1
|
Moradi A, Szewczyk PK, Roszko A, Fornalik-Wajs E, Stachewicz U. Unraveling the Impact of Boron Nitride and Silicon Nitride Nanoparticles on Thermoplastic Polyurethane Fibers and Mats for Advanced Heat Management. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41475-41486. [PMID: 38984990 PMCID: PMC11310906 DOI: 10.1021/acsami.4c06417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
The urgent challenges posed by the energy crisis, alongside the heat dissipation of advanced electronics, have embarked on a rising demand for the development of highly thermally conductive polymer composites. Electrospun composite mats, known for their flexibility, permeability, high concentration and orientational degree of conductive fillers, stand out as one of the prime candidates for addressing this need. This study explores the efficacy of boron nitride (BN) and its potential alternative, silicon nitride (SiN) nanoparticles, in enhancing the thermal performance of the electrospun composite thermoplastic polyurethane (TPU) fibers and mats. The 3D reconstructed models obtained from FIB-SEM imaging provided valuable insights into the morphology of the composite fibers, aiding the interpretation of the measured thermal performance through scanning thermal microscopy for the individual composite fibers and infrared thermography for the composite mats. Notably, we found that TPU-SiN fibers exhibit superior heat conduction compared to TPU-BN fibers, with up to a 6 °C higher surface temperature observed in mats coated on copper pipes. Our results underscore the crucial role of arrangement of nanoparticles and fiber morphology in improving heat conduction in the electrospun composites. Moreover, SiN nanoparticles are introduced as a more suitable filler for heat conduction enhancement of electrospun TPU fibers and mats, suggesting immense potential for smart textiles and thermal management applications.
Collapse
Affiliation(s)
- Ahmadreza Moradi
- Faculty
of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| | - Piotr K. Szewczyk
- Faculty
of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| | - Aleksandra Roszko
- Faculty
of Energy and Fuels, Department of Fundamental Research in Energy
Engineering, AGH University of Krakow, Krakow 30-059, Poland
| | - Elzbieta Fornalik-Wajs
- Faculty
of Energy and Fuels, Department of Fundamental Research in Energy
Engineering, AGH University of Krakow, Krakow 30-059, Poland
| | - Urszula Stachewicz
- Faculty
of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| |
Collapse
|
2
|
Singh B, Han J, Meziani MJ, Cao L, Yerra S, Collins J, Dumra S, Sun YP. Polymeric Nanocomposites of Boron Nitride Nanosheets for Enhanced Directional or Isotropic Thermal Transport Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1259. [PMID: 39120364 PMCID: PMC11314323 DOI: 10.3390/nano14151259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Polymeric composites with boron nitride nanosheets (BNNs), which are thermally conductive yet electrically insulating, have been pursued for a variety of technological applications, especially those for thermal management in electronic devices and systems. Highlighted in this review are recent advances in the effort to improve in-plane thermal transport performance in polymer/BNNs composites and also the growing research activities aimed at composites of enhanced cross-plane or isotropic thermal conductivity, for which various filler alignment strategies during composite fabrication have been explored. Also highlighted and discussed are some significant challenges and major opportunities for further advances in the development of thermally conductive composite materials and their mechanistic understandings.
Collapse
Affiliation(s)
- Buta Singh
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA (S.D.)
| | - Jinchen Han
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
| | - Mohammed J. Meziani
- Department of Natural Sciences, Northwest Missouri State University, Maryville, MO 64468, USA
| | - Li Cao
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
| | - Subhadra Yerra
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA (S.D.)
| | - Jordan Collins
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA (S.D.)
| | - Simran Dumra
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA (S.D.)
| | - Ya-Ping Sun
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA (S.D.)
