1
|
Liang S, Liu Y, Zhu H, Liao G, Zhu W, Zhang L. Emerging nitric oxide gas-assisted cancer photothermal treatment. EXPLORATION (BEIJING, CHINA) 2024; 4:20230163. [PMID: 39713202 PMCID: PMC11655315 DOI: 10.1002/exp.20230163] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/08/2024] [Indexed: 12/24/2024]
Abstract
Photothermal therapy (PTT) has garnered significant attention in recent years, but the standalone application of PTT still faces limitations that hinder its ability to achieve optimal therapeutic outcomes. Nitric oxide (NO), being one of the most extensively studied gaseous molecules, presents itself as a promising complementary candidate for PTT. In response, various nanosystems have been developed to enable the simultaneous utilization of PTT and NO-mediated gas therapy (GT), with the integration of photothermal agents (PTAs) and thermally-sensitive NO donors being the prevailing approach. This combination seeks to leverage the synergistic effects of PTT and GT while mitigating the potential risks associated with gas toxicity through the use of a single laser irradiation. Furthermore, additional internal or external stimuli have been employed to trigger NO release when combined with different types of PTAs, thereby further enhancing therapeutic efficacy. This comprehensive review aims to summarize recent advancements in NO gas-assisted cancer photothermal treatment. It commences by providing an overview of various types of NO donors and precursors, including those sensitive to photothermal, light, ultrasound, reactive oxygen species, and glutathione. These NO donors and precursors are discussed in the context of dual-modal PTT/GT. Subsequently, the incorporation of other treatment modalities such as chemotherapy (CHT), photodynamic therapy (PDT), alkyl radical therapy, radiation therapy, and immunotherapy (IT) in the creation of triple-modal therapeutic nanoplatforms is presented. The review further explores tetra-modal therapies, such as PTT/GT/CHT/PDT, PTT/GT/CHT/chemodynamic therapy (CDT), PTT/GT/PDT/IT, PTT/GT/starvation therapy (ST)/IT, PTT/GT/Ca2+ overload/IT, PTT/GT/ferroptosis (FT)/IT, and PTT/GT/CDT/IT. Finally, potential challenges and future perspectives concerning these novel paradigms are discussed. This comprehensive review is anticipated to serve as a valuable resource for future studies focused on the development of innovative photothermal/NO-based cancer nanotheranostics.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yufei Liu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guangfu Liao
- College of Material EngineeringFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Li Zhang
- Department of Critical Care MedicineShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
- Department of ChemistryCity University of Hong KongKowloonHong Kong SARChina
| |
Collapse
|
2
|
Parisi C, Laneri F, Martins TJ, Fraix A, Sortino S. Nitric Oxide-Photodelivering Materials with Multiple Functionalities: From Rational Design to Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59697-59720. [PMID: 39445390 DOI: 10.1021/acsami.4c13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The achievement of materials that are able to release therapeutic agents under the control of light stimuli to improve therapeutic efficacy is a significant challenge in health care. Nitric oxide (NO) is one of the most studied molecules in the fascinating realm of biomedical sciences, not only for its crucial role as a gaseous signaling molecule in the human body but also for its great potential as an unconventional therapeutic in a variety of diseases including cancer, bacterial and viral infections, and neurodegeneration. Handling difficulties due to its gaseous nature, reduced region of action due to its short half-life, and strict dependence of the biological effects on its concentration and generation site are critical questions to be solved for appropriate therapeutic uses of NO. Light-activatable NO precursors, namely, NO photodonors (NOPDs), address the above issues since they are stable in the dark and permit in a noninvasive fashion the remote-controlled delivery of NO on demand with great spatiotemporal precision. Engineering biocompatible materials with NOPDs and their combination with additional imaging, therapeutic, and phototherapeutic components leads to intriguing light-responsive multifunctional constructs exhibiting promising potential for biomedical applications. This contribution illustrates the most significant progress made over the last five years in achieving engineered materials including nanoparticles, gels, and thin films, sharing the common feature to deliver NO under the exclusive control of the biocompatible visible/near infrared light inputs. We will highlight the logical design behind the fabrication of these systems, illustrating the potential therapeutic applications with particular emphasis on cancer and bacterial infections.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Tassia J Martins
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
3
|
