1
|
Wu C, Ma B, McClements DJ, Lai Z, Hou J, Wang S, Wang X, Qiu Y, Wu F, Fang G, Liu X, Wang P. Fractionation of phenolic compounds from hickory by-products using solid phase extraction-sonication: Chemical composition, antioxidant and antimicrobial activity. Food Chem 2024; 460:140633. [PMID: 39068807 DOI: 10.1016/j.foodchem.2024.140633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Hickory is an abundant source of phenolic compounds that exhibit a diverse range of bioactivities. In this study, phenolic compounds were extracted and purified from hickory green husk (HG), hickory nutshell (HN), and hickory seed coat (HS) using solid-phase extraction and ultrasonication (SPE-US). The effects of the SPE-US treatment on the structure and properties of the phenolic compounds were then investigated, including their composition, antioxidant activity, and antimicrobial activity. The dominant phenolic substances in the different extracts after SPE-US treatment were: ellagic acid and trans ferulic acid (HS); ellagic acid and sinapic acid (HN); and rutin (HG). The HS-SPE-US1 extract exhibited the highest total polyphenol content (416 ± 11 mg GAE/g DW), total flavonoid content (47.51 ± 0.68 mg RE/g DW), Fe3+ reduction ability (74.2 ± 1.0 mmol Fe2+/g DW), radical (DPPH and ABTS) scavenging ability, and antimicrobial activity against Staphylococcus aureus.
Collapse
Affiliation(s)
- Changling Wu
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center; Hangzhou 311300, China.
| | - Bohui Ma
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center; Hangzhou 311300, China
| | | | - Zhiquan Lai
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Jie Hou
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center; Hangzhou 311300, China
| | - Shuaizheng Wang
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center; Hangzhou 311300, China
| | - Xinru Wang
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Yuxin Qiu
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Fenghua Wu
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center; Hangzhou 311300, China
| | - Guanyu Fang
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center; Hangzhou 311300, China
| | - Xingquan Liu
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center; Hangzhou 311300, China.
| | - Peng Wang
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center; Hangzhou 311300, China.
| |
Collapse
|
2
|
Zhou S, Li J, Lin D, Feng X, Zhang R, Wang D, Zhao A, Tian H, Yang X. Development of konjac glucomannan-based active-intelligent emulsion films loaded with different curcumin-metal chelates: Stability, antioxidant, fresh-keeping and freshness detection properties. Int J Biol Macromol 2024:137231. [PMID: 39491698 DOI: 10.1016/j.ijbiomac.2024.137231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The aim of this study was to develop konjac glucomannan (KGM)-based active-intelligent emulsion films loaded with different curcumin-metal chelates, where six types of films were prepared and their corresponding properties were investigated. The FTIR and XRD results showed that curcumin chelated with metal ions successfully. Moreover, curcumin-Ca chelate had the best thermal stability and antioxidant activity with the DPPH and ABTS radical-scavenging activity values of 38.28 % and 22.79 %, respectively. Furthermore, the results of microstructure and contact angle showed that chelation with metal ions improved the interfacial interactions between curcumin-metal chelates and film matrix. Interestingly, KGM-based active-intelligent emulsion films loaded with curcumin-Ca chelate (Type IV film) displayed the best thermal stability with the highest temperature of maximum weight loss at 380 °C, the best mechanical property, the highest total phenol content (17.31 mg gallic acid/g film), as well as the best antioxidant activity with DPPH and ABTS radical-scavenging activity values of 69.24 % and 58.66 %, respectively, and the best antibacterial activity. Consequently, Type IV film was used for the fresh-keeping and freshness detection of pork. The results showed that the pork packaged with Type IV film displayed excellent fresh-keeping properties, including reducing the increase rate of volatile basic nitrogen (TVB-N) and pH values and the decrease rate of hardness and elasticity of pork during storage time. Meanwhile, the color of Type IV film gradually changed from yellow to red. Therefore, this study suggested that KGM-based active-intelligent emulsion films have great potential application in the fresh-keeping and freshness detection of fresh meat.
Collapse
Affiliation(s)
- Siyu Zhou
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Juncong Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Xinyi Feng
- Xi'an Supervision & Inspection Institute of Product Quality, Xi'an 710065, China
| | - Runguang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Di Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Aiqing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Honglei Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
3
|
Wang J, Gao W, Jin Y, Tian W, Zhang Y, Hu C, Wang B, Dong S, Yuan L. Water-dispersible macromolecular antioxidants for toughening and strengthening cellulose membranes. Carbohydr Polym 2024; 339:122246. [PMID: 38823914 DOI: 10.1016/j.carbpol.2024.122246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Biodegradable packaging materials from cellulose are eco-friendly alternatives to traditional petroleum-based plastics. Balancing its mechanical properties as well as protective values (antioxidation, oxygen barrier, etc.) is critical. However, most studies to improve its antioxidation performance were accompanied by sacrificed mechanical properties. In the current work, a series of linear -COOH functionalized phenolic polymers were prepared from phenolic compounds (vanillin, 3,4-dihydroxy benzaldehyde) through a facile tri-component thiol-aldehyde polycondensation. While circumventing the cumbersome protection-deprotection of phenol groups, the one-pot strategy also affords water dispersible polymers for fabricating composites with cellulose nanofibers in an aqueous medium. After introducing 5-10 wt% of the copolymers, a minor soft phase was formed inside the composites, contributing to enhanced mechanical strength, toughness, antioxidation capability, and ultra-violet blocking performance, while its oxygen barrier property was well maintained.
Collapse
Affiliation(s)
- Jie Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Wei Gao
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yu Jin
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Wangmao Tian
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yutao Zhang
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Chengcheng Hu
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Baoxia Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Shuqi Dong
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China.
| | - Liang Yuan
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| |
Collapse
|
4
|
Verma M, Saboo N. Use of antioxidants to retard aging of bitumen: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34431-2. [PMID: 39060889 DOI: 10.1007/s11356-024-34431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Oxidative aging of bitumen is an inevitable and irreversible phenomenon. Exposure to detrimental factors such as sunlight, oxygen, and UV radiations accelerates the aging of bitumen and bituminous pavement. The aging process induces hardening and embrittlement in bitumen, leading to premature pavement failure. Therefore, for constructing sustainable long-lasting pavements anti-aging additives are used. Among the available additives, the use of antioxidants has emerged as a promising solution to mitigate the aging of bitumen. The current review aims to summarise the existing literature for a comprehensive understanding of the effectiveness of these additives as aging inhibitors. It provides an overview of the chemical pathway involved during bitumen oxidation and various quantification techniques to measure the effect of aging. This review also highlights the potential use of antioxidants in bitumen and elaborates on the working mechanism of different types of antioxidants to prevent bitumen aging. Further, the effect of modification in bitumen at micro, macro, and mixture levels are discussed. Additionally, cost analysis and future prospects on the use of antioxidants for bitumen are presented.