| |
Collapse
|
3
|
Zhang Y, Wang S, Wu H, Guo S. Constructing Heterostructured MWCNT-BN Hybrid Fillers in Electrospun TPU Films to Achieve Superior Thermal Conductivity and Electrical Insulation Properties. Polymers (Basel) 2024; 16:2139. [PMID: 39125165 PMCID: PMC11313851 DOI: 10.3390/polym16152139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The development of thermally conductive polymer/boron nitride (BN) composites with excellent electrically insulating properties is urgently demanded for electronic devices. However, the method of constructing an efficient thermally conductive network is still challenging. In the present work, heterostructured multi-walled carbon nanotube-boron nitride (MWCNT-BN) hybrids were easily prepared using an electrostatic self-assembly method. The thermally conductive network of the MWCNT-BN in the thermoplastic polyurethane (TPU) matrix was achieved by the electrospinning and stack-molding process. As a result, the in-plane thermal conductivity of TPU composite films reached 7.28 W m-1 K-1, an increase of 959.4% compared to pure TPU films. In addition, the Foygel model showed that the MWCNT-BN hybrid filler could largely decrease thermal resistance compared to that of BN filler and further reduce phonon scattering. Finally, the excellent electrically insulating properties (about 1012 Ω·cm) and superior flexibility of composite film make it a promising material in electronic equipment. This work offers a new idea for designing BN-based hybrids, which have broad prospects in preparing thermally conductive composites for further practical thermal management fields.
Collapse
Affiliation(s)
| | | | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; (Y.Z.); (S.W.); (S.G.)
| | | |
Collapse
|
4
|
Han Y, Ruan K, He X, Tang Y, Guo H, Guo Y, Qiu H, Gu J. Highly Thermally Conductive Aramid Nanofiber Composite Films with Synchronous Visible/Infrared Camouflages and Information Encryption. Angew Chem Int Ed Engl 2024; 63:e202401538. [PMID: 38334210 DOI: 10.1002/anie.202401538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
The development of highly thermally conductive composites that combine visible light/infrared camouflage and information encryption has been endowed with great significance in facilitating the application of 5G communication technology in military fields. This work uses aramid nanofibers (ANF) as the matrix, hetero-structured silver nanowires@boron nitride nanosheets (AgNWs@BNNS) prepared by in situ growth as fillers, which are combined to fabricate sandwich structured thermally conductive and electrically insulating (BNNS/ANF)-(AgNWs@BNNS)-(BNNS/ANF) (denoted as BAB) composite films by "filtration self-assembly, air spraying, and hot-pressing" method. When the mass ratio of AgNWs@BNNS to BNNS is 1 : 1 and the total mass fraction is 50 wt %, BAB composite film has the maximum in-plane thermal conductivity coefficient (λ∥ of 10.36 W/(m ⋅ K)), excellent electrical insulation (breakdown strength and volume resistivity of 41.5 kV/mm and 1.21×1015 Ω ⋅ cm, respectively) and mechanical properties (tensile strength of 170.9 MPa). 50 wt % BAB composite film could efficiently reduce the equilibrium temperature of the central processing unit (CPU) working at full power, resulting in 7.0 °C lower than that of the CPU solely integrated with ANF directly. In addition, BAB composite film boasts adaptive visible light/infrared dual camouflage properties on cement roads and jungle environments, as well as the function of fast encryption of QR code information within 24 seconds.
Collapse
Affiliation(s)
- Yixin Han
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Xiaoyu He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Yusheng Tang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Yongqiang Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
5
|
Moradi A, Szewczyk PK, Stachewicz U. Bridging a Gap in Thermal Conductivity and Heat Transfer in Hybrid Fibers and Yarns via Polyimide and Silicon Nitride Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305104. [PMID: 37553775 DOI: 10.1002/smll.202305104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/21/2023] [Indexed: 08/10/2023]
Abstract
The pressing issues of the energy crisis and rapid electronics development have sparked a growing interest in the production of highly thermally conductive polymer composites. Due to the challenges related to the poor processability of hybrid materials and filler distribution to achieve high thermal conductivity, electrospinning is employed to create composite nanofibers and yarns using polyimide (PI) and thermally conductive silicon nitride (SiN) nanoparticles. The thermal performance of the individual nanofibers is evaluated using scanning thermal microscopy (SThM), providing significant insights into their heat transfer performance. Next, the nanofibers are applied as coatings on resistance wires to assess the thermal conductivity and insulation properties. Notably, the samples containing 35 wt.% of SiN exhibit a 25% increase in surface temperature. These innovative materials hold great promise as exceptional candidates for smart textiles and thermal management applications, addressing the growing demand for effective heat dissipation and regulation.