Chug MK, Sapkota A, Garren M, Brisbois EJ. Wearable nitric oxide-releasing antibacterial insert for preventing device-associated infections. J Control Release 2024; 375:667-680. [PMID: 39288891 DOI: 10.1016/j.jconrel.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Medical device-associated infections are a pervasive global healthcare concern, often leading to severe complications. Bacterial biofilms that form on indwelling medical devices, such as catheters, are significant contributors to infections like bloodstream and urinary tract infections. This study addresses the challenge of biofilms on medical devices by introducing a portable antimicrobial catheter insert (PACI) designed to be efficient, biocompatible, and anti-infective. The PACI utilizes nitric oxide (NO), known for its potent antimicrobial properties, to deter bacterial adhesion and biofilm formation. To achieve this, a photoinitiated NO donor, S-nitroso-N-acetylpenicillamine (SNAP), is covalently linked to a polydimethylsiloxane (PDMS) polymer. This design allows for higher NO loading for long-term impact and prevents premature donor leaching, a common challenge with SNAP-blended polymers. The SNAP-PDMS material was applied to a side-glowing fiber optic and connected to a wearable light module emitting 450 nm light, creating a functional antimicrobial insert. Activation of the fiber optic, accomplished with a one-click mechanism, enables real-time NO release, maintaining controlled NO levels for a minimum of 24 hours. The therapeutic levels of NO released via photocatalysis from the PACI demonstrated remarkable efficacy, with >90 % reduction in bacterial viability against S. aureus, S. epidermidis, and P. mirabilis without any cytotoxic impact on mammalian cells. This study underscores the potential of the NO-releasing insert in clinical settings, providing a portable and adaptable solution for preventing catheter-associated infections.
Collapse
Affiliation(s)
- Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Aasma Sapkota
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Mark Garren
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Elizabeth J Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Parisi C, Laneri F, Fraix A, Sortino S. Multifunctional Molecular Hybrids Photoreleasing Nitric Oxide: Advantages, Pitfalls, and Opportunities. J Med Chem 2024; 67:16932-16950. [PMID: 39009572 DOI: 10.1021/acs.jmedchem.4c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The multifaceted role nitric oxide (NO) plays in human physiology and pathophysiology has opened new scenarios in biomedicine by exploiting this free radical as an unconventional therapeutic against important diseases. The difficulties in handling gaseous NO and the strict dependence of the biological effects on its doses and location have made the light-activated NO precursors, namely NO photodonors (NOPDs), very appealing by virtue of their precise spatiotemporal control of NO delivery. The covalent integration of NOPDs and additional functional components within the same molecular skeleton through suitable linkers can lead to an intriguing class of multifunctional photoactivatable molecular hybrids. In this Perspective, we provide an overview of the recent advances in these molecular constructs, emphasizing those merging NO photorelease with targeting, fluorescent reporting, and phototherapeutic functionalities. We will highlight the rational design behind synthesizing these molecular hybrids and critically describe the advantages, drawbacks, and opportunities they offer in biomedical research.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
5
|
Fan D, Liu X, Chen H. Endothelium-Mimicking Materials: A "Rising Star" for Antithrombosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53343-53371. [PMID: 39344055 DOI: 10.1021/acsami.4c12117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The advancement of antithrombotic materials has significantly mitigated the thrombosis issue in clinical applications involving various medical implants. Extensive research has been dedicated over the past few decades to developing blood-contacting materials with complete resistance to thrombosis. However, despite these advancements, the risk of thrombosis and other complications persists when these materials are implanted in the human body. Consequently, the modification and enhancement of antithrombotic materials remain pivotal in 21st-century hemocompatibility studies. Previous research indicates that the healthy endothelial cells (ECs) layer is uniquely compatible with blood. Inspired by bionics, scientists have initiated the development of materials that emulate the hemocompatible properties of ECs by replicating their diverse antithrombotic mechanisms. This review elucidates the antithrombotic mechanisms of ECs and examines the endothelium-mimicking materials developed through single, dual-functional and multifunctional strategies, focusing on nitric oxide release, fibrinolytic function, glycosaminoglycan modification, and surface topography modification. These materials have demonstrated outstanding antithrombotic performance. Finally, the review outlines potential future research directions in this dynamic field, aiming to advance the development of antithrombotic materials.