Collapse
Affiliation(s)
- Muskan Verma
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, India
| | - Nikhil Saboo
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, India.
| |
Collapse
|
5
|
Zhao LL, Luo JJ, Cui J, Li X, Hu RN, Xie XY, Zhang YJ, Ding W, Ning LJ, Luo JC, Qin TW. Tannic Acid-Modified Decellularized Tendon Scaffold with Antioxidant and Anti-Inflammatory Activities for Tendon Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15879-15892. [PMID: 38529805 DOI: 10.1021/acsami.3c19019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Tendon regeneration is greatly influenced by the oxidant and the inflammatory microenvironment. Persistent inflammation during the tendon repair can cause matrix degradation, tendon adhesion, and excessive accumulation of reactive oxygen species (ROS), while excessive ROS affect extracellular matrix remodeling and tendon integration. Herein, we used tannic acid (TA) to modify a decellularized tendon slice (DTS) to fabricate a functional scaffold (DTS-TA) with antioxidant and anti-inflammatory properties for tendon repair. The characterizations and cytocompatibility of the scaffolds were examined in vitro. The antioxidant and anti-inflammatory activities of the scaffold were evaluated in vitro and further studied in vivo using a subcutaneous implantation model. It was found that the modified DTS combined with TA via hydrogen bonds and covalent bonds, and the hydrophilicity, thermal stability, biodegradability, and mechanical characteristics of the scaffold were significantly improved. Afterward, the results demonstrated that DTS-TA could effectively reduce inflammation by increasing the M2/M1 macrophage ratio and interleukin-4 (IL-4) expression, decreasing the secretion of interleukin-6 (IL-6) and interleukin-1β (IL-1β), as well as scavenging excessive ROS in vitro and in vivo. In summary, DTS modified with TA provides a potential versatile scaffold for tendon regeneration.
Collapse
Affiliation(s)
- Lei-Lei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia-Jiao Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Cui
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuan Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruo-Nan Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin-Yue Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan-Jing Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Ding
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang-Ju Ning
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing-Cong Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting-Wu Qin
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Mondal A, Pal A, Sarkar S, Datta R, De P. Antioxidant Polymers with Phenolic Pendants for the Mitigation of Cellular Oxidative Stress. Biomacromolecules 2024; 25:1649-1659. [PMID: 38331427 DOI: 10.1021/acs.biomac.3c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Overproduction of reactive oxygen species (ROS) in cells is a major health concern as it may lead to various diseases through oxidative damage of biomolecules. Commonly used traditional small molecular antioxidants (polyphenols, carotenoids, vitamins, etc.) have inadequate efficacy in lowering excessive levels of ROS due to their poor aqueous solubility and bioavailability. In response to the widespread occurrence of antioxidant polyphenols in various biorenewable resources, we aimed to develop water-soluble antioxidant polymers with side chain phenolic pendants. Four different types of copolymers (P1-P4) containing phenyl rings with different numbers of hydroxy (-OH) substituents (0: phenylalanine, 1: tyrosyl, 2: catechol, or 3: gallol) were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization with a desired molar mass (8500-10000 g/mol) and a narrow dispersity (Đ ≤ 1.3). After successful characterizations of P1-P4, their in vitro antioxidant properties were analyzed by different methods, including 2,2-diphenyl-1-picrylhydrazyl (DPPH•), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+), 4,4'-diamino-3,3',5,5'-tetramethylbiphenyl (TMB), and β-carotene (βC) assays. Our results revealed that the gallol pendant polymers can effectively scavenge ROS. Furthermore, electron paramagnetic resonance (EPR) spectroscopy with DPPH• also confirmed the radical quenching ability of the synthesized polymers. The gallol pendant polymers, at a well-tolerated concentration, could effectively penetrate the macrophage cells and restore the H2O2-induced ROS to the basal level. Overall, the present approach demonstrates the efficacy of water-soluble antioxidant polymers with gallol pendants toward the mitigation of cellular oxidative stress.
Collapse
Affiliation(s)
| | | | - Subhasish Sarkar
- Department of General Surgery, College of Medicine and Sagore Dutta Hospital, Kamarhati, Kolkata - 700058, West Bengal, India
| | | | | |
Collapse
|
7
|
Tkachenko A, Özdemir S, Tollu G, Dizge N, Ocakoglu K, Prokopiuk V, Onishchenko A, Сhumachenko V, Virych P, Pavlenko V, Kutsevol N. Antibacterial and antioxidant activity of gold and silver nanoparticles in dextran-polyacrylamide copolymers. Biometals 2024; 37:115-130. [PMID: 37651060 DOI: 10.1007/s10534-023-00532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Search for new antimicrobial agents is of great significance due to the issue of antimicrobial resistance, which nowadays has become more important than many diseases. The aim of this study was to evaluate the toxicity and biological effects of a dextran-graft-polyacrylamide (D-PAA) polymer-nanocarrier with/without silver or gold nanoparticles (AgNPs/D-PAA and AuNPs/D-PAA, respectively) to analyze their potential to replace or supplement conventional antibiotic therapy. The toxicity of nanocomplexes against eukaryotic cells was assessed on primary dermal fibroblasts using scratch, micronucleus and proliferation assays. DPPH (2,2-diphenyl-1-picrylhydrazylradical) assay was used to evaluate the antioxidant capacity of D-PAA, AgNPs/D-PAA and AuNPs/D-PAA. DNA cleavage, antimicrobial and biofilm inhibition effects of nanocomplexes were investigated. Nanocomplexes were found to be of moderate toxicity against fibroblasts with no genotoxicity observed. AgNPs/D-PAA reduced motility and proliferation at lower concentrations compared with the other studied nanomaterials. AgNPs/D-PAA and AuNPs/D-PAA showed radical scavenging capacities in a dose-dependent manner. The antimicrobial activity of AgNPs/D-PAA against various bacteria was found to be much higher compared to D-PAA and AuNPs/D-PAA, especially against E. hirae, E. faecalis and S. aureus, respectively. D-PAA, AgNPs/D-PAA and AuNPs/D-PAA showed DNA-cleaving and biofilm inhibitory activity, while AgNPs/D-PAA displayed the highest anti-biofilm activity. AgNPs/D-PAA and AuNPs/D-PAA were characterized by good antimicrobial activity. According to the findings of the study, AgNPs/D-PAA and AuNPs/D-PAA can be evaluated as alternatives for the preparation of new antimicrobial agents, the fight against biofilms, sterilization and disinfection processes. Our findings confirm the versatility of nanosystems based on dextran-polyacrylamide polymers and indicate that AgNPs/D-PAA and AuNPs/D-PAA can be evaluated as alternatives for the preparation of novel antimicrobial agents.