Collapse
Affiliation(s)
- Ahmadreza Moradi
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow, 30-059, Poland
| | - Piotr K Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow, 30-059, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow, 30-059, Poland
| |
Collapse
|
6
|
Jia LC, Wang ZX, Wang L, Zeng JF, Du PY, Yue YF, Zhao LH, Jia SL. Self-standing boron nitride bulks enabled by liquid metals for thermal management. MATERIALS HORIZONS 2023; 10:5656-5665. [PMID: 37766462 DOI: 10.1039/d3mh01359f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Thermally conductive materials (TCMs) are highly desirable for thermal management applications to tackle the "overheating" concerns in the electronics industry. Despite recent progress, the development of high performance TCMs integrated with an in-plane thermal conductivity (TC) higher than 50.0 W (m K)-1 and a through-plane TC greater than 10.0 W (m K)-1 is still challenging. Herein, self-standing liquid metal@boron nitride (LM@BN) bulks with ultrahigh in-plane TC and through-plane TC were reported for the first time. In the LM@BN bulks, LM could serve as a bonding and thermal linker among the oriented BN platelets, thus remarkably accelerating heat transfer across the whole system. Benefiting from the formation of a unique structure, the LM@BN bulk achieved an ultrahigh in-plane TC of 82.2 W (m K)-1 and a through-plane TC of 20.6 W (m K)-1, which were among the highest values ever reported for TCMs. Furthermore, the LM@BN bulks exhibited superior compressive and leakage-free performances, with a high compressive strength (5.2 MPa) and without any LM leakage even after being crushed. It was also demonstrated that the excellent TCs of the LM@BN bulks made them effectively cool high-power light emitting diode modules. This work opens up one promising pathway for the development of high-performance TCMs for thermal management in the electronics industry.
Collapse
Affiliation(s)
- Li-Chuan Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhi-Xing Wang
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Lei Wang
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Jian-Feng Zeng
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Pei-Yao Du
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yun-Fei Yue
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Li-Hua Zhao
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shen-Li Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
7
|
Zhou J, Yu Z, Mohideen MM, Ge J, Lv X, Yao M, Xie Z, Wang C, Hu P, Liu Y. Constructing Hierarchical Polymer Nanocomposites with Strongly Enhanced Thermal Conductivity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42900-42911. [PMID: 37647417 DOI: 10.1021/acsami.3c09847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The rapid advancement of communication technology has substantially increased the demand for advanced electronic packaging materials with high thermal conductivity and outstanding electrical insulation properties. In this study, we design polyvinyl alcohol/polydopamine-modified boron nitride nanosheet (PVA/BNNS@PDA) nanocomposites with hierarchical structures by combining electrospinning, vacuum filtration deposition, and hot pressing. The modified BNNS@PDA improves the interaction between the filler and the polymer matrix while reducing the interfacial thermal resistance, resulting in superior thermal conductivity, excellent insulation, and perfect flexibility. The PVA/BNNS@PDA nanocomposites possess an ultrahigh in-plane thermal conductivity of 16.6 W/(m·K) at 35.54 wt % BNNS@PDA content. Even after 2000 folds, the nanocomposites do not undergo any crack, showing their ultrahigh thermal conductivity behavior. Furthermore, the nanocomposites exhibit a volume resistivity above 1014 Ω·cm, which is well above the standard for insulating materials. Based on these results, this work provides a novel method to produce nanocomposites with high thermal conductivity, offering a new perspective to design advanced thermal management materials.
Collapse
Affiliation(s)
- Jianwei Zhou
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongxun Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mohamedazeem M Mohideen
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Ge
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xujin Lv
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Yao
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zheng Xie
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Ce Wang
- Alan G. MacDiarmid Institute, Jilin University, Changchun, Jilin 130012, China
| | - Ping Hu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Won D, Bang J, Choi SH, Pyun KR, Jeong S, Lee Y, Ko SH. Transparent Electronics for Wearable Electronics Application. Chem Rev 2023; 123:9982-10078. [PMID: 37542724 PMCID: PMC10452793 DOI: 10.1021/acs.chemrev.3c00139] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 08/07/2023]
Abstract
Recent advancements in wearable electronics offer seamless integration with the human body for extracting various biophysical and biochemical information for real-time health monitoring, clinical diagnostics, and augmented reality. Enormous efforts have been dedicated to imparting stretchability/flexibility and softness to electronic devices through materials science and structural modifications that enable stable and comfortable integration of these devices with the curvilinear and soft human body. However, the optical properties of these devices are still in the early stages of consideration. By incorporating transparency, visual information from interfacing biological systems can be preserved and utilized for comprehensive clinical diagnosis with image analysis techniques. Additionally, transparency provides optical imperceptibility, alleviating reluctance to wear the device on exposed skin. This review discusses the recent advancement of transparent wearable electronics in a comprehensive way that includes materials, processing, devices, and applications. Materials for transparent wearable electronics are discussed regarding their characteristics, synthesis, and engineering strategies for property enhancements. We also examine bridging techniques for stable integration with the soft human body. Building blocks for wearable electronic systems, including sensors, energy devices, actuators, and displays, are discussed with their mechanisms and performances. Lastly, we summarize the potential applications and conclude with the remaining challenges and prospects.