Collapse
Affiliation(s)
- Duanqi Fan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
6
|
Zheng S, Liu Y, Yao J, Zhu R, Yu X, Cao Z. Mucus Mimic Hydrogel Coating for Lubricous, Antibiofouling, and Anti-Inflammatory Urinary Catheters. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46177-46190. [PMID: 39169797 DOI: 10.1021/acsami.4c13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Silicone is a common elastomer used in indwelling urinary catheters, and catheters are widely used in various medical applications due to their exceptional biocompatibility, hypoallergenic properties, and flexibility. However, silicones exhibit hydrophobic characteristics, lack inherent biolubrication, and are susceptible to nonspecific biosubstance adsorption, resulting in complications including but not limited to tissue trauma, postoperative pain, and urinary tract infections (UTIs). The development of effective surface designs for biomedical catheters to mitigate invasive damage and UITs has been a longstanding challenge. Herein, we present a novel approach to prepare a mucus mimic hydrogel coating. A thin layer of hydrogel containing xylitol is fabricated via photopolymerization. The surface modification technique and the interface-initiated hydrogel polymerization method ensure robust interfacial coherence. The resultant coating exhibits a low friction coefficient (CoF ≈ 0.1) for urinary catheter applications. Benefiting from the hydration layer and the antifouling of the xylitol unit, the xylitol hydrogel-coated surfaces (pAAAMXA) demonstrate outstanding antibiofouling properties against proteins (98.9% reduction relative to pristine polydimethylsiloxane (PDMS)). Furthermore, the pAAAMXA shows general adhesion resistance against bacteria primarily responsible for UITs (Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Methicillin-resistant strains of Staphylococcus aureus (MRSA), and Staphylococcus epidermidis (S. epidermidis)) without compromising biotoxicity (cell viability 98%). In vivo, catheters coated with the mucus mimic hydrogel displayed excellent biocompatibility, resistance to adhesion of bio substance, and anti-inflammatory characteristics. This work describes a promising alternative to conventional silicone catheters, offering potential for clinical interventional procedures with minimized complications.
Collapse
Affiliation(s)
- Sijia Zheng
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ying Liu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Yao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruiying Zhu
- Department of Thyroid Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xing Yu
- Department of Thyroid Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhihai Cao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
7
|
Laneri F, Parisi C, Seggio M, Fraix A, Longobardi G, Catanzano O, Quaglia F, Sortino S. Supramolecular red-light-photosensitized nitric oxide release with fluorescence self-reporting within biocompatible nanocarriers. J Mater Chem B 2024; 12:6500-6508. [PMID: 38873736 DOI: 10.1039/d4tb00325j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The strict dependence of the biological effects of nitric oxide (NO) on its concentration and generation site requires this inorganic free radical to be delivered with precise spatiotemporal control. Light-activation by suitable NO photoprecursors represents an ideal approach. Developing strategies to activate NO release using long-wavelength excitation light in the therapeutic window (650-1300 nm) is challenging. In this contribution, we demonstrate that NO release by a blue-light activatable NO photodonor (NOPD) with self-fluorescence reporting can be triggered catalytically by the much more biocompatible red light exploiting a supramolecular photosensitization process. Different red-light absorbing photosensitizers (PSs) are co-entrapped with the NOPD within different biocompatible nanocarriers such as Pluronic® micelles, microemulsions and branched cyclodextrin polymers. The intra-carrier photosensitized NO release, involving the lowest, long-lived triplet state of the PS as the key intermediate and its quenching by the NOPD, is competitive with that by molecular oxygen. This allows NO to be released with good efficacy, even under aerobic conditions. Therefore, the adopted general strategy provides a valuable tool for generating NO from an already available NOPD, otherwise activatable with the poorly biocompatible blue light, without requiring any chemical modification and using sophisticated and expensive irradiation sources.