Collapse
Affiliation(s)
- Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, 61022, Ukraine.
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, 33343, Yenişehir, Mersin, Turkey
| | - Gülşah Tollu
- Laboratory and Veterinary Health, Technical Science Vocational School, Mersin University, 33343, Yenişehir, Mersin, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, 33343, Yenişehir, Mersin, Turkey.
| | - Kasim Ocakoglu
- Department of Eng. Fundamental Sciences, Faculty of Engineering, Tarsus University, 33400, Tarsus, Turkey
| | - Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, 61015, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
| | - Vasyl Сhumachenko
- Faculty of Chemistry, Taras Shevchenko University of Kyiv, Kyiv, 01601, Ukraine
| | - Pavlo Virych
- Faculty of Chemistry, Taras Shevchenko University of Kyiv, Kyiv, 01601, Ukraine
| | - Vadym Pavlenko
- Faculty of Chemistry, Taras Shevchenko University of Kyiv, Kyiv, 01601, Ukraine
| | - Nataliya Kutsevol
- Faculty of Chemistry, Taras Shevchenko University of Kyiv, Kyiv, 01601, Ukraine
| |
Collapse
|
8
|
Liu S, Zhao Y, Xu M, Wen J, Wang H, Yan H, Gao X, Niu B, Li W. Antibacterial photodynamic properties of silver nanoparticles-loaded curcumin composite material in chitosan-based films. Int J Biol Macromol 2024; 256:128014. [PMID: 37951439 DOI: 10.1016/j.ijbiomac.2023.128014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
In order to cope with the increasingly severe food contamination and safety problems, a powerful sterilization of food packaging material is urgently needed. Chitosan (CS) has potential applications in food packaging due to its good film-forming properties, but its antibacterial activity is not sufficient to meet the needs in practical applications. Silver nanoparticles (AgNPs) have the problem of weak immediate antibacterial activity as a broad-spectrum antibacterial agent. Therefore, in this study, AgNPs@GA@Cur-POTS (AGCP) composite antibacterial system was prepared by combining AgNPs with antibacterial photodynamic therapy using gallic acid (GA) as a reducing agent, curcumin (Cur) as a photosensitizer and perfluorosilane (POTS) for surface modification. The results showed that AGCP could produce a large number of reactive oxygen species under blue light irradiation, killing >90 % of E. coli and S. aureus within 2 h. Subsequently, the composite film of CS loaded with AGCP (CS/AGCP) was prepared by the flow-delay method. The CS/AGCP composite film exhibited excellent barrier properties and antioxidant activity, while its antibacterial rates against E. coli and S. aureus reached 98.44 ± 1.27 % and 99.11 ± 0.24 %, respectively, while the OD630 values of the two groups of bacteria treated with it showed no significant increase in incubation for up to 132 h, exhibiting remarkable and sustained antibacterial effects. Taken together, this work will provide a new strategy for antibacterial food packaging.
Collapse
Affiliation(s)
- Siqun Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Yanzhen Zhao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Meirong Xu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Jiaxin Wen
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Huifang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Hong Yan
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Xianghua Gao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Baolong Niu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China.
| | - Wenfeng Li
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China.
| |
Collapse
|
9
|
Minnelli C, Stipa P, Mobbili G, Sabbatini S, Romaldi B, Armeni T, Laudadio E. Integration of Lipid-Functionalized Epigallocatechin-3-gallate into PLGA Matrix as a Novel Polyphenol-Based Nanoantioxidant. ACS OMEGA 2023; 8:48292-48303. [PMID: 38144094 PMCID: PMC10733980 DOI: 10.1021/acsomega.3c07637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023]
Abstract
The search for polyphenol-based materials with antioxidant activity is a growing research area in the biomedical field. To obtain an efficient and stable nanoantioxidant, a novel biosystem was designed by integrating a lipophilic derivative of epigallocatechin-3-gallate (named EGCG-C18) on the surface of poly(lactic-co-glycolic acid) (PLGA). Poly(vinyl alcohol) (PVA) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG2000) were selected as polymeric and lipidic stabilizers, respectively, and their influence on both physical properties and the antioxidant activity of nanoantioxidant was investigated by a combined in silico and experimental approach. Full-atom molecular dynamics (MD) simulations were carried out to describe the different self-assembly processes of all components and the interactions that guided the EGCG-C18 insertion inside the PLGA matrix. Together with infrared spectroscopy results, the formation of an antioxidant lipid shell on the PLGA surface was clear. Dynamic light scattering and transmission electron microscopy showed that in the presence of DSPE-PEG2000, NPs were smaller than those treated with PVA. In addition, the different stabilizers used strongly influenced the ROS-scavenging ability of nanomaterials and this effect was strictly related to the molecular organization of EGCG-C18. MD showed that the apolar interaction between the alkyl chains of DSPE-PEG2000 and EGCG-C18 oriented the phenolic groups of the polyphenol toward the solvent, providing an ability of NP to scavenge hydroxyl radicals over to free EGCG-C18 and PLGA/PVA NPs. Finally, the ability of nanoantioxidants to protect human dermal fibroblasts from cell death induced by oxidative stress has been tested, revealing the high potential of these novel NPs as polyphenol-based materials.
Collapse
Affiliation(s)
- Cristina Minnelli
- Department
of Life and Environmental Science, Polytechnic
University of Marche, 60121 Ancona, Italy
| | - Pierluigi Stipa
- Department
of Science and Engineering of Matter, Environment and Urban Planning, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Giovanna Mobbili
- Department
of Life and Environmental Science, Polytechnic
University of Marche, 60121 Ancona, Italy
| | - Simona Sabbatini
- Department
of Science and Engineering of Matter, Environment and Urban Planning, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Brenda Romaldi
- Department
of Clinical Sciences, Polytechnic University
of Marche, 60121 Ancona, Italy
| | - Tatiana Armeni
- Department
of Clinical Sciences, Polytechnic University
of Marche, 60121 Ancona, Italy
| | - Emiliano Laudadio
- Department
of Science and Engineering of Matter, Environment and Urban Planning, Polytechnic University of Marche, 60121 Ancona, Italy
| |
Collapse
|
10
|
Li K, Zhong W, Li P, Ren J, Jiang K, Wu W. Recent advances in lignin antioxidant: Antioxidant mechanism, evaluation methods, influence factors and various applications. Int J Biol Macromol 2023; 251:125992. [PMID: 37544567 DOI: 10.1016/j.ijbiomac.2023.125992] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
Lignin, a by-product of processing lignocellulosic materials, has a polyphenolic structure and can be used as an antioxidant directly or synergistically with synthetic types of antioxidants, leading to different applications. Its antioxidant mechanism is mainly related to the production of ROS, but the details need to be further investigated. The antioxidant property of lignin is mainly related to the content of phenolic hydroxyl group, but methoxy, purity will also have an effect on it. In addition, different methods to detect the antioxidant properties of lignin have different advantages and disadvantages. In this paper, the antioxidant mechanism of lignin, the methods to determine the antioxidant activity and the progress of its application in various fields are reviewed. In addition, the current research on the antioxidant properties of lignin and the hot directions are provided, and an outlook on the research into the antioxidant properties of lignin is provided to broaden its potential application areas.