Collapse
Affiliation(s)
- Daeyeon Won
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Junhyuk Bang
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seok Hwan Choi
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Kyung Rok Pyun
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seongmin Jeong
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Youngseok Lee
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seung Hwan Ko
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute
of Engineering Research/Institute of Advanced Machinery and Design
(SNU-IAMD), Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
9
|
Wan S, Hao X, Zhu L, Yu C, Li M, Zhao Z, Kuang J, Yue M, Lu Q, Cao W, Wang Q. Enhanced In-Plane Thermal Conductivity and Mechanical Strength of Flexible Films by Aligning and Interconnecting Si 3N 4 Nanowires. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37392172 DOI: 10.1021/acsami.3c04473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
As the rapid development of advanced foldable electronic devices, flexible and insulating composite films with ultra-high in-plane thermal conductivity have received increasing attention as thermal management materials. Silicon nitride nanowires (Si3N4NWs) have been considered as promising fillers for preparing anisotropic thermally conductive composite films due to their extremely high thermal conductivity, low dielectric properties, and excellent mechanical properties. However, an efficient approach to synthesize Si3N4NWs in a large scale still need to be explored. In this work, large quantities of Si3N4NWs were successfully prepared using a modified CRN method, presenting the advantages of high aspect ratio, high purity, and easy collection. On the basis, the super-flexible PVA/Si3N4NWs composite films were further prepared with the assistance of vacuum filtration method. Due to the highly oriented Si3N4NWs interconnected to form a complete phonon transport network in the horizontal direction, the composite films exhibited a high in-plane thermal conductivity of 15.4 W·m-1·K-1. The enhancement effect of Si3N4NWs on the composite thermal conductivity was further demonstrated by the actual heat transfer process and finite element simulations. More significantly, the Si3N4NWs enabled the composite film presenting good thermal stability, high electrical insulation, and excellent mechanical strength, which was beneficial for thermal management applications in modern electronic devices.
Collapse
Affiliation(s)
- Shiqin Wan
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xu Hao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lifeng Zhu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chang Yu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengyi Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zheng Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianlei Kuang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ming Yue
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenbin Cao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qi Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
10
|
Hu J, Zhang T, Wang L, Shi Z, Xia H. Constructing Sandwich-Structured Poly(vinyl alcohol) Composite Films with Thermal Conductive and Electrical Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12315-12326. [PMID: 36812424 DOI: 10.1021/acsami.2c20668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With the miniaturization and high integration development in microelectronic devices, the problem of heat dissipation has attracted widespread attention. Highly thermal conductive and electrical insulation polymer composites show great advantages to solve the problems of heat dissipation. Nevertheless, the fabrication of polymer composites with both excellent thermal conductivity and electrical performance is still a great challenge. Herein, to coordinate the thermal and electrical properties of the composite film, the sandwich-structured poly(vinyl alcohol) (PVA)/boron phosphide (BP)-boron nitride nanosheet (BNNS) composite films were prepared, with the PVA/BP composite film as the top and bottom layers and the BNNS layer as the middle layer. When the filler loading was 31.92 wt %, the sandwich-structured composite films showed excellent in-plane thermal conductivity (9.45 W·m-1·K-1), low dielectric constant (1.25 at 102 Hz), and excellent breakdown strength. In the composite film, the interconnected BP particles and BNNS layer formed several heat dissipation pathways to increase the thermal conductivity, while the insulated BNNS layer hampered the electron transformation to enhance the electrical resistivity of films. Therefore, the PVA/BP-BNNS composite films showed a potential application in heat dissipation of high power electronic devices.