Collapse
Affiliation(s)
- Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Mimimorena Seggio
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Giuseppe Longobardi
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - Ovidio Catanzano
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, I-80078, Pozzuoli (NA), Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|
8
|
Cui T, Xu F, Wang J, Li W, Gao Y, Li X, Yang K, Zhang W, Ge F, Tao Y. Polydopamine Nanocarriers with Cascade-Activated Nitric Oxide Release Combined Photothermal Activity for the Therapy of Drug-Resistant Bacterial Infections. ACS Infect Dis 2024; 10:2018-2031. [PMID: 38743862 DOI: 10.1021/acsinfecdis.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Antibiotic abuse leads to increased bacterial resistance, and the surviving planktonic bacteria aggregate and secrete extracellular polymers to form biofilms. Conventional antibacterial agents find it difficult to penetrate the biofilm, remove the bacteria wrapped in it, and produce an excellent therapeutic effect. In this study, a dual pH- and NIR-responsive nanocomposite (A-Ca@PDA) was developed to remove drug-resistant bacteria through a cascade of catalytic nitric oxide (NO) release and photothermal clearance. NO can melt in the outer package of the biofilm, facilitating the nanocomposites to have better permeability. Thermal therapy further inhibits the growth of planktonic bacteria. The locally generated high temperature and the burst release of NO together aggravate the biofilm collapse and bacterial death after NIR irradiation. The nanocomposites achieved a remarkable photothermal conversion efficiency of 47.5%, thereby exhibiting significant advancements in energy conversion. The nanocomposites exhibited remarkable efficacy in inhibiting multidrug-resistant (MDR) Escherichia coli and MDR Staphylococcus aureus, thus achieving an inhibition rate of >90%. Moreover, these nanocomposites significantly improved the wound-healing process in the MDR S. aureus-infected mice. Thus, this novel nanocomposite offers a novel strategy to combat drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Ting Cui
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Feiyang Xu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Jun Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yuan Gao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Xing Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RADX), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
9
|
Martins T, Parisi C, Guerra Pinto J, Ribeiro Brambilla IDP, Malanga M, Ferreira-Strixino J, Sortino S. Stepwise Nitric Oxide Release and Antibacterial Activity of a Nitric Oxide Photodonor Hosted within Cyclodextrin Branched Polymer Nanocarriers. ACS Med Chem Lett 2024; 15:857-863. [PMID: 38894929 PMCID: PMC11181500 DOI: 10.1021/acsmedchemlett.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 06/21/2024] Open
Abstract
A hydrophobic nitric oxide (NO) photodonor integrating both nitroso and nitro functionalities within its chromophoric skeleton has been synthesized. Excitation of this compound with blue light triggers the release of two NO molecules from the nitroso and the nitro functionalities via a stepwise mechanism. Encapsulation of the NO photodonor within biocompatible neutral, cationic, and anionic β-cyclodextrin branched polymers as suitable carriers leads to supramolecular nanoassemblies, which exhibit the same nature of the photochemical processes but NO photorelease performances enhanced by about 1 order of magnitude when compared with the free guest. Antibacterial tests carried out with methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii demonstrate an effective antibacterial activity exclusively under light activation and point out a differentiated role of the polymeric nanocarriers in determining the outcome of the antibacterial photodynamic action.
Collapse
Affiliation(s)
- Tassia
J. Martins
- PhotoChemLab,
Department of Drug Sciences, University
of Catania, I-95125 Catania, Italy
| | - Cristina Parisi
- PhotoChemLab,
Department of Drug Sciences, University
of Catania, I-95125 Catania, Italy
| | - Juliana Guerra Pinto
- Laboratory
of Photobiology Applied to Health, Research and Development Institute, University of Vale do Paraíba, Urbanova I-2911, Brazil
| | | | | | - Juliana Ferreira-Strixino
- Laboratory
of Photobiology Applied to Health, Research and Development Institute, University of Vale do Paraíba, Urbanova I-2911, Brazil
| | - Salvatore Sortino
- PhotoChemLab,
Department of Drug Sciences, University
of Catania, I-95125 Catania, Italy
| |
Collapse
|
10
|
Sarkar S, Kumar R, Matson JB. Hydrogels for Gasotransmitter Delivery: Nitric Oxide, Carbon Monoxide, and Hydrogen Sulfide. Macromol Biosci 2024; 24:e2300138. [PMID: 37326828 PMCID: PMC11180494 DOI: 10.1002/mabi.202300138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Gasotransmitters, gaseous signaling molecules including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2 S), maintain myriad physiological processes. Low levels of gasotransmitters are often associated with specific problems or diseases, so NO, CO, and H2 S hold potential in treating bacterial infections, chronic wounds, myocardial infarction, ischemia, and various other diseases. However, their clinical applications as therapeutic agents are limited due to their gaseous nature, short half-life, and broad physiological roles. One route toward the greater application of gasotransmitters in medicine is through localized delivery. Hydrogels are attractive biomedical materials for the controlled release of embedded therapeutics as they are typically biocompatible, possess high water content, have tunable mechanical properties, and are injectable in certain cases. Hydrogel-based gasotransmitter delivery systems began with NO, and hydrogels for CO and H2 S have appeared more recently. In this review, the biological importance of gasotransmitters is highlighted, and the fabrication of hydrogel materials is discussed, distinguishing between methods used to physically encapsulate small molecule gasotransmitter donor compounds or chemically tether them to a hydrogel scaffold. The release behavior and potential therapeutic applications of gasotransmitter-releasing hydrogels are also detailed. Finally, the authors envision the future of this field and describe challenges moving forward.