Collapse
Affiliation(s)
- Kongyan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianpeng Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kangjie Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
11
|
Zhu J, Dong G, Feng F, Ye J, Liao CH, Wu CH, Chen SC. Microplastics in the soil environment: Focusing on the sources, its transformation and change in morphology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165291. [PMID: 37406689 DOI: 10.1016/j.scitotenv.2023.165291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Microplastics (MPs) are small plastic pieces less than 5 mm in size. Previous studies have focused on the sources, transports, and fates of MPs in marine or sediment environments. However, limited attention has been given to the role of land as the primary source of MPs, and how plastic polymers are transformed into MPs through biological or abiotic effects during the transport process remains unclear. Here, we focus on the exploration of the main sources of MPs in the soil, highlighting that MP generation is not solely a byproduct of plastic production but can also result from the impact of biological and abiotic factors during the process of MPs transport. This review presents a new perspective on understanding the degradation of MPs in soil, considering soil as a distinct fluid and suggesting that the main transformation and change mediated by abiotic factors occur on the soil surface, while the main biodegradation occurs in the soil interior. This viewpoint is suggested because the role of some abiotic factors becomes less obvious in the soil interior, and MPs, whose surface is expected to colonize microorganisms, are gradually considered a carbon source independent of photosynthesis and net primary production. This review emphasizes the need to understand basic MPs information in soil for a rational evaluation of its environmental toxicity. Such understanding enables better control of MPs pollution in affected areas and prevents contamination in unaffected regions. Finally, knowledge gaps and future research directions necessary for advancements in this field are provided.
Collapse
Affiliation(s)
- Junyu Zhu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China
| | - Guowen Dong
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China
| | - Fu Feng
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China
| | - Jing Ye
- College of Environment and chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, People's Republic of China
| | - Ching-Hua Liao
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China
| | - Chih-Hung Wu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China
| | - Sheng-Chung Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China.
| |
Collapse
|
12
|
Szerlauth A, Varga S, Szilagyi I. Molecular Antioxidants Maintain Synergistic Radical Scavenging Activity upon Co-Immobilization on Clay Nanoplatelets. ACS Biomater Sci Eng 2023; 9:5622-5631. [PMID: 37738637 PMCID: PMC10565722 DOI: 10.1021/acsbiomaterials.3c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Unbalanced levels of reactive oxygen species (ROS) result in oxidative stress, affecting both biomedical and industrial processes. Antioxidants can prevent ROS overproduction and thus delay or inhibit their harmful effects. Herein, activities of two molecular antioxidants (gallic acid (GA), a well-known phenolic compound, and nicotinamide adenine dinucleotide (NADH), a vital biological cofactor) were tested individually and in combination to assess possible synergistic, additive, or antagonistic effects in free radical scavenging and in redox capacity assays. GA was a remarkable radical scavenger, and NADH exhibited moderate antioxidant activity, while their combination at different molar ratios led to a synergistic effect since the resulting activity was superior to the sum of the individual GA and NADH activities. Their coimmobilization was performed on the surface of delaminated layered double hydroxide clay nanoplatelets by electrostatic interactions, and the synergistic effect was maintained upon such a heterogenization of these molecular antioxidants. The coimmobilization of GA and NADH expands the range of their potential applications, in which separation of antioxidant additives is important during treatments or manufacturing processes.
Collapse
Affiliation(s)
- Adel Szerlauth
- MTA-SZTE Lendület
Biocolloids Research Group, Department of Physical Chemistry and Materials
Science, Interdisciplinary Excellence Centre, University of Szeged, Szeged H-6720, Hungary
| | - Szilárd Varga
- MTA-SZTE Lendület
Biocolloids Research Group, Department of Physical Chemistry and Materials
Science, Interdisciplinary Excellence Centre, University of Szeged, Szeged H-6720, Hungary
| | - Istvan Szilagyi
- MTA-SZTE Lendület
Biocolloids Research Group, Department of Physical Chemistry and Materials
Science, Interdisciplinary Excellence Centre, University of Szeged, Szeged H-6720, Hungary
| |
Collapse
|
13
|
Xu QD, Jing Z, He Q, Zeng WC. A novel film based on gluten, pectin, and polyphenols and its potential application in high-fat food. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6119-6127. [PMID: 37139632 DOI: 10.1002/jsfa.12682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/25/2023] [Accepted: 05/04/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND A novel film based on some natural ingredients (wheat gluten, pectin, and polyphenols) was used to improve the quality and storage stability of high-fat food due to their good sustainable, mechanical, and edible properties. RESULTS With the addition of polyphenols from Cedrus deodara (in the form of pine-needle extract (PNE)), the physicochemical properties (thickness, moisture content, and color), mechanical properties (tensile strength and elongation), barrier properties (water vapor, oil, and oxygen permeability, transmittance), and thermal stability of the composite film were improved. According to the analysis of infrared spectroscopy and molecular docking, the main compounds of PNE interacted with wheat gluten by hydrogen bonds and hydrophobic forces to form a compact and stable structure. In addition, the composite film showed a remarkable antioxidant capability to scavenge free radicals, and the film matrix could effectively protect the antioxidant activity of PNE. Furthermore, using cured meat as a model, the composite film exhibited a fine packaging performance in high-fat food during storage, which could obviously inhibit the excessive oxidation of fat and protein of cured meat and was beneficial in forming its special flavor. CONCLUSION Our results suggest that the composite film possessed good properties and had potential for packing of high-fat foods, which could improve the quality and safety of food during processing and storage. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qian-Da Xu
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, PR China
| | - Zan Jing
- Leshan Food and Drug Inspection Center, Leshan, PR China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, PR China
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, PR China
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, PR China
| |
Collapse
|
14
|
Rennert M, Hiller BT. Influence of Coffee Variety and Processing on the Properties of Parchments as Functional Bioadditives for Biobased Poly( butylene succinate) Composites. Polymers (Basel) 2023; 15:2985. [PMID: 37514375 PMCID: PMC10386071 DOI: 10.3390/polym15142985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Fermented polymers like biobased poly(butylene succinate) (BioPBS) have become more relevant as technical substitutes for ductile petrochemical-based polymers but require biogenic functional additives to deaccelerate undesired thermo-oxidative degradation and keep a fully biobased character. In this paper, the influence of coffee parchment (PMT) from two different varieties and processings on the thermo-oxidative stabilization and mechanical properties of poly(butylene succinate) composites up to 20 wt.-% PMT were investigated. Micronized with a TurboRotor mill, both PMT powders differ in particle size and shape, moisture ab- and adsorption behavior and antioxidative properties. It could be shown that pulped-natural PMT consists partially of coffee cherry residues, which leads to a higher total polyphenol content and water activity. The homogeneous PMT from fully washed processing has a higher thermal degradation resistance but consists of fibers with larger diameters. Compounded with the BioPBS and subsequent injection molded, the fully washed PMT leads to higher stiffness and equal tensile strength but lower toughness compared to the pulped-natural PMT, especially at lower deformation speed. Surprisingly, the fully washed PMT showed a higher stability against thermo-oxidative decomposition despite the lower values in the total phenol content and antioxidative activity. The required antioxidative stabilizers might be extracted at higher temperatures from the PMT fibers, making it a suitable biogenic stabilizer for extrusion processes.