Collapse
Affiliation(s)
- Jiajun Hu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tianran Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Laili Wang
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhongqi Shi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongyan Xia
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
11
|
Han WH, Wang QY, Kang YY, Zhou X, Hao CC. Electrospun polymer nanocomposites for thermal management: a review. NANOSCALE 2023; 15:2003-2017. [PMID: 36645211 DOI: 10.1039/d2nr06360c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Thermal management plays a vital role in technology (electronic and electrical equipment) and life (high-temperature injury). Therefore, thermal regulation has attracted worldwide attention. This review addresses the applications of electrospinning (e-spinning) in the thermal management of polymer matrix composites, mainly involving enhanced thermal conductivity (TC), thermal insulation, and passive daytime radiative cooling (PDRC). In particular, in the regulation of TC, e-spinning can uniformly distribute active fillers in the composites to achieve bidirectional control. The types of active filler and its connection forms in the composites are discussed emphatically. In addition, PDRC without energy consumption is also highlighted. Finally, the current challenges and future development are addressed.
Collapse
Affiliation(s)
- Wei-Hua Han
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China
| | - Qing-Yu Wang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yuan-Yi Kang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xin Zhou
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Chun-Cheng Hao
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
12
|
Wang Q, Li T, Ding Y, Chen H, Cao X, Xia J, Li B, Sun B. AWI-Assembled TPU-BNNS Composite Films with High In-Plane Thermal Conductivity for Thermal Management of Flexible Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41447-41455. [PMID: 36049055 DOI: 10.1021/acsami.2c12386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thermal management of flexible/stretchable electronics has been a crucial issue. Mass supernumerary thermal heat is created in the repetitive course of deformation because of the large nanocontact resistance between electric conductive fillers, as well as the interfacial resistance between fillers and the polymer matrix. Here, we report a stretchable thermoplastic polyurethane (TPU)-boron nitride nanosheet (BNNS) composite film with a high in-plane thermal conductivity based on an air/water interfacial (AWI) assembly method. In addition to rigid devices, it was capable for thermal management of flexible electronics. During more than 2000 cycles of the bending-releasing process, the average saturated surface temperature of the flexible conductor covered with composite film with 30 wt % BNNSs was approximately 40.8 ± 1 °C (10.5 °C lower than that with pure TPU). Moreover, the thermal dissipating property of the composite under stretching was measured. All the results prove that this TPU-BNNS composite film is a candidate for thermal management of next-generation flexible/stretchable electronics with high power density.
Collapse
Affiliation(s)
- Qiaoli Wang
- College of Physics, Qingdao University, Qingdao 266071, P. R. China
- College of Electronics and Information, Qingdao University, Qingdao 266071, P. R. China
| | - Tianshuo Li
- College of Physics, Qingdao University, Qingdao 266071, P. R. China
- Department of Basic, Ma'anshan University, Ma'anshan 243100, P. R. China
| | - Yafei Ding
- Department of Material Science and Engineering, Department of Physics, Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Huibao Chen
- College of Physics, Qingdao University, Qingdao 266071, P. R. China
- College of Electronics and Information, Qingdao University, Qingdao 266071, P. R. China
| | - Xiyue Cao
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
| | - Baowen Li
- Department of Material Science and Engineering, Department of Physics, Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Paul M. Rady Department of Mechanical Engineering and Department of Physics, University of Colorado, Boulder, Colorado 80305-0427, United States
| | - Bin Sun
- College of Physics, Qingdao University, Qingdao 266071, P. R. China
- College of Electronics and Information, Qingdao University, Qingdao 266071, P. R. China
- Weihai Innovation Research Institute, Qingdao University, Weihai 264200, P. R. China
| |
Collapse
|
13
|
Shtansky DV, Matveev AT, Permyakova ES, Leybo DV, Konopatsky AS, Sorokin PB. Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2810. [PMID: 36014675 PMCID: PMC9416166 DOI: 10.3390/nano12162810] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 05/27/2023]
Abstract
Due to its unique physical, chemical, and mechanical properties, such as a low specific density, large specific surface area, excellent thermal stability, oxidation resistance, low friction, good dispersion stability, enhanced adsorbing capacity, large interlayer shear force, and wide bandgap, hexagonal boron nitride (h-BN) nanostructures are of great interest in many fields. These include, but are not limited to, (i) heterogeneous catalysts, (ii) promising nanocarriers for targeted drug delivery to tumor cells and nanoparticles containing therapeutic agents to fight bacterial and fungal infections, (iii) reinforcing phases in metal, ceramics, and polymer matrix composites, (iv) additives to liquid lubricants, (v) substrates for surface enhanced Raman spectroscopy, (vi) agents for boron neutron capture therapy, (vii) water purifiers, (viii) gas and biological sensors, and (ix) quantum dots, single photon emitters, and heterostructures for electronic, plasmonic, optical, optoelectronic, semiconductor, and magnetic devices. All of these areas are developing rapidly. Thus, the goal of this review is to analyze the critical mass of knowledge and the current state-of-the-art in the field of BN-based nanomaterial fabrication and application based on their amazing properties.