Collapse
Affiliation(s)
| | | | - John B. Matson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
11
|
Jiang G, Wu R, Liu S, Yu T, Ren Y, Busscher HJ, van der Mei HC, Liu J. Ciprofloxacin-Loaded, pH-Responsive PAMAM-Megamers Functionalized with S-Nitrosylated Hyaluronic Acid Support Infected Wound Healing in Mice without Inducing Antibiotic Resistance. Adv Healthc Mater 2024; 13:e2301747. [PMID: 37908125 PMCID: PMC11469077 DOI: 10.1002/adhm.202301747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/06/2023] [Indexed: 11/02/2023]
Abstract
Antimicrobial-resistant bacterial infections threaten to become the number one cause of death by the year 2050. Since the speed at which antimicrobial-resistance develops is exceeding the pace at which new antimicrobials come to the market, this threat cannot be countered by making more, new and stronger antimicrobials. Promising new antimicrobials should not only kill antimicrobial-resistant bacteria, but also prevent development of new bacterial resistance mechanisms in strains still susceptible. Here, PAMAM-dendrimers are clustered using glutaraldehyde to form megamers that are core-loaded with ciprofloxacin and functionalized with HA-SNO. Megamers are enzymatically disintegrated in an acidic pH, as in infectious biofilms, yielding release of ciprofloxacin and NO-generation by HA-SNO. NO-generation does not contribute to the killing of planktonic Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa, but in a biofilm-mode of growth short-lived NO-assisted killing of both ciprofloxacin-susceptible and ciprofloxacin-resistant bacterial strains by the ciprofloxacin released. Repeated sub-culturing of ciprofloxacin-susceptible bacteria in presence of ciprofloxacin-loaded and HA-SNO functionalized PAMAM-megamers does not result in ciprofloxacin-resistant variants as does repeated culturing in presence of ciprofloxacin. Healing of wounds infected by a ciprofloxacin-resistant S. aureus variant treated with ciprofloxacin-loaded, HA-SNO functionalized megamers proceed faster through NO-assisted ciprofloxacin killing of infecting bacteria and stimulation of angiogenesis.
Collapse
Affiliation(s)
- Guimei Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow University199 Ren'ai RdSuzhouJiangsu215123P. R. China
- University of Groningen and University Medical Center GroningenDepartment of Biomedical EngineeringAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Renfei Wu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow University199 Ren'ai RdSuzhouJiangsu215123P. R. China
- University of Groningen and University Medical Center GroningenDepartment of Biomedical EngineeringAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Sidi Liu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow University199 Ren'ai RdSuzhouJiangsu215123P. R. China
- University of Groningen and University Medical Center GroningenDepartment of Biomedical EngineeringAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Tianrong Yu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow University199 Ren'ai RdSuzhouJiangsu215123P. R. China
- University of Groningen and University Medical Center GroningenDepartment of Biomedical EngineeringAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center of GroningenDepartment of OrthodonticsHanzeplein 1Groningen9700 RBThe Netherlands
| | - Henk J. Busscher
- University of Groningen and University Medical Center GroningenDepartment of Biomedical EngineeringAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Henny C. van der Mei
- University of Groningen and University Medical Center GroningenDepartment of Biomedical EngineeringAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow University199 Ren'ai RdSuzhouJiangsu215123P. R. China
| |
Collapse
|
12
|
Zheng G, Li R, Wu P, Zhang L, Qin Y, Wan S, Pei J, Yu P, Fu K, Meyerhoff ME, Liu Y, Zhou Y. Controllable release of nitric oxide from an injectable alginate hydrogel. Int J Biol Macromol 2023; 252:126371. [PMID: 37595726 DOI: 10.1016/j.ijbiomac.2023.126371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Currently, the controlled release of nitric oxide (NO) plays a crucial role in various biomedical applications. However, injectable NO-releasing materials remain an underexplored research field to date. In this study, via the incorporation of S-nitroso-N-acetyl-penicillamine (SNAP) as an NO donor, a family of NO-releasing injectable hydrogels was synthesized through the in situ cross-linking between sodium alginate and calcium ion induced by D-(+)-gluconate δ-lactone as an initiator. Initially, the organic functional groups and the corresponding morphologies of the resulting injectable hydrogels were characterized by IR and SEM spectroscopies, respectively. The NO release times of hydrogels with different SNAP loading amounts could reach up to 36-47 h. Due to the release of NO, the highest antibacterial rates of these injectable hydrogels against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were up to 95 %, respectively. Furthermore, the matrix of these hydrogels demonstrated great water absorption ability, swelling behavior, and degradation performance. Finally, we expect that these NO-releasing injectable hydrogels could have great potential applications various biomedical material fields.