Collapse
Affiliation(s)
- Mirko Rennert
- Institute for Circular Economy of Bio:Polymers at Hof University (ibp), Hof University of Applied Sciences, 95028 Hof, Germany
| | - Benedikt T Hiller
- Institute for Circular Economy of Bio:Polymers at Hof University (ibp), Hof University of Applied Sciences, 95028 Hof, Germany
| |
Collapse
|
15
|
Geng C, Liu X, Ma J, Ban H, Bian H, Huang G. High strength, controlled release of curcumin-loaded ZIF-8/chitosan/zein film with excellence gas barrier and antibacterial activity for litchi preservation. Carbohydr Polym 2023; 306:120612. [PMID: 36746592 DOI: 10.1016/j.carbpol.2023.120612] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Polysaccharide films containing protein additives have good application prospects in agriculture and food field. However, interfacial incompatibility between hydrophobic proteins and hydrophilic polymers remains a major technical challenge. In this work, the interfacial compatibility between hydrophobic zein and hydrophilic chitosan (CS) is improved by the chemical crosslinking between zinc ions of curcumin-loaded zeolitic imidazolate framework-8 (Cur-ZIF-8) with CS and zein. With the improvement of interface compatibility, the results show that the elongation at break and O2 barrier property of synthesized Cur-ZIF-8/CS/Zein are 9.2 and 1.5 times higher than CS/Zein, respectively. And the Cur-ZIF-8/CS/Zein exhibits superior antibacterial and antioxidant properties as well. Importantly, Cur-ZIF-8/CS/Zein can also be used as an intelligent-responsive release platform for curcumin. As a result, Cur-ZIF-8/CS/Zein can keep the freshness and appearance of litchi at least 8 days longer than that of CS/Zein. Therefore, this study provides a novel method to improve the interfacial compatibility between hydrophobic proteins and hydrophilic polymers, and is expected to expand the application of protein/polymer composites in agriculture and food field.
Collapse
Affiliation(s)
- Chao Geng
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xueying Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jinlian Ma
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Haina Ban
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Hedong Bian
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Guohuan Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
16
|
Eelager MP, Masti SP, Chougale RB, Hiremani VD, Narasgoudar SS, Dalbanjan NP, S K PK. Evaluation of mechanical, antimicrobial, and antioxidant properties of vanillic acid induced chitosan/poly (vinyl alcohol) active films to prolong the shelf life of green chilli. Int J Biol Macromol 2023; 232:123499. [PMID: 36736522 DOI: 10.1016/j.ijbiomac.2023.123499] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Vanillic acid incorporated chitosan/poly(vinyl alcohol) active films were prepared by employing a cost-effective solvent casting technique. FTIR investigation validated the intermolecular interaction and formation of Schiff's base (C=N) between functional groups of vanillic acid, chitosan, and poly(vinyl alcohol). The addition of vanillic acid resulted in homogenous and dense morphology, as confirmed by SEM micrographs. The tensile strength of active films increased from 32 to 59 MPa as the amount of vanillic acid increased and the obtained values are more significant than reported polyethylene (2231 MPa) and polypropylene (31-38 MPa) films, widely utilized in food packaging. Active film's UV, water, and oxygen barrier properties exhibited excellent results with the incorporation of vanillic acid. Around 40 % of degradation commences within 15 days. Synergistic impact against S. aureus, E. coli, and C. albicans pathogens caused the expansion of the inhibition zone, evidenced by the excellent antimicrobial activity. The highest antioxidant capacity, 73.65 % of CPV-4 active film, proved that active films could prevent the spoilage of food from oxidation. Green chillies packaging was carried out to examine the potential of prepared active films as packaging material results in successfully sustaining carotenoid accumulation and prolonging the shelf life compared to conventional polyethylene (PE) packaging.
Collapse
Affiliation(s)
- Manjunath P Eelager
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India
| | - Saraswati P Masti
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India.
