1
|
Yang M, Wang S, Ou X, Ni J, Segawa S, Sun J, Xu F, Kwok RTK, Zhao J, Lam JWY, Jin G, Tang BZ. Reengineering of Donor-Acceptor-Donor Structured Near-Infrared II Aggregation-Induced Emission Luminogens for Starving-Photothermal Antitumor and Inhibition of Lung Metastasis. ACS NANO 2024; 18:30069-30083. [PMID: 39420791 DOI: 10.1021/acsnano.4c11527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Electron acceptor possessing strong electron-withdrawing ability and exceptional stability is crucial for developing donor-acceptor-donor (D-A-D) structured aggregation-induced emission luminogens (AIEgens) with second near-infrared (NIR-II) emission. Although 6,7-diphenyl-[1,2,5] thiadiazolo [3,4-g] quinoxaline (PTQ) and benzobisthiadiazole (BBT) are widely employed as NIR-II building blocks, they still suffer from limited electron-withdrawing capacity or inadequate chemo-stability under alkaline conditions. Herein, a boron difluoride formazanate (BFF) acceptor is utilized to construct NIR-II AIEgen, which exhibits a better overall performance in terms of NIR-II emission and chemo-stability compared to the PTQ- and BBT-derived fluorophores. With finely tuned intramolecular motions and strong D-A interaction strength, TPE-BFF simultaneously exhibits high molar extinction coefficient (ε= 4.31 × 104 M-1cm-1), strong NIR-II emission (Φ = 0.49%) and photothermal effect (η = 58.5%), as well as high stability. Thanks to these merits, the thermosensitive nanoparticles constructed by integrating TPE-BFF and the antiglycolytic agent 2-deoxy-d-glucose (2DG) are successfully utilized for imaging-guided photothermal antitumor lung metastasis by regulating glycolysis and reducing ATP-dependent heat shock proteins. Combining experimental results and theoretical calculations, BFF proves to be an outstanding electron acceptor for the design of versatile NIR-II AIEgens. Overall, this study offers a promising alternative for developing multifunctional NIR-II AIEgens in biomedical applications.
Collapse
Affiliation(s)
- Mingwang Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Suyin Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710048, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xinwen Ou
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Junjun Ni
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710048, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shinsuke Segawa
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710048, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Jing Zhao
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710048, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| |
Collapse
|
2
|
Liu Z, Liu S, Liu B, Meng Q, Yuan M, Ma X, Wang J, Wang M, Li K, Ma P, Lin J. Facile Synthesis of Fe-Based Metal-Quinone Networks for Mutually Enhanced Mild Photothermal Therapy and Ferroptosis. Angew Chem Int Ed Engl 2024:e202414879. [PMID: 39325096 DOI: 10.1002/anie.202414879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Mild photothermal therapy (MPTT) has emerged as a promising therapeutic modality for attenuating thermal damage to the normal tissues surrounding tumors, while the heat-induced upregulation of heat shock proteins (HSPs) greatly compromises the curative efficacy of MPTT by increasing cellular thermo-tolerance. Ferroptosis has been identified to suppress the overexpression of HSPs by the accumulation of lipid peroxides and reactive oxygen species (ROS), but is greatly restricted by overexpressed glutathione (GSH) in tumor microenvironment and undesirable ROS generation efficiency. Herein, a synergistic strategy based on the mutual enhancement of MPTT and ferroptosis is proposed for cleaving HSPs to recover tumor cell sensitivity. A facile method for fabricating a series of Fe-based metal-quinone networks (MQNs) by coordinated assembly is proposed and the representative FTP MQNs possess high photothermal conversion efficiency (69.3 %). Upon 808 nm laser irradiation, FTP MQNs not only trigger effective MPTT to induce apoptosis but more significantly, potentiate Fenton reaction and marked GSH consumption to boost ferroptosis, and the reinforced ferroptosis effect in turn can alleviate the thermal resistance by declining the HSP70 defense and reducing ATP levels. This study provides a valuable rationale for constructing a large library of MQNs for achieving mutual enhancement of MPTT and ferroptosis.
Collapse
Affiliation(s)
- Zhendong Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Sainan Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Qi Meng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyu Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiwei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Kejík Z, Hajduch J, Abramenko N, Vellieux F, Veselá K, Fialová JL, Petrláková K, Kučnirová K, Kaplánek R, Tatar A, Skaličková M, Masařík M, Babula P, Dytrych P, Hoskovec D, Martásek P, Jakubek M. Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy. Commun Chem 2024; 7:180. [PMID: 39138299 PMCID: PMC11322665 DOI: 10.1038/s42004-024-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities. Cyanine dyes, with strong mitochondrial selectivity, show significant potential in enhancing PDT and PTT. The potential and limitations of cyanine dyes for mitochondrial PDT and PTT are discussed, along with their applications in combination therapies, theranostic techniques, and optimal delivery systems. Additionally, novel approaches for sonodynamic therapy using photoactive cyanine dyes are presented, highlighting advances in cancer treatment.
Collapse
Affiliation(s)
- Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Frédéric Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | | | - Kateřina Petrláková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Ameneh Tatar
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| |
Collapse
|
4
|
Shi L, Zhu M, Long R, Wang S, Wang P, Liu Y. Prussian blue nanoparticle-based pH-responsive self-assembly for enhanced photothermal and chemotherapy of tumors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112938. [PMID: 38761749 DOI: 10.1016/j.jphotobiol.2024.112938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
In recent years, there has been growing interest in size-transformable nanoplatforms that exhibit active responses to acidic microenvironments, presenting promising prospects in the field of nanomedicine for tumor therapy. However, the design and fabrication of such size-adjustable nanotherapeutics pose significant challenges compared to size-fixed nanocomposites, primarily due to their distinct pH-responsive requirements. In this study, we developed pH-activated-aggregating nanosystems to integrate chemotherapy and photothermal therapy by creating size-transformable nanoparticles based on Prussian blue nanoparticles (PB NPs) anchored with acid-responsive polyoxometalates (POMs) quantum dots via electrostatic interactions (PPP NPs). Subsequently, we utilized doxorubicin (DOX) as a representative drug to formulate PPPD NPs. Notably, PPPD NPs exhibited a significant response to acidic conditions, resulting in changes in surface charge and rapid aggregation of PPP NPs. Furthermore, the aggregated PPP NPs demonstrated excellent photothermal properties under near-infrared laser irradiation. Importantly, PPPD NPs prolonged their retention time in tumor cells via a size-transformation approach. In vitro cellular assays revealed that the anticancer efficacy of PPPD NPs was significantly enhanced. The IC50 values for the PPPD NPs groupand the PPPD NPs + NIR group were 50.11 μg/mL and 30.9 μg/mL. Overall, this study introduces a novel strategy for cancer therapy by developing size-aggregating nano-drugs with stimuli-responsive properties, holding promise for improved therapeutic outcomes in future combination approaches involving photothermal therapy and chemotherapy.