Collapse
Affiliation(s)
- Dmitry V. Shtansky
- Labotoary of Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospect 4, 119049 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
14
|
Du Q, Guo M, Zhang H, Liu Y, Wu D, Ru Y, Gao D, Chen N, Sun J. Preparation of
PP
/
SCF
thermally conductive composites with forced‐assembled networks by multiple injection compression molding. J Appl Polym Sci 2022. [DOI: 10.1002/app.52826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qingyuan Du
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| | - Mengli Guo
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| | - Hao Zhang
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| | - Ying Liu
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Daming Wu
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Yue Ru
- SINOPEC Beijing Research Institute of Chemical Industry Beijing China
| | - Dali Gao
- SINOPEC Beijing Research Institute of Chemical Industry Beijing China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Jingyao Sun
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| |
Collapse
|
15
|
Guo J, Wang Y, Zhang H, Zhao Y. Conductive Materials with Elaborate Micro/Nanostructures for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110024. [PMID: 35081264 DOI: 10.1002/adma.202110024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Bioelectronics, an emerging field with the mutual penetration of biological systems and electronic sciences, allows the quantitative analysis of complicated biosignals together with the dynamic regulation of fateful biological functions. In this area, the development of conductive materials with elaborate micro/nanostructures has been of great significance to the improvement of high-performance bioelectronic devices. Thus, here, a comprehensive and up-to-date summary of relevant research studies on the fabrication and properties of conductive materials with micro/nanostructures and their promising applications and future opportunities in bioelectronic applications is presented. In addition, a critical analysis of the current opportunities and challenges regarding the future developments of conductive materials with elaborate micro/nanostructures for bioelectronic applications is also presented.
Collapse
Affiliation(s)
- Jiahui Guo
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100101, China
| |
Collapse
|
16
|
Pan D, Yang G, Abo-Dief HM, Dong J, Su F, Liu C, Li Y, Bin Xu B, Murugadoss V, Naik N, El-Bahy SM, El-Bahy ZM, Huang M, Guo Z. Vertically Aligned Silicon Carbide Nanowires/Boron Nitride Cellulose Aerogel Networks Enhanced Thermal Conductivity and Electromagnetic Absorbing of Epoxy Composites. NANO-MICRO LETTERS 2022; 14:118. [PMID: 35488958 PMCID: PMC9056589 DOI: 10.1007/s40820-022-00863-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/06/2022] [Indexed: 05/10/2023]
Abstract
With the innovation of microelectronics technology, the heat dissipation problem inside the device will face a severe test. In this work, cellulose aerogel (CA) with highly enhanced thermal conductivity (TC) in vertical planes was successfully obtained by constructing a vertically aligned silicon carbide nanowires (SiC NWs)/boron nitride (BN) network via the ice template-assisted strategy. The unique network structure of SiC NWs connected to BN ensures that the TC of the composite in the vertical direction reaches 2.21 W m-1 K-1 at a low hybrid filler loading of 16.69 wt%, which was increased by 890% compared to pure epoxy (EP). In addition, relying on unique porous network structure of CA, EP-based composite also showed higher TC than other comparative samples in the horizontal direction. Meanwhile, the composite exhibits good electrically insulating with a volume electrical resistivity about 2.35 × 1011 Ω cm and displays excellent electromagnetic wave absorption performance with a minimum reflection loss of - 21.5 dB and a wide effective absorption bandwidth (< - 10 dB) from 8.8 to 11.6 GHz. Therefore, this work provides a new strategy for manufacturing polymer-based composites with excellent multifunctional performances in microelectronic packaging applications.
Collapse
Affiliation(s)
- Duo Pan
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Gui Yang
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Hala M Abo-Dief
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia
| | - Jingwen Dong
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Fengmei Su
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China.