| | - Ravindra B Chougale
- PG Department of Studies in Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India
| | - Vishram D Hiremani
- Department of Chemistry, Tungal School of Basic and Applied Sciences, Jamkhandi 587301, Karnataka, India
| | | | | | - Praveen Kumar S K
- PG Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, Karnataka, India
| |
Collapse
|
17
|
Lu W, Liu W, Hu A, Shen J, Yi H, Cheng Z. Combinatorial Polydopamine-Liposome Nanoformulation as an Effective Anti-Breast Cancer Therapy. Int J Nanomedicine 2023; 18:861-879. [PMID: 36844433 PMCID: PMC9944797 DOI: 10.2147/ijn.s382109] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Drug delivery systems (DDSs) based on liposomes are potential tools to minimize the side effects and substantially enhance the therapeutic efficacy of chemotherapy. However, it is challenging to achieve biosafe, accurate, and efficient cancer therapy of liposomes with single function or single mechanism. To solve this problem, we designed a multifunctional and multimechanism nanoplatform based on polydopamine (PDA)-coated liposomes for accurate and efficient combinatorial cancer therapy of chemotherapy and laser-induced PDT/PTT. Methods ICG and DOX were co-incorporated in polyethylene glycol modified liposomes, which were further coated with PDA by a facile two-step method to construct PDA-liposome nanoparticles (PDA@Lipo/DOX/ICG). The safety of nanocarriers was investigated on normal HEK-293 cells, and the cellular uptake, intracellular ROS production capacity, and combinatorial treatment effect of the nanoparticles were assessed on human breast cancer cells MDA-MB-231. In vivo biodistribution, thermal imaging, biosafety assessment, and combination therapy effects were estimated based on MDA-MB-231 subcutaneous tumor model. Results Compared with DOX·HCl and Lipo/DOX/ICG, PDA@Lipo/DOX/ICG showed higher toxicity on MDA-MB-231 cells. After endocytosis by target cells, PDA@Lipo/DOX/ICG produced a large amount of ROS for PDT by 808 nm laser irradiation, and the cell inhibition rate of combination therapy reached up to 80.4%. After the tail vein injection (DOX equivalent of 2.5 mg/kg) in mice bearing MDA-MB-231 tumors, PDA@Lipo/DOX/ICG significantly accumulated at the tumor site at 24 h post injection. After 808 nm laser irradiation (1.0 W/cm2, 2 min) at this timepoint, PDA@Lipo/DOX/ICG efficiently suppressed the proliferation of MDA-MB-231 cell and even thoroughly ablated tumors. Negligible cardiotoxicity and no treatment-induced side effects were observed. Conclusion PDA@Lipo/DOX/ICG is a multifunctional nanoplatform based on PDA-coated liposomes for accurate and efficient combinatorial cancer therapy of chemotherapy and laser-induced PDT/PTT.
Collapse
Affiliation(s)
- Wangxing Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, People’s Republic of China
| | - Wenjie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, People’s Republic of China
| | - Anna Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, People’s Republic of China
| | - Jian Shen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, People’s Republic of China
| | - Hanxi Yi
- School of Basic Medical Science, Central South University, Changsha, 410000, People’s Republic of China,Correspondence: Hanxi Yi; Wenjie Liu, Email ;
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, People’s Republic of China
| |
Collapse
|
18
|
Recent advances in tannin-containing food biopackaging. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
High throughput preparation of antioxidant polysaccharide-based polymers with UV-resistant and antibacterial performance. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Stepping Further from Coupling Tools: Development of Functional Polymers via the Biginelli Reaction. Molecules 2022; 27:molecules27227886. [PMID: 36431987 PMCID: PMC9698737 DOI: 10.3390/molecules27227886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Multicomponent reactions (MCRs) have been used to prepare polymers with appealing functions. The Biginelli reaction, one of the oldest and most famous MCRs, has sparked new scientific discoveries in polymer chemistry since 2013. Recent years have seen the Biginelli reaction stepping further from simple coupling tools; for example, the functions of the Biginelli product 3,4-dihydropyrimidin-2(1H)-(thi)ones (DHPM(T)) have been gradually exploited to develop new functional polymers. In this mini-review, we mainly summarize the recent progress of using the Biginelli reaction to identify polymers for biomedical applications. These polymers have been documented as antioxidants, anticancer agents, and bio-imaging probes. Moreover, we also provide a brief introduction to some emerging applications of the Biginelli reaction in materials and polymer science. Finally, we present our perspectives for the further development of the Biginelli reaction in polymer chemistry.
Collapse
|
21
|
Szerlauth A, Kónya ZD, Papp G, Kónya Z, Kukovecz Á, Szabados M, Varga G, Szilágyi I. Molecular orientation rules the efficiency of immobilized antioxidants. J Colloid Interface Sci 2022; 632:260-270. [DOI: 10.1016/j.jcis.2022.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
|
22
|
Huang X, Hong M, Wang L, Meng Q, Ke Q, Kou X. Bioadhesive and antibacterial edible coating of EGCG-grafted pectin for improving the quality of grapes during storage. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Daniels R, Morato EO, Yassin OA, Mao J, Mutlu Z, Jain M, Valenti J, Cakmak M, Nair LS, Sotzing GA. Poly(cannabinoid)s: Hemp-Derived Biocompatible Thermoplastic Polyesters with Inherent Antioxidant Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42804-42811. [PMID: 36112124 DOI: 10.1021/acsami.2c05556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The legalization of hemp cultivation in the United States has caused the price of hemp-derived cannabinoids to decrease 10-fold within 2 years. Cannabidiol (CBD), one of many naturally occurring diols found in hemp, can be purified in high yield for low cost, making it an interesting candidate for polymer feedstock. In this study, two polyesters were synthesized from the condensation of either CBD or cannabigerol (CBG) with adipoyl chloride. Poly(CBD-Adipate) was cast into free-standing films and subjected to thermal, mechanical, and biological characterization. Poly(CBD-Adipate) films exhibited a lack of cytotoxicity toward adipose-derived stem cells while displaying an inherent antioxidant activity compared to poly(lactide) films. Additionally, this material was found to be semi-crystalline and able to be melt-processed into a plastic hemp leaf using a silicone baking mold.
Collapse
Affiliation(s)
- Robert Daniels
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Erick Orozco Morato
- The Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Skeletal Biology and Regeneration, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Omer A Yassin
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jiahao Mao
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Zeynep Mutlu
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Mayank Jain
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Joseph Valenti
- College of Agriculture, Health, and Natural Resources, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Mukerrem Cakmak
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Lakshmi S Nair
- The Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Skeletal Biology and Regeneration, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Biomedical Engineering, Department of Material Science and Engineering, Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Gregory A Sotzing
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
24
|
Pedro AC, Paniz OG, Fernandes IDAA, Bortolini DG, Rubio FTV, Haminiuk CWI, Maciel GM, Magalhães WLE. The Importance of Antioxidant Biomaterials in Human Health and Technological Innovation: A Review. Antioxidants (Basel) 2022; 11:1644. [PMID: 36139717 PMCID: PMC9495759 DOI: 10.3390/antiox11091644] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023] Open
Abstract
Biomaterials come from natural sources such as animals, plants, fungi, algae, and bacteria, composed mainly of protein, lipid, and carbohydrate molecules. The great diversity of biomaterials makes these compounds promising for developing new products for technological applications. In this sense, antioxidant biomaterials have been developed to exert biological and active functions in the human body and industrial formulations. Furthermore, antioxidant biomaterials come from natural sources, whose components can inhibit reactive oxygen species (ROS). Thus, these materials incorporated with antioxidants, mainly from plant sources, have important effects, such as anti-inflammatory, wound healing, antitumor, and anti-aging, in addition to increasing the shelf-life of products. Aiming at the importance of antioxidant biomaterials in different technological segments as biodegradable, economic, and promising sources, this review presents the main available biomaterials, antioxidant sources, and assigned biological activities. In addition, potential applications in the biomedical and industrial fields are described with a focus on innovative publications found in the literature in the last five years.