Collapse
Affiliation(s)
- Linrong Shi
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Mingzhi Zhu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Ruimin Long
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Shibin Wang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Yuangang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China.
| |
Collapse
|
5
|
Yang Y, Liu Q, Wang M, Li L, Yu Y, Pan M, Hu D, Chu B, Qu Y, Qian Z. Genetically programmable cell membrane-camouflaged nanoparticles for targeted combination therapy of colorectal cancer. Signal Transduct Target Ther 2024; 9:158. [PMID: 38862461 PMCID: PMC11167040 DOI: 10.1038/s41392-024-01859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 06/13/2024] Open
Abstract
Cell membrane-camouflaged nanoparticles possess inherent advantages derived from their membrane structure and surface antigens, including prolonged circulation in the bloodstream, specific cell recognition and targeting capabilities, and potential for immunotherapy. Herein, we introduce a cell membrane biomimetic nanodrug platform termed MPB-3BP@CM NPs. Comprising microporous Prussian blue nanoparticles (MPB NPs) serving as both a photothermal sensitizer and carrier for 3-bromopyruvate (3BP), these nanoparticles are cloaked in a genetically programmable cell membrane displaying variants of signal regulatory protein α (SIRPα) with enhanced affinity to CD47. As a result, MPB-3BP@CM NPs inherit the characteristics of the original cell membrane, exhibiting an extended circulation time in the bloodstream and effectively targeting CD47 on the cytomembrane of colorectal cancer (CRC) cells. Notably, blocking CD47 with MPB-3BP@CM NPs enhances the phagocytosis of CRC cells by macrophages. Additionally, 3BP, an inhibitor of hexokinase II (HK2), suppresses glycolysis, leading to a reduction in adenosine triphosphate (ATP) levels and lactate production. Besides, it promotes the polarization of tumor-associated macrophages (TAMs) towards an anti-tumor M1 phenotype. Furthermore, integration with MPB NPs-mediated photothermal therapy (PTT) enhances the therapeutic efficacy against tumors. These advantages make MPB-3BP@CM NPs an attractive platform for the future development of innovative therapeutic approaches for CRC. Concurrently, it introduces a universal approach for engineering disease-tailored cell membranes for tumor therapy.
Collapse
Affiliation(s)
- Yun Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingya Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Danrong Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingyang Chu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Qu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Chen Z, Li Y, Xiang Q, Wu Y, Ran H, Cao Y. Metallic Copper-Based Dual-Enzyme Biomimetic Nanoplatform for Mild Photothermal Enhancement of Anticancer Catalytic Activity. Biomater Res 2024; 28:0034. [PMID: 38840654 PMCID: PMC11151172 DOI: 10.34133/bmr.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Background: Chemodynamic therapy (CDT) is recognized as a promising cancer treatment. Recently, copper sulfide nanostructures have been extensively employed as Fenton-like reagents that catalyze the formation of acutely toxic hydroxyl radicals (·OH) from hydrogen peroxide (H2O2). However, CDT therapeutic potency is restricted by the tumor microenvironment (TME), such as insufficient amounts of hydrogen peroxide, excessive glutathione levels, etc. To address these disadvantages, glucose oxidase (GOx) or catalase (CAT) can be utilized to enhance CDT, while low therapeutic efficacy still inhibits their future applications. Our previous study revealed that mild photothermal effect could boost the CDT catalytic effectiveness as well as GOx enzyme activity over a range. Results: We engineered and constructed a hollow CuS nanoplatform loaded with GOx and CAT, coating with macrophage membranes (M@GOx-CAT@CuS NPs). The nanoplatforms allowed enhancement of the reactive oxygen species creation rate and GOx catalytic activeness of CDT through mild phototherapy directed by photoacoustic imaging. After actively targeting vascular cell adhesion molecule-1 (VCAM-1) in cancer cells mediated by macrophage membrane coating, M@GOx-CAT@CuS NPs released GOx and CAT under near-infrared irradiation. GOx catalyzed the formation of H2O2 and gluconic acid with glucose, creating a better catalytic environment for CDT. Meanwhile, CAT-catalyzed H2O2 decomposition to generate sufficient oxygen, appropriately alleviating the oxygen shortage in the TME. In addition, starvation effects decreased adenosine triphosphate levels and further underregulated heat shock protein expression to reduce the heat resistance of tumor cells, resulting in a better mild phototherapy outcome. Both in vitro and in vivo experiments demonstrated that the newly developed M@GOx-CAT@CuS nanoplatform has remarkable synergistic anticancer therapeutic effects. Conclusion: The cascade reaction-enhanced biomimetic nanoplatform opens up a new avenue for precision tumor diagnostic and therapeutic research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Institute of Ultrasound Imaging,
State Key Laboratory of Ultrasound in Medicine and Engineering of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Yan Z, Wu X, Tan W, Yan J, Zhou J, Chen S, Miao J, Cheng J, Shuai C, Deng Y. Single-Atom Cu Nanozyme-Loaded Bone Scaffolds for Ferroptosis-Synergized Mild Photothermal Therapy in Osteosarcoma Treatment. Adv Healthc Mater 2024; 13:e2304595. [PMID: 38424663 DOI: 10.1002/adhm.202304595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The rapid multiplication of residual tumor cells and poor reconstruction quality of new bone are considered the major challenges in the postoperative treatment of osteosarcoma. It is a promising candidate for composite bone scaffold which combines photothermal therapy (PTT) and bone regeneration induction for the local treatment of osteosarcoma. However, it is inevitable to damage the normal tissues around the tumor due to the hyperthermia of PTT, while mild heat therapy shows a limited effect on antitumor treatment as the damage can be easily repaired by stress-induced heat shock proteins (HSP). This study reports a new type of single-atom Cu nanozyme-loaded bone scaffolds, which exhibit exceptional photothermal conversion properties as well as peroxidase and glutathione oxidase mimicking activities in vitro experiments. This leads to lipid peroxidation (LPO) and reactive oxygen species (ROS) upregulation, ultimately causing ferroptosis. The accumulation of LPO and ROS also contributes to HSP70 inactivation, maximizing PTT efficiency against tumors at an appropriate therapeutic temperature and minimizing the damage to surrounding normal tissues. Further, the bone scaffold promotes bone regeneration via a continuous release of bioactive ions (Ca2+, P5+, Si4+, and Cu2+). The results of in vivo experiments reveal that scaffolds inhibit tumor growth and promote bone repair.
Collapse
Affiliation(s)
- Zuyun Yan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Xin Wu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410017, P. R. China
| | - Jun Zhou
- Medical Science Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Jinglei Miao
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Jun Cheng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
8
|
Yan X, Li K, Xie TQ, Jin XK, Zhang C, Li QR, Feng J, Liu CJ, Zhang XZ. Bioorthogonal "Click and Release" Reaction-Triggered Aggregation of Gold Nanoparticles Combined with Released Lonidamine for Enhanced Cancer Photothermal Therapy. Angew Chem Int Ed Engl 2024; 63:e202318539. [PMID: 38303647 DOI: 10.1002/anie.202318539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Cancer has been the most deadly disease, and 13 million cancer casualties are estimated to occur each year by 2030. Gold nanoparticles (AuNPs)-based photothermal therapy (PTT) has attracted great interest due to its high spatiotemporal controllability and noninvasiveness. Due to the trade-off between particle size and photothermal efficiency of AuNPs, rational design is needed to realize aggregation of AuNPs into larger particles with desirable NIR adsorption in tumor site. Exploiting the bioorthogonal "Click and Release" (BCR) reaction between iminosydnone and cycloalkyne, aggregation of AuNPs can be achieved and attractively accompanied by the release of chemotherapeutic drug purposed to photothermal synergizing. We synthesize iminosydnone-lonidamine (ImLND) as a prodrug and choose dibenzocyclooctyne (DBCO) as the trigger of BCR reaction. A PEGylated AuNPs-based two-component nanoplatform consisting of prodrug-loaded AuNPs-ImLND and tumor-targeting peptide RGD-conjugated AuNPs-DBCO-RGD is designed. In the therapeutic regimen, AuNPs-DBCO-RGD are intravenously injected first for tumor-specific enrichment and retention. Once the arrival of AuNPs-ImLND injected later at tumor site, highly photothermally active nanoaggregates of AuNPs are formed via the BCR reaction between ImLND and DBCO. The simultaneous release of lonidamine further enhanced the therapeutic performance by sensitizing cancer cells to PTT.
