the polydimethylsiloxane (PDMS) microchannel surfaces with Pluronic F-127. We demonstrated chemotactic migration of Escherichia coli as well as Pseudomonas aeruginosa under well-controlled easy-to-assemble glucose gradients. We characterized motility using the chemotaxis partition coefficient (CPC) and chemotaxis migration coefficient (CMC) and found our results consistent with other reports. Further, random walk trajectories of individual cells in simple bright field images were conveniently tracked and presented in rose plots. Velocities were calculated, again in agreement with previous literature. We believe the biopolymer membrane-integrated platform represents a facile and convenient system for robust quantitative assessment of cellular motility in response to various chemical cues.
Collapse
Affiliation(s)
- Piao Hu
- Department of Mechanical Engineering, Catholic University of America, Washington, District of Columbia 20064, USA.
| | - Khanh L Ly
- Department of Biomedical Engineering, Catholic University of America, Washington, District of Columbia 20064, USA
| | - Le P H Pham
- Department of Mechanical Engineering, Catholic University of America, Washington, District of Columbia 20064, USA.
| | - Alex E Pottash
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Kathleen Sheridan
- Department of Biomedical Engineering, Catholic University of America, Washington, District of Columbia 20064, USA
| | - Hsuan-Chen Wu
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Chen-Yu Tsao
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - David Quan
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Gary W Rubloff
- Department of Materials Science & Engineering, University of Maryland, College Park, MD 20742, USA
| | - Herman O Sintim
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaolong Luo
- Department of Mechanical Engineering, Catholic University of America, Washington, District of Columbia 20064, USA.
| |
Collapse
|
7
|
Yang Y, Hu J, Liu J, Qin Y, Mao J, Liang Y, Wang G, Shen H, Wang C, Chen S. Rapid synthesis of biocompatible bilayer hydrogels via frontal polymerization. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yue Yang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Jie Hu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Ji‐Dong Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Ying Qin
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Jian Mao
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yunzheng Liang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Gefei Wang
- Department of General Surgery, Jinling Hospital Nanjing Medical University Nanjing China
| | - Haixia Shen
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Cai‐Feng Wang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Su Chen
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
8
|
Zhang J, Guo Z, Ma J, Song L, Yang G, Ao Y, Shang L, Li M. Imidazole substituted benzothiadiazole derivatives as latent curing agent for epoxy thermosetting resin. J Appl Polym Sci 2022. [DOI: 10.1002/app.52263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Zhang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Changchun University of Technology Changchun China
| | - Zongwei Guo
- Jilin Province Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Changchun University of Technology Changchun China
| | - Jinpeng Ma
- Jilin Province Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Changchun University of Technology Changchun China
| | - Lingxiao Song
- Jilin Province Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Changchun University of Technology Changchun China
| | - Guorui Yang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Changchun University of Technology Changchun China
| | - Yuhui Ao
- Jilin Province Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Changchun University of Technology Changchun China
| | - Lei Shang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Changchun University of Technology Changchun China
| | - Ming Li
- Jilin Province Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Changchun University of Technology Changchun China
| |
Collapse
|
9
|
Dúzs B, Szalai I. Reaction-diffusion phenomena in antagonistic bipolar diffusion fields. Phys Chem Chem Phys 2022; 24:1814-1820. [PMID: 34986213 DOI: 10.1039/d1cp04662d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Operating natural or artificial chemical systems requires nonequilibrium conditions under which temporal and spatial control of the process is realizable. Open reaction-diffusion systems provide a general way to create such conditions. A key issue is the proper design of reactors in which the nonequilibrium conditions can be maintained. A hydrogel with flow-through channels is a simple, flexible, and easy-to-make device in which chemical reactions are performed in the diffusion field of localized separated sources of reactants. Two reactants separated in two channels create a bipolar antagonistic diffusion field, where the reaction intermediates firmly separate in space. Numerical simulations and corresponding experiments are performed to present this inhomogeneous diffusion field-induced chemical separation in sequential reactions. A remarkable result of this bipolar spatial control is localized wave phenomena in a nonlinear activatory-inhibitory reaction. These findings may help design functioning artificial nonequilibrium systems with the desired spatial separation of chemicals.
Collapse
Affiliation(s)
- Brigitta Dúzs
- Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, Hungary.
| | - István Szalai
- Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, Hungary.
| |
Collapse
|
10
|
Sun W, Liu J, Hao Q, Lu K, Wu Z, Chen H. A novel Y-shaped photoiniferter used for the construction of polydimethylsiloxane surfaces with antibacterial and antifouling properties. J Mater Chem B 2021; 10:262-270. [PMID: 34889346 DOI: 10.1039/d1tb01968f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The simultaneous introduction of two new functionalities into the same polymeric substrate under mild reaction conditions is an interesting and important topic. Herein, dual-functional polydimethylsiloxane (PDMS) surfaces with antibacterial and antifouling properties were conveniently developed via a novel Y-shaped asymmetric dual-functional photoiniferter (Y-iniferter). The Y-iniferter was initially immobilized onto the PDMS surface by radical coupling under visible light irradiation. Afterwards, poly(2-hydroxyethyl methacrylate) (PHEMA) brushes and antibacterial ionic liquid (IL) fragments were simultaneously immobilized on the Y-iniferter-modified PDMS surfaces by combining the sulfur(VI)-fluoride exchange (SuFEx) click reaction and UV-photoinitiated polymerization. Experiments using E. coli as a model bacterium demonstrated that the modified PDMS surfaces had both the expected antibacterial properties of the IL fragments and the excellent antifouling properties of PHEMA brushes. Furthermore, the cytotoxicity of the modified PDMS surfaces to L929 cells was examined in vitro with a CCK-8 assay, which showed that the modified surfaces maintained excellent cytocompatibility. Briefly, this strategy of constructing an antibacterial and antifouling PDMS surface has the advantages of simplicity and convenience and might inspire the construction of diverse dual-functional surfaces by utilizing PDMS more effectively.
Collapse
Affiliation(s)
- Wei Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Jingrui Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Qing Hao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Kunyan Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Zhaoqiang Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|