Collapse
Affiliation(s)
- Guangbin Zheng
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Rulin Li
- Department of Spinal Surgery, The Qionghai People's Hospital, Qionghai 571400, China
| | - Peixuan Wu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Lei Zhang
- College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Yao Qin
- College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Shungang Wan
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Jie Pei
- Department of Joint Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Peng Yu
- Department of Joint Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Kun Fu
- Department of Joint Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuanyuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| | - Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
13
|
Li Z, Wei W, Zhang M, Guo X, Zhang B, Wang D, Jiang X, Liu F, Tang J. Cryptotanshinone-Doped Photothermal Synergistic MXene@PDA Nanosheets with Antibacterial and Anti-Inflammatory Properties for Wound Healing. Adv Healthc Mater 2023; 12:e2301060. [PMID: 37387333 DOI: 10.1002/adhm.202301060] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Humans are threatened by bacteria and other microorganisms, resulting in countless pathogen-related infections and illnesses. Accumulation of reactive oxygen species (ROS) in infected wounds activates strong inflammatory responses. The overuse of antibiotics has led to increasing bacterial resistance. Therefore, effective ROS scavenging and bactericidal capacity are essential and the advanced development of collaborative therapeutic techniques to combat bacterial infections is needed. Here, this work developes an MXene@polydopamine-cryptotanshinone (MXene@PDA-CPT) antibacterial nanosystem with excellent reactive oxygen and nitrogen species scavenging ability, which effectively inactivates drug-resistant bacteria and biofilms, thereby promoting wound healing. In this system, the adhesion of polydopamine nanoparticles to MXene produced a photothermal synergistic effect and free radical scavenging activity, presenting a promising antibacterial and anti-inflammatory strategy. This nanosystem causes fatal damage to bacterial membranes. The loading of cryptotanshinone further expanded the advantages of the system, causing a stronger bacterial killing effect and inflammation mitigatory effect with desired biosafety and biocompatibility. In addition, combining nanomaterials and active ingredients of traditional Chinese medicine, this work provides a new rationale for the future development of wound dressings, which contributes to eliminating bacterial resistance, delaying disease deterioration, and alleviating the pain of patients.