Collapse
Affiliation(s)
- Xiao Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Ke Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Tian-Qiu Xie
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiao-Kang Jin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Qian-Ru Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chuan-Jun Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
9
|
Wang P, Sun S, Bai G, Zhang R, Liang F, Zhang Y. Nanosized Prussian blue and its analogs for bioimaging and cancer theranostics. Acta Biomater 2024; 176:77-98. [PMID: 38176673 DOI: 10.1016/j.actbio.2023.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Prussian blue (PB) nanoparticles (NPs) and Prussian blue analogs (PBAs) can form metal-organic frameworks through the programmable coordination of ferrous ions with cyanide. PB and PBAs represent a burgeoning class of hybrid functional nano-systems with a wide-ranging application spectrum encompassing biomedicine, cancer diagnosis, and therapy. A comprehensive overview of recent advancements is crucial for gaining insights for future research. In this context, we reviewed the synthesis techniques and surface modification strategies employed to tailor the dimensions, morphology, and attributes of PB NPs. Subsequently, we explored advanced biomedical utilities of PB NPs, encompassing photoacoustic imaging, magnetic resonance imaging, ultrasound (US) imaging, and multimodal imaging. In particular, the application of PB NPs-mediated photothermal therapy, photodynamic therapy, and chemodynamic therapy to cancer treatment was reviewed. Based on the literature, we envision an evolving trajectory wherein the future of Prussian blue-driven biological applications converge into an integrated theranostic platform, seamlessly amalgamating bioimaging and cancer therapy. STATEMENT OF SIGNIFICANCE: Prussian blue, an FDA-approved coordinative pigment with a centuries-long legacy, has paved the way for Prussian blue nanoparticles (PB NPs), renowned for their remarkable biocompatibility and biosafety. These PB NPs have found their niche in biomedicine, playing crucial roles in both diagnostics and therapeutic applications. The comprehensive review goes beyond PB NP-based cancer therapy. Alongside in-depth coverage of PB NP synthesis and surface modifications, the review delves into their cutting-edge applications in the realm of biomedical imaging, encompassing techniques such as photoacoustic imaging, magnetic resonance imaging, ultrasound imaging, and multimodal imaging.
Collapse
Affiliation(s)
- Pengfei Wang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Shaohua Sun
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Guosheng Bai
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Ruiqi Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Fei Liang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Yuezhou Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China; Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Key Laboratory of Flexible Electronics of Zhejiang Province, 218 Qingyi Road, Ningbo, 315103, China.
| |
Collapse
|
10
|
Lu Y, Fan L, Wang J, Hu M, Wei B, Shi P, Li J, Feng J, Zheng Y. Cancer Cell Membrane-Based Materials for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306540. [PMID: 37814370 DOI: 10.1002/smll.202306540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Indexed: 10/11/2023]
Abstract
The nanodelivery system provides a novel direction for disease diagnosis and treatment; however, its delivery effectiveness is restricted by the short biological half-life and inadequate tumor targeting. The immune evasion properties and homologous targeting capabilities of natural cell membranes, particularly those of cancer cell membranes (CCM), have gained significant interest. The integration of CCM and nanoparticles has resulted in the emergence of CCM-based nanoplatforms (CCM-NPs), which have gained significant attention due to their unique properties. CCM-NPs not only prolong the blood circulation time of core nanoparticles, but also direct them for homologous tumor targeting. Herein, the history and development of CCM-NPs as well as how these platforms have been used for biomedical applications are discussed. The application of CCM-NPs for cancer therapy will be described in detail. Translational efforts are currently under way and further research to address key areas of need will ultimately be required to facilitate the successful clinical adoption of CCM-NPs.
Collapse
Affiliation(s)
- Yongping Lu
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
- Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Linming Fan
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jun Wang
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Mingxiang Hu
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Baogang Wei
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Ping Shi
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Jinyan Feng
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Yu Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
11
|
Li S, Meng X, Peng B, Huang J, Liu J, Xiao H, Ma L, Liu Y, Tang J. Cell membrane-based biomimetic technology for cancer phototherapy: Mechanisms, recent advances and perspectives. Acta Biomater 2024; 174:26-48. [PMID: 38008198 DOI: 10.1016/j.actbio.2023.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Despite significant advances in medical technology and antitumour treatments, the diagnosis and treatment of tumours have undergone remarkable transformations. Noninvasive phototherapy methods, such as photodynamic therapy (PDT) and photothermal therapy (PTT), have gained significant interest in antitumour medicine. However, traditional photosensitisers or photothermal agents face challenges like immune system recognition, rapid clearance from the bloodstream, limited tumour accumulation, and phototoxicity concerns. Researchers combine photosensitisers or photothermal agents with natural cell membranes to overcome these obstacles to create a nano biomimetic therapeutic platform. When used to coat nanoparticles, red blood cells, platelets, cancer cells, macrophages, lymphocytes, and bacterial outer membranes could provide prolonged circulation, tumour targeting, immune stimulation, or antigenicity. This article covers the principles of cellular membrane biomimetic nanotechnology and phototherapy, along with recent advancements in applying nano biomimetic technology to PDT, PTT, PCT, and combined diagnosis and treatment. Furthermore, the challenges and issues of using nano biomimetic nanoparticles in phototherapy are discussed. STATEMENT OF SIGNIFICANCE: Currently, there has been significant progress in the field of cell membrane biomimetic technology. Researchers are exploring its potential application in tumor diagnosis and treatment through phototherapy. Scholars have conducted extensive research on combining cell membrane technology and phototherapy in anticancer diagnosis and treatment. This review aims to highlight the mechanisms of phototherapy and the latest advancements in single phototherapy (PTT, PDT) and combination phototherapy (PCT, PRT, and PIT), as well as diagnostic approaches. The review provides an overview of various cell membrane technologies, including RBC membranes, platelet membranes, macrophage cell membranes, tumour cell membranes, bacterial membranes, hybrid membranes, and their potential for anticancer applications under phototherapy. Lastly, the review discusses the challenges and future directions in this field.