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Yifan Li
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Vignesh Murugadoss
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
- Advanced Materials Division, Engineered Multifunctional Composites (EMC) Nanotech LLC, Knoxville, TN, 37934, USA
| | - Nithesh Naik
- Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia
| | - Zeinhom M El-Bahy
- Department of Chemistry, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Minan Huang
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
17
|
Wu H, Zhou W, Liu Q, Cai X, Qu Z, Li P, Hu D, Jia X. High pressure homogenization of graphene and carbon nanotube for thermal conductive polyethylene composite with a low filler content. J Appl Polym Sci 2022. [DOI: 10.1002/app.51838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huacheng Wu
- Jibei Electric Power Research Institute State Grid Jibei Electric Power Co., Ltd., North China Electric Power Research Institute Company Limited Beijing People's Republic of China
| | - Weiqing Zhou
- Jibei Electric Power Research Institute State Grid Jibei Electric Power Co., Ltd., North China Electric Power Research Institute Company Limited Beijing People's Republic of China
| | - Qian Liu
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing People's Republic of China
| | - Xuan Cai
- State Grid Hubei Electric Power Research Institute Wuhan People's Republic of China
| | - Zihan Qu
- State Grid Hubei Electric Power Research Institute Wuhan People's Republic of China
| | - Peng Li
- Jibei Electric Power Research Institute State Grid Jibei Electric Power Co., Ltd., North China Electric Power Research Institute Company Limited Beijing People's Republic of China
| | - Die Hu
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing People's Republic of China
| | - Xilai Jia
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing People's Republic of China
| |
Collapse
|
18
|
Che Y, Liu C, Li N, Guo W, Xi M, Zhang S, Wang Z. UV curing polyurethane–acrylate composites as full filling thermal interface materials. NEW J CHEM 2022. [DOI: 10.1039/d2nj00397j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermally enhanced and insulating polyurethane acrylate composites can be used as fully filled TIMs by pre-filling and then UV curing.
Collapse
Affiliation(s)
- Yamin Che
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Cui Liu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Nian Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wei Guo
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Min Xi
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shudong Zhang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenyang Wang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
19
|
Gan H, Li S, Zhang Y, Wang J, Xue Z. Electrospun Composite Polymer Electrolyte Membrane Enabled with Silica‐Coated Silver Nanowires. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Huihui Gan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Shaoqiao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Yong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Jirong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
20
|
Devaraj H, Tian Q, Guo W, Malhotra R. Multiscale Modeling of Sintering-Driven Conductivity in Large Nanowire Ensembles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56645-56654. [PMID: 34784174 DOI: 10.1021/acsami.1c16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thermally driven sintering is widely used to enhance the conductivity of metal nanowire (NW) ensembles in printed electronics applications, with rapid nonisothermal sintering being increasingly employed to minimize substrate damage. The rational design of the sintering process and the NW morphology is hindered by a lack of mechanistically motivated and computationally efficient models that can predict sintering-driven neck growth between NWs and the resulting change in ensemble conductivity. We present a de novo modeling framework that, for the first time, links rotation-regulated nanoscale neck growth observed in atomistic simulations to continuum conductivity evolution in inch-scale NW ensembles via an analytical neck growth model and master curve formulations of neck growth and resistivity. This framework is experimentally validated against the emergent intense pulsed light-sintering process for Ag NWs. An ultralow computational effort of 0.2 CPU-h is achieved, 4-10 orders of magnitude reduction as compared to the state of the art. We show that the inherent local variation in the relative NW orientation within an ensemble drives significant junction-specific differences in neck growth kinetics and junction resistivity. This goes beyond the conventional assumption that the neck growth kinetics is the same at all the NW junctions in an ensemble, with significant implications on how nanoscale neck growth affects ensemble-scale conductivity. Through its low computational time, easy and rapid recalibration, and experimental relevance, our framework constitutes a much-needed foundational enabler for a priori design of the sintering process and the NWs.
Collapse
Affiliation(s)
- Harish Devaraj
- Department of Mechanical & Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - Qi Tian
- Department of Industrial and Systems Engineering, Rutgers University, 96 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Weihong Guo
- Department of Industrial and Systems Engineering, Rutgers University, 96 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Rajiv Malhotra
- Department of Mechanical & Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|