Collapse
Affiliation(s)
- Zongjia Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wei Wei
- Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Miaomiao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xinyue Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bailin Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Fangxin Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
14
|
Liu H, Huang Y, Huang M, Wang M, Ming Y, Chen W, Chen Y, Tang Z, Jia B. From nitrate to NO: potential effects of nitrate-reducing bacteria on systemic health and disease. Eur J Med Res 2023; 28:425. [PMID: 37821966 PMCID: PMC10566198 DOI: 10.1186/s40001-023-01413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
Current research has described improving multisystem disease and organ function through dietary nitrate (DN) supplementation. They have provided some evidence that these floras with nitrate (NO3-) reductase are mediators of the underlying mechanism. Symbiotic bacteria with nitrate reductase activity (NRA) are found in the human digestive tract, including the mouth, esophagus and gastrointestinal tract (GT). Nitrate in food can be converted to nitrite under the tongue or in the stomach by these symbiotic bacteria. Then, nitrite is transformed to nitric oxide (NO) by non-enzymatic synthesis. NO is currently recognized as a potent bioactive agent with biological activities, such as vasodilation, regulation of cardiomyocyte function, neurotransmission, suppression of platelet agglutination, and prevention of vascular smooth muscle cell proliferation. NO also can be produced through the conventional L-arginine-NO synthase (L-NOS) pathway, whereas endogenous NO production by L-arginine is inhibited under hypoxia-ischemia or disease conditions. In contrast, exogenous NO3-/NO2-/NO activity is enhanced and becomes a practical supplemental pathway for NO in the body, playing an essential role in various physiological activities. Moreover, many diseases (such as metabolic or geriatric diseases) are primarily associated with disorders of endogenous NO synthesis, and NO generation from the exogenous NO3-/NO2-/NO route can partially alleviate the disease progression. The imbalance of NO in the body may be one of the potential mechanisms of disease development. Therefore, the impact of these floras with nitrate reductase on host systemic health through exogenous NO3-/NO2-/NO pathway production of NO or direct regulation of floras ecological balance is essential (e.g., regulation of body homeostasis, amelioration of diseases, etc.). This review summarizes the bacteria with nitrate reductase in humans, emphasizing the relationship between the metabolic processes of this microflora and host systemic health and disease. The potential effects of nitrate reduction bacteria on human health and disease were also highlighted in disease models from different human systems, including digestive, cardiovascular, endocrine, nervous, respiratory, and urinary systems, providing innovative ideas for future disease diagnosis and treatment based on nitrate reduction bacteria.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Sapkota A, Mondal A, Chug MK, Brisbois EJ. Biomimetic catheter surface with dual action NO-releasing and generating properties for enhanced antimicrobial efficacy. J Biomed Mater Res A 2023; 111:1627-1641. [PMID: 37209058 PMCID: PMC10524361 DOI: 10.1002/jbm.a.37560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
Infection of indwelling catheters is a common healthcare problem, resulting in higher morbidity and mortality. The vulnerable population reliant on catheters post-surgery for food and fluid intake, blood transfusion, or urinary incontinence or retention is susceptible to hospital-acquired infection originating from the very catheter. Bacterial adhesion on catheters can take place during the insertion or over time when catheters are used for an extended period. Nitric oxide-releasing materials have shown promise in exhibiting antibacterial properties without the risk of antibacterial resistance which can be an issue with conventional antibiotics. In this study, 1, 5, and 10 wt % selenium (Se) and 10 wt % S-nitrosoglutathione (GSNO)-incorporated catheters were prepared through a layer-by-layer dip-coating method to demonstrate NO-releasing and NO-generating capability of the catheters. The presence of Se on the catheter interface resulted in a 5 times higher NO flux in 10% Se-GSNO catheter through catalytic NO generation. A physiological level of NO release was observed from 10% Se-GSNO catheters for 5 d, along with an enhanced NO generation via the catalytic activity as Se was able to increase NO availability. The catheters were also found to be compatible and stable when subjected to sterilization and storage, even at room temperature. Additionally, the catheters showed a 97.02% and 93.24% reduction in the adhesion of clinically relevant strains of Escherichia coli and Staphylococcus aureus, respectively. Cytocompatibility testing of the catheter with 3T3 mouse fibroblast cells supports the material's biocompatibility. These findings from the study establish the proposed catheter as a prospective antibacterial material that can be translated into a clinical setting to combat catheter-related infections.
Collapse
Affiliation(s)
- Aasma Sapkota
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Arnab Mondal
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| |
Collapse
|
16
|
Yu B, Deng Y, Jia F, Wang Y, Jin Q, Ji J. A Supramolecular Nitric Oxide Nanodelivery System for Prevention of Tumor Metastasis by Inhibiting Platelet Activation and Aggregation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48515-48526. [PMID: 36278897 DOI: 10.1021/acsami.2c15882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tumor cell-induced platelet aggregation (TCIPA) is known as a critical step in hematogenous tumor metastasis. The endogenous nitric oxide (NO) plays an important role in anticoagulation, which might have great potential to inhibit TCIPA. Herein, a glutathione-sensitive supramolecular nanocarrier is prepared via host-guest interaction for effective delivery of NO and chemotherapeutic agent gemcitabine (GEM). NO could be effectively released in tumor cells and inhibits platelet activation and aggregation. The inhibition of TCIPA by NO could effectively attenuate the migration and invasion of tumor cells in vitro. Furthermore, the in vivo experiments demonstrate that the NO and GEM co-delivered supramolecular nanocarriers can suppress the growth of primary tumor. More importantly, although NO-containing nanocarriers cannot inhibit the growth of primary tumors effectively, they can significantly inhibit tumor metastasis. This NO-based nano-delivery system not only provides new inspiration for multifunctional applications of NO in cancer therapy but also shows great potential in clinical antimetastatic applications.