Collapse
Affiliation(s)
- Songtao Li
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiangrui Meng
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Bo Peng
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ju Huang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jingwen Liu
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hang Xiao
- College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Li Ma
- College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China.
| | - Jianyuan Tang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
12
|
Wu Y, Tian J, Yang J, Peng Q, Wu Z, Liu R, Luo M, Qiu Y, Cao R. Bufotalin-loaded biomimetic Prussian blue nanoparticles for colorectal cancer chemo-photothermal ferroptosis therapy. Nanomedicine (Lond) 2024; 19:109-125. [PMID: 38197393 DOI: 10.2217/nnm-2023-0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Purpose: We constructed biomimetic nanoparticles with biocompatible, tumor-targeting, laser-responsive properties for ferroptosis-induced colorectal cancer chemo-photothermal therapy, with the aim to realize double-hit ferroptosis treatment for colorectal cancer. Methods: The nanoparticles were prepared by first loading the chemotherapy drug bufotalin (CS-5) with Prussian blue (PB), then combining a hybridized erythrocyte-tumor membrane (M) with PB@CS-5 to produce PB@CS-5@M. The chemo-photothermal therapy efficiency of PB@CS-5@M was tested by in vitro and in vivo experiments. Results and conclusion: The combined PB and CS-5 act as promising ferroptosis inducers to enhance ferroptosis efficacy. The hyperthermia induced by laser stimulation can trigger PB to release CS-5 and iron and ferrous ions, which further promotes ferroptosis.
Collapse
Affiliation(s)
- Yi Wu
- The First Affiliated Hospital of Hunan Normal University, Changsha, 410013, China
- Immunodiagnostic Reagents Engineering Research Center of Hunan Province, Hunan Normal University, Changsha, 410013, China
| | - Jiahui Tian
- The First Affiliated Hospital of Hunan Normal University, Changsha, 410013, China
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, 410013, China
- Immunodiagnostic Reagents Engineering Research Center of Hunan Province, Hunan Normal University, Changsha, 410013, China
| | - Jialu Yang
- The First Affiliated Hospital of Hunan Normal University, Changsha, 410013, China
| | - Qian Peng
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | | | - Rushi Liu
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, 410013, China
- Immunodiagnostic Reagents Engineering Research Center of Hunan Province, Hunan Normal University, Changsha, 410013, China
| | - Mengjie Luo
- Shenzhen Yantian District People's Hospital, Shenzhen, 518081, China
| | - Yilan Qiu
- Immunodiagnostic Reagents Engineering Research Center of Hunan Province, Hunan Normal University, Changsha, 410013, China
- School of Life Science, Hunan Normal University, Changsha, 410013, China
| | - Ruiyun Cao
- Wujin Hospital of Traditional Chinese Medicine, Changzhou, 213161, China
| |
Collapse
|
13
|
Melo BL, Lima-Sousa R, Alves CG, Correia IJ, de Melo-Diogo D. Sulfobetaine methacrylate-coated reduced graphene oxide-IR780 hybrid nanosystems for effective cancer photothermal-photodynamic therapy. Int J Pharm 2023; 647:123552. [PMID: 37884216 DOI: 10.1016/j.ijpharm.2023.123552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Nanomaterials with near infrared light absorption can mediate an antitumoral photothermal-photodynamic response that is weakly affected by cancer cells' resistance mechanisms. Such nanosystems are commonly prepared by loading photosensitizers into nanomaterials displaying photothermal capacity, followed by functionalization to achieve biological compatibility. However, the translation of these multifunctional nanomaterials has been limited by the fact that many of the photosensitizers are not responsive to near infrared light. Furthermore, the reliance on poly(ethylene glycol) for functionalizing the nanomaterials is also not ideal due to some immunogenicity reports. Herein, a novel photoeffective near infrared light-responsive nanosystem for cancer photothermal-photodynamic therapy was assembled. For such, dopamine-reduced graphene oxide was, for the first time, functionalized with sulfobetaine methacrylate-brushes, and then loaded with IR780 (IR780/SB/DOPA-rGO). This hybrid system revealed a nanometric size distribution, optimal surface charge and colloidal stability. The interaction of IR780/SB/DOPA-rGO with near infrared light prompted a temperature increase (photothermal effect) and production of singlet oxygen (photodynamic effect). In in vitro studies, the IR780/SB/DOPA-rGO per se did not elicit cytotoxicity (viability > 78 %). In contrast, the combination of IR780/SB/DOPA-rGO with near infrared light decreased breast cancer cells' viability to just 21 %, at a very low nanomaterial dose, highlighting its potential for cancer photothermal-photodynamic therapy.
Collapse
Affiliation(s)
- Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
14
|
Yang Z, Yang X, Guo Y, Kawasaki H. A Review on Gold Nanoclusters for Cancer Phototherapy. ACS APPLIED BIO MATERIALS 2023; 6:4504-4517. [PMID: 37828759 DOI: 10.1021/acsabm.3c00518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Cancer phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has been extensively studied in recent years because of its noninvasive properties, high efficiency, improved selectivity, and reduced side effects. Gold nanoclusters (AuNCs) have the advantages of high biocompatibility, high biosafety, excellent photoresponse, and high tumor penetration ability. This review analyzes the use of AuNCs in tumor phototherapy in recent years from three aspects, namely, AuNCs in PDT, AuNCs in PTT, and AuNCs in combination therapy, and presents the high potential of AuNCs in cancer phototherapy. This review aims to provide readers with the unique advantages, diversified application approaches, and bright application prospects of AuNCs in phototherapy and to provide insights into strategies for applying AuNCs to tumor phototherapy.
Collapse
Affiliation(s)
- Zhuoren Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiebingqing Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan
| | - Hideya Kawasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan
| |
Collapse
|
15
|
Aboeleneen SB, Scully MA, Kramarenko GC, Day ES. Combination cancer imaging and phototherapy mediated by membrane-wrapped nanoparticles. Int J Hyperthermia 2023; 40:2272066. [PMID: 37903544 PMCID: PMC10698846 DOI: 10.1080/02656736.2023.2272066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023] Open
Abstract
Cancer is a devastating health problem with inadequate treatment options. Many conventional treatments for solid-tumor cancers lack tumor specificity, which results in low efficacy and off-target damage to healthy tissues. Nanoparticle (NP)-mediated photothermal therapy (PTT) is a promising minimally invasive treatment for solid-tumor cancers that has entered clinical trials. Traditionally, NPs used for PTT are coated with passivating agents and/or targeting ligands, but alternative coatings are being explored to enhance tumor specific delivery. In particular, cell-derived membranes have emerged as promising coatings that improve the biointerfacing of photoactive NPs, which reduces their immune recognition, prolongs their systemic circulation and increases their tumor accumulation, allowing for more effective PTT. To maximize treatment success, membrane-wrapped nanoparticles (MWNPs) that enable dual tumor imaging and PTT are being explored. These multifunctional theranostic NPs can be used to enhance tumor detection and/or ensure a sufficient quantity of NPs that have arrived in the tumor prior to laser irradiation. This review summarizes the current state-of-the-art in engineering MWNPs for combination cancer imaging and PTT and discusses considerations for the path toward clinical translation.