Collapse
Affiliation(s)
| | | | | | - Débora Gonçalves Bortolini
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba 81531-980, Paraná, Brazil
| | - Fernanda Thaís Vieira Rubio
- Departamento de Engenharia Química, Universidade de São Paulo, Escola Politécnica, Sao Paulo 05508-080, Sao Paulo, Brazil
| | | | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba 81280-340, Paraná, Brazil
| | - Washington Luiz Esteves Magalhães
- Embrapa Florestas, Colombo 83411-000, Paraná, Brazil
- Programa de Pós-Graduação em Engenharia e Ciência dos Materiais—PIPE, Universidade Federal do Paraná, Curitiba 81531-990, Paraná, Brazil
| |
Collapse
|
25
|
Huang G, Huang L, Geng C, Lan T, Huang X, Xu S, Shen Y, Bian H. Green and multifunctional chitosan-based conformal coating as a controlled release platform for fruit preservation. Int J Biol Macromol 2022; 219:767-778. [PMID: 35961553 DOI: 10.1016/j.ijbiomac.2022.08.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/27/2022] [Accepted: 08/07/2022] [Indexed: 11/05/2022]
Abstract
Food waste caused by the decay of perishable foods is a serious global issue. However, traditional preservative materials don't perform well in preventing food decay. Here, a green and multifunctional conformal coating is prepared by the hydrogen-bonding interactions among chitosan, nano-humic acid and curcumin, which is different from traditional preservative films obtained by solution blending. Thanks to the formation of hydrogen-bonding network, the surface roughness of the coating increased from 9.43 nm to 33.3 nm, which makes it more matches with the micro/nano structure of the fruit surface and obtains a good coating effect for various fruits. Furthermore, this coating shows distinctive mechanical properties (the tensile strength of 31.4 MPa), antioxidant and antibacterial activities (the inhibition zone ≥5 mm), and can be used to control the long-term release (up to 38 days) of natural preservative onto fruit surfaces. Through the demonstration of four perishable fruits, the coating can keep freshness and appearance at least 9 days longer than the uncoated samples, confirming the universal effectiveness of the coating in preventing fruit decay. This coating is easy to produce and use, washable, degradable, and makes from cheap or waste renewable biomaterials, which does not cause additional health and environmental concerns.
Collapse
Affiliation(s)
- Guohuan Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Liushan Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Chao Geng
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Tian Lan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xiaosun Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Shilong Xu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yunjun Shen
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Hedong Bian
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
26
|
On the Use of Oxidation Induction Time as a Kinetic Parameter for Condition Monitoring and Lifetime Evaluation under Ionizing Radiation Environments. Polymers (Basel) 2022; 14:polym14122357. [PMID: 35745933 PMCID: PMC9229975 DOI: 10.3390/polym14122357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
The durability of polymeric materials is closely linked to their degradation under specific operating conditions when different stressors-general or specific, such as high temperature, sunlight or ionizing radiation, solvents, or mechanical stresses-act simultaneously, causing degradation. In the case of electrical cables, the durability of the electrically insulating materials used in their construction is an important parameter to ensure their operational security. In this work, we studied the degradation state of various types of electrical insulating materials from cables used in particle acceleration systems under European Organization for Nuclear Research (CERN) conditions (e.g., Super Proton Synchrotron, SPS) as a function of time and irradiation dose. A simple kinetic model was proposed based on the exponential decrease in the antioxidant amount in polymeric insulations. The onset oxidation time (OIT) values, used as an indicator of antioxidant concentration, were obtained from isothermal differential scanning calorimetry (DSC) and chemiluminescence (CL) measurements. Fourier transform infrared (FTIR) measurements were used to assess the degradation state and identify polymeric materials. The practical applicability of such a model in diagnosing degradation and in the subsequent evaluation of the remaining service life is of interest, as it can be adapted to a broad range of operating conditions and materials.
Collapse
|
27
|
Du C, Fikhman DA, Monroe MBB. Shape Memory Polymer Foams with Phenolic Acid-Based Antioxidant Properties. Antioxidants (Basel) 2022; 11:antiox11061105. [PMID: 35740002 PMCID: PMC9219628 DOI: 10.3390/antiox11061105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Phenolic acids (PAs) are natural antioxidant agents in the plant kingdom that are part of the human diet. The introduction of naturally occurring PAs into the network of synthetic shape memory polymer (SMP) polyurethane (PU) foams during foam fabrication can impart antioxidant properties to the resulting scaffolds. In previous work, PA-containing SMP foams were synthesized to provide materials that retained the desirable shape memory properties of SMP PU foams with additional antimicrobial properties that were derived from PAs. Here, we explore the impact of PA incorporation on SMP foam antioxidant properties. We investigated the antioxidant effects of PA-containing SMP foams in terms of in vitro oxidative degradation resistance and cellular antioxidant activity. The PA foams showed surprising variability; p-coumaric acid (PCA)-based SMP foams exhibited the most potent antioxidant properties in terms of slowing oxidative degradation in H2O2. However, PCA foams did not effectively reduce reactive oxygen species (ROS) in short-term cellular assays. Vanillic acid (VA)- and ferulic acid (FA)-based SMP foams slowed oxidative degradation in H2O2 to lesser extents than the PCA foams, but they demonstrated higher capabilities for scavenging ROS to alter cellular activity. All PA foams exhibited a continuous release of PAs over two weeks. Based on these results, we hypothesize that PAs must be released from SMP foams to provide adequate antioxidant properties; slower release may enable higher resistance to long-term oxidative degradation, and faster release may result in higher cellular antioxidant effects. Overall, PCA, VA, and FA foams provide a new tool for tuning oxidative degradation rates and extending potential foam lifetime in the wound. VA and FA foams induced cellular antioxidant activity that could help promote wound healing by scavenging ROS and protecting cells. This work could contribute a wound dressing material that safely releases antimicrobial and antioxidant PAs into the wound at a continuous rate to ideally improve healing outcomes. Furthermore, this methodology could be applied to other oxidatively degradable biomaterial systems to enhance control over degradation rates and to provide multifunctional scaffolds for healing.