Collapse
Affiliation(s)
- Bo Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, P. R. China
| | - Yongyan Deng
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, P. R. China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, P. R. China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, P. R. China
| |
Collapse
|
17
|
Chug M, Brisbois EJ. Recent Developments in Multifunctional Antimicrobial Surfaces and Applications toward Advanced Nitric Oxide-Based Biomaterials. ACS MATERIALS AU 2022; 2:525-551. [PMID: 36124001 PMCID: PMC9479141 DOI: 10.1021/acsmaterialsau.2c00040] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023]
Abstract
Implant-associated infections arising from biofilm development are known to have detrimental effects with compromised quality of life for the patients, implying a progressing issue in healthcare. It has been a struggle for more than 50 years for the biomaterials field to achieve long-term success of medical implants by discouraging bacterial and protein adhesion without adversely affecting the surrounding tissue and cell functions. However, the rate of infections associated with medical devices is continuously escalating because of the intricate nature of bacterial biofilms, antibiotic resistance, and the lack of ability of monofunctional antibacterial materials to prevent the colonization of bacteria on the device surface. For this reason, many current strategies are focused on the development of novel antibacterial surfaces with dual antimicrobial functionality. These surfaces are based on the combination of two components into one system that can eradicate attached bacteria (antibiotics, peptides, nitric oxide, ammonium salts, light, etc.) and also resist or release adhesion of bacteria (hydrophilic polymers, zwitterionic, antiadhesive, topography, bioinspired surfaces, etc.). This review aims to outline the progress made in the field of biomedical engineering and biomaterials for the development of multifunctional antibacterial biomedical devices. Additionally, principles for material design and fabrication are highlighted using characteristic examples, with a special focus on combinational nitric oxide-releasing biomedical interfaces. A brief perspective on future research directions for engineering of dual-function antibacterial surfaces is also presented.
Collapse
Affiliation(s)
- Manjyot
Kaur Chug
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Nitric oxide-releasing docetaxel prodrug nanoplatforms for effective cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
do Nascimento DM, Nunes YL, Feitosa JPA, Dufresne A, Rosa MDF. Cellulose nanocrystals-reinforced core-shell hydrogels for sustained release of fertilizer and water retention. Int J Biol Macromol 2022; 216:24-31. [PMID: 35780918 DOI: 10.1016/j.ijbiomac.2022.06.179] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022]
Abstract
Core-shell (CS) hydrogels show great potential for the controlled release of fertilizers. In this work, we prepared an alginate-coated gelatin-cellulose nanocrystals (CNCs) hydrogel by a simple layer-by-layer process. CNCs were prepared from cotton linter fibers by the sulfuric acid process. They were incorporated into the gelatin hydrogel, and an external alginate membrane was applied to the inner membrane. Compared to neat gelatin hydrogel, the compressive modulus of the nanocomposite with 5.0 wt% CNCs was enhanced by 288 %. In addition, the CS hydrogel showed a slow-release property and better water retention capacity than neat gelatin hydrogel. The main results of this work are listed below: compression test revealed that the addition of the CNC increases the mechanical properties of the hydrogel, and ii) the addition of a second layer of alginate to CNC-reinforced gelatin hydrogel increase the water retention and improve the sustained release of fertilizer. Our study provides easy and green routes to produce CS hydrogels for potential agricultural applications.
Collapse
Affiliation(s)
- Diego M do Nascimento
- Department of Organic and Inorganic Chemistry, Federal University of Ceará-UFC, Pici Campus, CP 60455-760 Fortaleza, CE, Brazil.
| | - Yana L Nunes
- Department of Materials Science and Engineering, Federal University of Rio Grande do Norte-UFRN, CP 59078-900 Natal, RN, Brazil
| | - Judith P A Feitosa
- Department of Organic and Inorganic Chemistry, Federal University of Ceará-UFC, Pici Campus, CP 60455-760 Fortaleza, CE, Brazil
| | - Alain Dufresne
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | - Morsyleide de F Rosa
- Embrapa Tropical Agroindustry, R. Dra. Sara Mesquita, CP 60511-110 Fortaleza, CE, Brazil.
| |
Collapse
|