Collapse
Affiliation(s)
- Sara B. Aboeleneen
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Mackenzie A. Scully
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | | | - Emily S. Day
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Department of Materials Science & Engineering, University of Delaware, Newark, DE, USA
- Helen F. Graham Cancer Center & Research Institute, Newark, DE, USA
| |
Collapse
|
16
|
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi MA, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact Mater 2023; 23:471-507. [PMID: 36514388 PMCID: PMC9727595 DOI: 10.1016/j.bioactmat.2022.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Shiqi Wang
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Christos Tapeinos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Huijie Han
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
17
|
Dong S, Dong Y, Zhao Z, Liu J, Liu S, Feng L, He F, Gai S, Xie Y, Yang P. "Electron Transport Chain Interference" Strategy of Amplified Mild-Photothermal Therapy and Defect-Engineered Multi-Enzymatic Activities for Synergistic Tumor-Personalized Suppression. J Am Chem Soc 2023; 145:9488-9507. [PMID: 36998235 DOI: 10.1021/jacs.2c09608] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Arming activatable mild-photothermal therapy (PTT) with the property of relieving tumor thermotolerance holds great promise for overcoming traditional mild PTT limitations such as thermoresistance, insufficient therapeutic effect, and off-target heating. Herein, a mitochondria-targeting, defect-engineered AFCT nanozyme with enhanced multi-enzymatic activity was elaborately designed as a tumor microenvironment (TME)-activatable phototheranostic agent to achieve remarkable anti-tumor therapy via "electron transport chain (ETC) interference and synergistic adjuvant therapy". Density functional theory calculations revealed that the synergistic effect among multi-enzyme active centers endows the AFCT nanozymes with excellent catalytic activity. In TME, open sources of H2O2 can be achieved by superoxide dismutase-mimicking AFCT nanozymes. In response to the dual stimuli of H2O2 and mild acidity, the peroxidase-mimicking activity of AFCT nanozymes not only catalyzes the accumulation of H2O2 to generate ·OH but also converts the loaded 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) into its oxidized form with strong near-infrared absorption, specifically unlocking its photothermal and photoacoustic imaging properties. Intriguingly, the undesired thermoresistance of tumor cells can be greatly alleviated owing to the reduced expression of heat shock proteins enabled by NADH POD-mimicking AFCT-mediated NADH depletion and consequent restriction of ATP supply. Meanwhile, the accumulated ·OH can facilitate both apoptosis and ferroptosis in tumor cells, resulting in synergistic therapeutic outcomes in combination with TME-activated mild PTT.
Collapse
Affiliation(s)
- Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Zhiyu Zhao
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P. R. China
| | - Jing Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shikai Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
18
|
Chen BQ, Zhao Y, Zhang Y, Pan YJ, Xia HY, Kankala RK, Wang SB, Liu G, Chen AZ. Immune-regulating camouflaged nanoplatforms: A promising strategy to improve cancer nano-immunotherapy. Bioact Mater 2023; 21:1-19. [PMID: 36017071 PMCID: PMC9382433 DOI: 10.1016/j.bioactmat.2022.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 02/06/2023] Open
Abstract
Although nano-immunotherapy has advanced dramatically in recent times, there remain two significant hurdles related to immune systems in cancer treatment, such as (namely) inevitable immune elimination of nanoplatforms and severely immunosuppressive microenvironment with low immunogenicity, hampering the performance of nanomedicines. To address these issues, several immune-regulating camouflaged nanocomposites have emerged as prevailing strategies due to their unique characteristics and specific functionalities. In this review, we emphasize the composition, performances, and mechanisms of various immune-regulating camouflaged nanoplatforms, including polymer-coated, cell membrane-camouflaged, and exosome-based nanoplatforms to evade the immune clearance of nanoplatforms or upregulate the immune function against the tumor. Further, we discuss the applications of these immune-regulating camouflaged nanoplatforms in directly boosting cancer immunotherapy and some immunogenic cell death-inducing immunotherapeutic modalities, such as chemotherapy, photothermal therapy, and reactive oxygen species-mediated immunotherapies, highlighting the current progress and recent advancements. Finally, we conclude the article with interesting perspectives, suggesting future tendencies of these innovative camouflaged constructs towards their translation pipeline.
Collapse
Affiliation(s)
- Biao-Qi Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Yi Zhao
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yu-Jing Pan
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Hong-Ying Xia
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China
| |
Collapse
|
19
|
Ganji C, Muppala V, Khan M, Purnachandra Nagaraju G, Farran B. Mitochondrial-targeted nanoparticles: Delivery and therapeutic agents in cancer. Drug Discov Today 2023; 28:103469. [PMID: 36529353 DOI: 10.1016/j.drudis.2022.103469] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Mitochondria are the powerhouses of cells and modulate the essential metabolic functions required for cellular survival. Various mitochondrial pathways, such as oxidative phosphorylation or production of reactive oxygen species (ROS) are dysregulated during cancer growth and development, rendering them attractive targets against cancer. Thus, the delivery of antitumor agents to mitochondria has emerged as a potential approach for treating cancer. Recent advances in nanotechnology have provided innovative solutions for overcoming the physical barriers posed by the structure of mitochondrial organelles, and have enabled the development of efficient mitochondrial nanoplatforms. In this review, we examine the importance of mitochondria during neoplastic development, explore the most recent smart designs of nano-based systems aimed at targeting mitochondria, and highlight key mitochondrial pathways in cancer cells.
Collapse
Affiliation(s)
- Chaithanya Ganji
- Department of Hematology and Oncology, School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Veda Muppala
- Department of Hematology and Oncology, School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Musaab Khan
- Department of Hematology and Oncology, School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
20
|
Biomimetic Prussian blue nanozymes with enhanced bone marrow-targeting for treatment of radiation-induced hematopoietic injury. Biomaterials 2023; 293:121980. [PMID: 36580722 DOI: 10.1016/j.biomaterials.2022.121980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
There is an urgent medical need to develop effective therapies that can ameliorate damage to the radiation-exposed hematopoietic system. Nanozymes with robust antioxidant properties have a therapeutic potential for mitigating radiation-induced hematopoietic injury. However, enhancing nanozyme recruitment to injured tissues in vivo while maintaining their catalytic activity remains a great challenge. Herein, we present the design and preparation of a biomimetic nanoparticle, a mesenchymal stem cell membrane camouflaged Prussian blue nanozyme (PB@MSCM), which exhibits biocompatible surface properties and demonstrates enhanced injury site-targeting towards the irradiated murine bone marrow niche. Notably, the constructed PB@MSCM possessed redox enzyme-mimic catalytic activity and could scavenge overproduced reactive oxygen species in the irradiated bone marrow cells, both in vitro and ex vivo. More importantly, the administration of PB@MSCM significantly mitigated hematopoietic cell apoptosis and accelerated the regeneration of hematopoietic stem and progenitor cells. Our findings provide a new targeted strategy to improve nanozyme therapy in vivo and mitigate radiation-induced hematopoietic injury.
Collapse
|
21
|
Wang M, Wang Y, Li X, Zhang H. Development of a photothermal-sensing microfluidic paper-based analytical chip (PT-Chip) for sensitive quantification of diethylstilbestrol. Food Chem 2023; 402:134128. [DOI: 10.1016/j.foodchem.2022.134128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022]
|
22
|
Zhang B, Chen G, Wu X, Li Y, Xiao Y, Li J, He L, Li Y, Wang S, Zhao J, Liu C, Zhou H, Li Y, Pei X. Biomimetic Prussian blue nanozymes with enhanced bone marrow-targeting for treatment of radiation-induced hematopoietic injury. Biomaterials 2023; 293:121980. [DOI: https:/doi.org/10.1016/j.biomaterials.2022.121980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
|
23
|
Doveri L, Taglietti A, Grisoli P, Pallavicini P, Dacarro G. Dual mode antibacterial surfaces based on Prussian blue and silver nanoparticles. Dalton Trans 2023; 52:452-460. [PMID: 36525102 DOI: 10.1039/d2dt03058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prussian Blue (PB) is an inexpensive, biocompatible, photothermally active material. In this paper, self-assembled monolayers of PB nanoparticles were grafted on a glass surface, protected with a thin layer of silica and decorated with spherical silver nanoparticles. This combination of a photothermally active nanomaterial, PB, and an intrinsically antibacterial one, silver, leads to a versatile coating that can be used for medical devices and implants. The intrinsic antibacterial action of nanosilver, always active over time, can be enhanced on demand by switching on the photothermal effect of PB using near infrared (NIR) radiation, which has a good penetration depth through tissues and low side effects. Glass surfaces functionalized by this layer-by-layer approach have been characterized for their morphology and composition, and their intrinsic and photothermal antibacterial effect was studied against Gram+ and Gram- planktonic bacteria.