Collapse
|
28
|
Khederlou K, Bagheri R, Shojaei A, Gontard N, Tamsilian Y. Oxygen Scavenging Hybrid Nanostructure: Localization of Different Iron Nanoparticles on Montmorillonite Clays Host. ACS OMEGA 2022; 7:16391-16401. [PMID: 35601309 PMCID: PMC9118393 DOI: 10.1021/acsomega.2c00286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
According to the great potential of zero-valent iron nanoparticle applications in the environmental, medical, chemical, packaging and many other industries, there is still a need to tailor their production methods. This study reports the production of a hybrid nanostructure based on iron nanoparticles (INPs) produced in/on montmorillonite (MMT) nanoclays as an oxygen scavenger and barrier additive in polymeric packaging materials of oxygen-sensitive products. INPs and MMT were demonstrated to have effective mutual interactions in which the MMT host played a chemophysical trapping role for iron particles, causing smaller particles around 10 nm with 6.2 g/m2 higher specific surface area by limiting particle growth and agglomeration. In return, the embedding of primary iron cations in/on clays and growth of these particles during the reduction reaction pushed the clay layers out and helped further clay intercalation-exfoliation. Effective study of solvent and primary cation (Fe2+/Fe3+) types showed different preferences in interacting with natural and alkylammonium-modified MMT, resulting in the different site selection. Fe2+ cations preferred to migrate to the interlayer space, whereas Fe3+ cations tended to bond to the clay surface. The obtained results in this study suggest tailoring the ultimate oxygen scavenging capacity, shelf life, and migration properties of a hybrid nanoparticle according to the application requirements.
Collapse
Affiliation(s)
- Khadijeh Khederlou
- Institute
for Nanoscience and Nanotechnology, Sharif
University of Technology, Tehran 13537-13331, Iran
| | - Reza Bagheri
- Department
of Materials Science and Engineering, Sharif
University of Technology, Tehran 13537-13331, Iran
| | - Akbar Shojaei
- Department
of Chemical and Petroleum Engineering, Sharif
University of Technology, Tehran 13537-13331, Iran
| | - Nathalie Gontard
- UMR
“Ingénierie des Agropolymères et Technologies
Emergentes”, INRA, Univ. Montpellier,
Montpellier SupAgro, CIRAD, Montpellier 34060, France
| | - Yousef Tamsilian
- Department
of Chemical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz 61357-83151, Iran
| |
Collapse
|
29
|
Shi J, Zhang R, Zhou J, Yim W, Jokerst JV, Zhang Y, Mansel BW, Yang N, Zhang Y, Ma J. Supramolecular Assembly of Multifunctional Collagen Nanocomposite Film via Polyphenol-Coordinated Clay Nanoplatelets. ACS APPLIED BIO MATERIALS 2022; 5:1319-1329. [PMID: 35262325 DOI: 10.1021/acsabm.2c00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functional bionanocomposites have evoked immense research interests in many fields including biomedicine, food packaging, and environmental applications. Supramolecular self-assembled bionanocomposite materials fabricated by biopolymers and two-dimensional (2D) nanomaterials have particularly emerged as a compelling material due to their biodegradable nature, hierarchical structures, and designable multifunctions. However, construction of these materials with tunable properties has been still challenging. Here, we report a self-assembled, flexible, and antioxidative collagen nanocomposite film (CNF) via regulating supramolecular interactions of type I collagen and tannic acid (TA)-functionalized 2D synthetic clay nanoplatelets Laponite (LAP). Specifically, TA-coordinated LAP (LAP-TA) complexes were obtained via chelation and hydrogen bonding between TA and LAP clay nanoplatelets and further used to stabilize the triple-helical confirmation and fibrillar structure of the collagen via hydrogen bonding and electrostatic interactions, forming a hierarchical microstructure. The obtained transparent CNF not only exhibited the reinforced thermal stability, enzymatic resistance, tensile strength, and hydrophobicity but also good water vapor permeability and antioxidation. For example, the tensile strength was improved by over 2000%, and the antioxidant property was improved by 71%. Together with the simple fabrication process, we envision that the resulting CNF provides greater opportunities for versatile bionanocomposites design and fabrication serving as a promising candidate for emerging applications, especially food packaging and smart wearable devices.
Collapse
Affiliation(s)
- Jiabo Shi
- College of Bioresources Chemical and Materials Engineering, Xi'an Key Laboratory of Green Chemicals and Functional Materials, and National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, No. 6 Xuefu Zhonglu, Weiyang District, Xi'an, 710021, China
| | - Ruizhen Zhang
- College of Bioresources Chemical and Materials Engineering, Xi'an Key Laboratory of Green Chemicals and Functional Materials, and National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, No. 6 Xuefu Zhonglu, Weiyang District, Xi'an, 710021, China
| | - Jiajing Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.,Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.,Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yi Zhang
- Leather and Shoe Research Association of New Zealand, P.O. Box 8094, Palmerston North 4472, New Zealand
| | - Bradley W Mansel
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan China
| | - Na Yang
- College of Bioresources Chemical and Materials Engineering, Xi'an Key Laboratory of Green Chemicals and Functional Materials, and National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, No. 6 Xuefu Zhonglu, Weiyang District, Xi'an, 710021, China
| | - Yuxuan Zhang
- College of Bioresources Chemical and Materials Engineering, Xi'an Key Laboratory of Green Chemicals and Functional Materials, and National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, No. 6 Xuefu Zhonglu, Weiyang District, Xi'an, 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Xi'an Key Laboratory of Green Chemicals and Functional Materials, and National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, No. 6 Xuefu Zhonglu, Weiyang District, Xi'an, 710021, China
| |
Collapse
|
30
|
Mechanochemical Applications of Reactive Extrusion from Organic Synthesis to Catalytic and Active Materials. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020449. [PMID: 35056763 PMCID: PMC8779840 DOI: 10.3390/molecules27020449] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/03/2022]
Abstract
In the past, the use of mechanochemical methods in organic synthesis was reported as somewhat of a curiosity. However, perceptions have changed over the last two decades, and this technology is now being appreciated as a greener and more efficient synthetic method. The qualified “offer” of ball mills that make use of different set-ups, materials, and dimensions has allowed this technology to mature. Nevertheless, the intrinsic batch nature of mechanochemical methods hinders industrial scale-ups. New studies have found, in reactive extrusion, a powerful technique with which to activate chemical reactions with mechanical forces in a continuous flow. This new environmentally friendly mechanochemical synthetic method may be able to miniaturize production plants with outstanding process intensifications by removing organic solvents and working in a flow mode. Compared to conventional processes, reactive extrusions display high simplicity, safety, and cleanliness, which can be exploited in a variety of applications. This paper presents perspective examples in the better-known areas of reactive extrusions, including oxidation reactions, polymer processing, and biomass conversion. This work should stimulate further developments, as it highlights the versatility of reactive extrusion and the huge potential of solid-phase flow chemistry.
Collapse
|