Collapse
Affiliation(s)
- Lavinia Doveri
- University of Pavia - Department of Chemistry and Center for Health Technologies; Via Taramelli 12, I-27100 Pavia, Italy.
| | - Angelo Taglietti
- University of Pavia - Department of Chemistry and Center for Health Technologies; Via Taramelli 12, I-27100 Pavia, Italy.
| | - Pietro Grisoli
- University of Pavia - Department of Drug Science; Via Taramelli 12, I-27100 Pavia, Italy
| | - Piersandro Pallavicini
- University of Pavia - Department of Chemistry and Center for Health Technologies; Via Taramelli 12, I-27100 Pavia, Italy.
| | - Giacomo Dacarro
- University of Pavia - Department of Chemistry and Center for Health Technologies; Via Taramelli 12, I-27100 Pavia, Italy.
| |
Collapse
|
24
|
Zhang X, Qu Q, Yang A, Wang J, Cheng W, Deng Y, Zhou A, Lu T, Xiong R, Huang C. Chitosan enhanced the stability and antibiofilm activity of self-propelled Prussian blue micromotor. Carbohydr Polym 2023; 299:120134. [PMID: 36876772 DOI: 10.1016/j.carbpol.2022.120134] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/11/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
The emergence, spread and difficult removal of bacteria biofilm, represent an ever-increasing persistent infections and medical complications challenge worldwide. Herein, a self-propelled system Prussian blue micromotor (PB MMs) were constructed by gas-shearing technology for efficient degradation of biofilms by combining chemodynamic therapy (CDT) and photothermal therapy (PTT). With the interpenetrating network crosslinked by alginate, chitosan (CS) and metal ions as the substrate, PB was generated and embedded in the micromotor at the same time of crosslinking. The micromotors are more stable and could capture bacteria with the addition of CS. The micromotors show excellent performance, containing photothermal conversion, reactive oxygen species (ROS) generation and bubble produced by catalyzing Fenton reaction for motion, which served as therapeutic agent could chemically kill bacteria and physically destroy biofilm. This research work opens a new path of an innovative strategy to efficiently remove biofilm.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qingli Qu
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Anquan Yang
- Zhejiang OSM Group Co., Ltd, Huzhou 313000, PR China
| | - Jing Wang
- Zhejiang OSM Group Co., Ltd, Huzhou 313000, PR China
| | - Weixia Cheng
- Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Yankang Deng
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Aying Zhou
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Tao Lu
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ranhua Xiong
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chaobo Huang
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
25
|
He X, Zhang S, Tian Y, Cheng W, Jing H. Research Progress of Nanomedicine-Based Mild Photothermal Therapy in Tumor. Int J Nanomedicine 2023; 18:1433-1468. [PMID: 36992822 PMCID: PMC10042261 DOI: 10.2147/ijn.s405020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
With the booming development of nanomedicine, mild photothermal therapy (mPTT, 42-45°C) has exhibited promising potential in tumor therapy. Compared with traditional PTT (>50°C), mPTT has less side effects and better biological effects conducive to tumor treatment, such as loosening the dense structure in tumor tissues, enhancing blood perfusion, and improving the immunosuppressive microenvironment. However, such a relatively low temperature cannot allow mPTT to completely eradicate tumors, and therefore, substantial efforts have been conducted to optimize the application of mPTT in tumor therapy. This review extensively summarizes the latest advances of mPTT, including two sections: (1) taking mPTT as a leading role to maximize its effect by blocking the cell defense mechanisms, and (2) regarding mPTT as a supporting role to assist other therapies to achieve synergistic antitumor curative effect. Meanwhile, the special characteristics and imaging capabilities of nanoplatforms applied in various therapies are discussed. At last, this paper puts forward the bottlenecks and challenges in the current research path of mPTT, and possible solutions and research directions in future are proposed correspondingly.
Collapse
Affiliation(s)
- Xiang He
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Shentao Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Correspondence: Hui Jing; Wen Cheng, Department of Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People’s Republic of China, Tel +86 13304504935; +86 13313677182, Email ;
| |
Collapse
|
26
|
Dai Y, Sha X, Song X, Zhang X, Xing M, Liu S, Xu K, Li J. Targeted Therapy of Atherosclerosis Vulnerable Plaque by ROS-Scavenging Nanoparticles and MR/Fluorescence Dual-Modality Imaging Tracing. Int J Nanomedicine 2022; 17:5413-5429. [PMID: 36419720 PMCID: PMC9677925 DOI: 10.2147/ijn.s371873] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose Early diagnosis and treatment of atherosclerosis (AS) vulnerable plaque has important clinical significance for the prognosis of patients. In this work, the integrated diagnosis and treatment nanoparticles based on Gd-doped Prussian blue (GPB) were constructed for the fluorescence/MR dual-mode imaging and anti-ROS treatment of vulnerable AS plaques in vitro and in vivo. Methods To fabricate the theranostic NPs, GPB was modified with water-soluble polymer polyethyleneimine (PEI), fluorescence molecule rhodamine (Rd), and targeted molecule dextran sulfate (DS) step by step via electrostatic adsorption to construct GPRD NPs. The fluorescence/MR imaging ability and various nano-enzymes activity of GPRD NPs were detected, and the biocompatibility and safety of GPRD were also evaluated. Subsequently, RAW264.7 cells and ApoE -/- model mice were used to evaluate the effect of GPRD NPs on the targeted dual-mode imaging and anti-ROS treatment of vulnerable plaque in vitro and in vivo. Results The experimental results showed that our fabricated GPRD NPs not only displayed excellent MR/fluorescence dual-modality imaging of vulnerable plaque in vivo but also effectively utilized the nano-enzyme activity of GPB to inhibit the AS progress by ROS scavenging and the following reduction of inflammation, apoptosis, and foam cells’ formation, providing a new avenue for the diagnosis and treatment of AS vulnerable plaque. Conclusion The fabricated multimodal imaging nanoparticles with ROS-scavenging ability provided a new avenue for the diagnosis and treatment of AS vulnerable plaques.
Collapse
Affiliation(s)
- Yue Dai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People’s Republic of China
| | - Xuan Sha
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
| | - Xiaoxi Song
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
| | - Xiuli Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People’s Republic of China
| | - Mengyuan Xing
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
| | - Siwen Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People’s Republic of China
- Correspondence: Kai Xu; Jingjing Li, Email ;
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People’s Republic of China
| |
Collapse
|
27
|
Advancements of Prussian blue-based nanoplatforms in biomedical fields: Progress and perspectives. J Control Release 2022; 351:752-778. [DOI: 10.1016/j.jconrel.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 12/07/2022]
|
28
|
Wang P, Chen B, Zhan Y, Wang L, Luo J, Xu J, Zhan L, Li Z, Liu Y, Wei J. Enhancing the Efficiency of Mild-Temperature Photothermal Therapy for Cancer Assisting with Various Strategies. Pharmaceutics 2022; 14:2279. [PMID: 36365098 PMCID: PMC9695556 DOI: 10.3390/pharmaceutics14112279] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/30/2022] Open
Abstract
Conventional photothermal therapy (PTT) irradiates the tumor tissues by elevating the temperature above 48 °C to exert thermal ablation, killing tumor cells. However, thermal ablation during PTT harmfully damages the surrounding normal tissues, post-treatment inflammatory responses, rapid metastasis due to the short-term mass release of tumor-cellular contents, or other side effects. To circumvent this limitation, mild-temperature photothermal therapy (MTPTT) was introduced to replace PTT as it exerts its activity at a therapeutic temperature of 42-45 °C. However, the significantly low therapeutic effect comes due to the thermoresistance of cancer cells as MTPTT figures out some of the side-effects issues. Herein, our current review suggested the mechanism and various strategies for improving the efficacy of MTPTT. Especially, heat shock proteins (HSPs) are molecular chaperones overexpressed in tumor cells and implicated in several cellular heat shock responses. Therefore, we introduced some methods to inhibit activity, reduce expression levels, and hinder the function of HSPs during MTPTT treatment. Moreover, other strategies also were emphasized, including nucleus damage, energy inhibition, and autophagy mediation. In addition, some therapies, like radiotherapy, chemotherapy, photodynamic therapy, and immunotherapy, exhibited a significant synergistic effect to assist MTPTT. Our current review provides a basis for further studies and a new approach for the clinical application of MTPTT.
Collapse
Affiliation(s)
- Pei Wang
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Biaoqi Chen
- Institute of Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Yunyan Zhan
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Lianguo Wang
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Jun Luo
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Jia Xu
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Lilin Zhan
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Yuangang Liu
- Institute of Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| |
Collapse
|
29
|
Xin Y, Sun Z, Liu J, Li W, Wang M, Chu Y, Sun Z, Deng G. Nanomaterial-mediated low-temperature photothermal therapy via heat shock protein inhibition. Front Bioeng Biotechnol 2022; 10:1027468. [PMID: 36304896 PMCID: PMC9595601 DOI: 10.3389/fbioe.2022.1027468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
With the continuous development of nanobiotechnology in recent years, combining photothermal materials with nanotechnology for tumor photothermal therapy (PTT) has drawn many attentions nanomedicine research. Although nanomaterial-mediated PTT is more specific and targeted than traditional treatment modalities, hyperthermia can also damage normal cells. Therefore, researchers have proposed the concept of low-temperature PTT, in which the expression of heat shock proteins (HSPs) is inhibited. In this article, the research strategies proposed in recent years based on the inhibition of HSPs expression to achieve low-temperature PTT was reviewed. Folowing this, the synthesis, properties, and applications of these nanomaterials were introduced. In addition, we also summarized the problems of nanomaterial-mediated low-temperature PTT at this stage and provided an outlook on future research directions.
Collapse
Affiliation(s)
- Yu Xin
- Yantai Yuhuangding Hospital, Yantai, China
| | - Zhuokai Sun
- Nanchang University Queen Mary School, Nanchang, China
| | - Jie Liu
- Yantai Yuhuangding Hospital, Yantai, China
| | - Wei Li
- Yantai Yuhuangding Hospital, Yantai, China
| | | | - Yongli Chu
- Yantai Yuhuangding Hospital, Yantai, China
| | - Zhihong Sun
- Yantai Yuhuangding Hospital, Yantai, China
- *Correspondence: Zhihong Sun, ; Guanjun Deng,
| | - Guanjun Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Zhihong Sun, ; Guanjun Deng,
| |
Collapse
|
30
|
Harris JC, Sterin EH, Day ES. Membrane-Wrapped Nanoparticles for Enhanced Chemotherapy of Acute Myeloid Leukemia. ACS Biomater Sci Eng 2022; 8:4439-4448. [PMID: 36103274 PMCID: PMC9633094 DOI: 10.1021/acsbiomaterials.2c00832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work reports the development of a biomimetic membrane-wrapped nanoparticle (MWNP) platform for targeted chemotherapy of acute myeloid leukemia (AML). Doxorubicin (DOX), a chemotherapeutic used to treat leukemias, lymphomas, and other cancers, was encapsulated in polymeric NPs that were coated with cytoplasmic membranes derived from human AML cells. The release rate of DOX from the MWNPs was characterized under both storage and physiological conditions, with faster release observed at pH 5.5 than pH 7.4. The system was then introduced to AML cell cultures to test the functionality of the released DOX cargo as compared to DOX delivered freely or via NPs coated with poly(ethylene glycol) (PEG). The MWNPs delivered DOX in an efficient and targeted manner, inducing up to 80% apoptosis in treated cells at a dose of 5 μM, compared to 15% for free DOX and 17% for DOX-loaded PEG-coated NPs at the same drug concentration. The mechanism of cell death was confirmed as DNA double-strand breaks through a γH2A.X assay, indicating that the released DOX retained its expected mechanism of action. These findings designate MWNPs as a robust drug delivery system with great potential for future development in treatments of AML and other blood cancers.
Collapse
Affiliation(s)
- Jenna C Harris
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| | - Eric H Sterin
- Department of Biomedical Engineering, University of Delaware, 590 Avenue 1743, 4th Floor, Newark, Delaware 19713, United States
| | - Emily S Day
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, 590 Avenue 1743, 4th Floor, Newark, Delaware 19713, United States
- Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Road, Newark, Delaware 19713, United States
| |
Collapse
|
31
|
Park S, Park W, Lee K, Min SJ, Jang KS. Zero Energy Heating of Solvent with Network-Structured Solar-Thermal Material: Eco-Friendly Palladium Catalysis of the Suzuki Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40967-40974. [PMID: 36041080 DOI: 10.1021/acsami.2c10530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solar-thermal materials absorb sunlight and convert it into heat, which is released into the surrounding medium. Utilization of solar energy for solvent heating can be a potential method of eco-friendly organic reactions. However, to date, significant heating of the entire volume of a solvent by 1 sun illumination has not been reported. In the present work, a network structure of solar-thermal materials has been proposed for zero energy heating of a solvent under 1 sun illumination. A network-structured solar-thermal material with an additional catalytic function was fabricated by sputtering palladium into a melamine sponge. The nanocrystalline palladium-decorated melamine sponge (Pd-sponge) has excellent sunlight absorption properties in the entire wavelength range that enable efficient solar-thermal conversion. The Pd-sponge can reduce heat loss to the surroundings by effectively blocking thermal radiation from the heated solvent. The temperature of the reaction solution with the ethanol-water mixture filled in the Pd-sponge increased from 23 to 59 °C under 1 sun illumination. The elevated temperature of the reaction solutions by solar-thermal conversion successfully accelerated the heterogeneous Pd-catalyzed Suzuki coupling reactions with high conversions. Easy and low-energy-consuming multicycle use of the solar-thermal and catalytic properties of the Pd-sponge has also been demonstrated.
Collapse
Affiliation(s)
- Seungbeom Park
- Department of Applied Chemistry and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Woomin Park
- Department of Applied Chemistry and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Kangjoo Lee
- Department of Applied Chemistry and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Sun-Joon Min
- Department of Applied Chemistry and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Kwang-Suk Jang
- Department of Applied Chemistry and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
32
|
Kadkhoda J, Tarighatnia A, Nader ND, Aghanejad A. Targeting mitochondria in cancer therapy: Insight into photodynamic and photothermal therapies. Life Sci 2022; 307:120898. [PMID: 35987340 DOI: 10.1016/j.lfs.2022.120898] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
Mitochondria are critical multifunctional organelles in cells that generate power, produce reactive oxygen species, and regulate cell survival. Mitochondria that are dysfunctional are eliminated via mitophagy as a way to protect cells under moderate stress and physiological conditions. However, mitophagy is a double-edged sword and can trigger cell death under severe stresses. By targeting mitochondria, photodynamic (PD) and photothermal (PT) therapies may play a role in treating cancer. These therapeutic modalities alter mitochondrial membrane potential, thereby affecting respiratory chain function and generation of reactive oxygen species promotes signaling pathways for cell death. In this regard, PDT, PTT, various mitochondrion-targeting agents and therapeutic methods could have exploited the vital role of mitochondria as the doorway to regulated cell death. Targeted mitochondrial therapies would provide an excellent opportunity for effective mitochondrial injury and accurate tumor erosion. Herein, we summarize the recent progress on the roles of PD and PT treatments in regulating cancerous cell death in relation to mitochondrial targeting and the signaling pathways involved.
Collapse
Affiliation(s)
- Jamileh Kadkhoda
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighatnia
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Aboeleneen SB, Scully MA, Harris JC, Sterin EH, Day ES. Membrane-wrapped nanoparticles for photothermal cancer therapy. NANO CONVERGENCE 2022; 9:37. [PMID: 35960404 PMCID: PMC9373884 DOI: 10.1186/s40580-022-00328-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 05/31/2023]
Abstract
Cancer is a global health problem that needs effective treatment strategies. Conventional treatments for solid-tumor cancers are unsatisfactory because they cause unintended harm to healthy tissues and are susceptible to cancer cell resistance. Nanoparticle-mediated photothermal therapy is a minimally invasive treatment for solid-tumor cancers that has immense promise as a standalone therapy or adjuvant to other treatments like chemotherapy, immunotherapy, or radiotherapy. To maximize the success of photothermal therapy, light-responsive nanoparticles can be camouflaged with cell membranes to endow them with unique biointerfacing capabilities that reduce opsonization, prolong systemic circulation, and improve tumor delivery through enhanced passive accumulation or homotypic targeting. This ensures a sufficient dose of photoresponsive nanoparticles arrives at tumor sites to enable their complete thermal ablation. This review summarizes the state-of-the-art in cell membrane camouflaged nanoparticles for photothermal cancer therapy and provides insights to the path forward for clinical translation.
Collapse
Affiliation(s)
| | | | - Jenna C Harris
- Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Eric H Sterin
- Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Emily S Day
- Biomedical Engineering, University of Delaware, Newark, DE, USA.
- Materials Science and Engineering, University of Delaware, Newark, DE, USA.
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE, USA.
| |
Collapse
|
34
|
Xu J, Cao W, Wang P, Liu H. Tumor-Derived Membrane Vesicles: A Promising Tool for Personalized Immunotherapy. Pharmaceuticals (Basel) 2022; 15:ph15070876. [PMID: 35890175 PMCID: PMC9318328 DOI: 10.3390/ph15070876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor-derived membrane vesicles (TDMVs) are non-invasive, chemotactic, easily obtained characteristics and contain various tumor-borne substances, such as nucleic acid and proteins. The unique properties of tumor cells and membranes make them widely used in drug loading, membrane fusion and vaccines. In particular, personalized vectors prepared using the editable properties of cells can help in the design of personalized vaccines. This review focuses on recent research on TDMV technology and its application in personalized immunotherapy. We elucidate the strengths and challenges of TDMVs to promote their application from theory to clinical practice.
Collapse
Affiliation(s)
- Jiabin Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou 221004, China; (J.X.); (P.W.)
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Jinan University, Zhuhai 519000, China;
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, Xuzhou 221004, China; (J.X.); (P.W.)
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Jinan University, Zhuhai 519000, China;
- Correspondence:
| |
Collapse
|
35
|
Zhang R, Zhu Y, Luo X, Zhang Q, Wu F. Synergistic photodynamic and photothermal effects of organic nanomaterials derived from cross-linked porphyrin polymer. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Gao J, Su Y, Wang Z. Engineering bacterial membrane nanovesicles for improved therapies in infectious diseases and cancer. Adv Drug Deliv Rev 2022; 186:114340. [PMID: 35569561 PMCID: PMC9899072 DOI: 10.1016/j.addr.2022.114340] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023]
Abstract
Research on bacterial membrane vesicles (BMVs) is an emerging topic, and the goal is to address whether BMVs can bring translational tools to improve current therapies. In this review, we provided the updated studies on BMVs including their production, their types, and therapeutic regimens for treating infectious diseases and cancers. We described several platforms of BMVs, such as outer membrane vesicles (OMVs), inner membrane vesicles (IMVs) and double membrane vesicles (DMVs), and those structures were produced from Gram-negative or Gram-positive bacteria. We also discussed how to engineer and formulate new and novel BMVs using chemical, physical, and genetic methods. For therapies, we analyzed current methods for loading drugs in BMVs and discussed their limitations. Finally, we reviewed several therapeutic platforms of BMVs that have been exploited in improving the treatments of infectious diseases and cancers. Although BMVs offer the promising biomedical applications, it is needed to develop rigorous approaches and methods to generate reproducible and scalable drug delivery systems for translation.
Collapse
Affiliation(s)
| | | | - Zhenjia Wang
- Corresponding author at: 205 East Spokane Falls BLVD, Spokane, WA 99202, United States of America. (Z. Wang)
| |
Collapse
|
37
|
Zheng X, Liu Y, Liu Y, Zhang T, Zhao Y, Zang J, Yang Y, He R, Chong G, Ruan S, Xu D, Li Y, Dong H. Dual Closed-Loop of Catalyzed Lactate Depletion and Immune Response to Potentiate Photothermal Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23260-23276. [PMID: 35578899 DOI: 10.1021/acsami.2c07254] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lactate accumulation in the solid tumor is highly relevant to the immunosuppressive tumor microenvironment (TME). Targeting lactate metabolism significantly enhances the efficacy of immunotherapy. However, lactate depletion by lactate oxidase (LOX) consumes oxygen and results in the aggravated hypoxia situation, counteracting the benefit of lactate depletion. Beyond the TME regulation, it is necessary to initiate the effective immunity cycle for therapeutic purposes. In this fashion, dual close-loop of catalyzed lactate depletion and immune response by a rational material design are established to address this issue. Here, we constructed PEG-modified mesoporous polydopamine nanoparticles with Cu2+ chelation and LOX encapsulation (denoted as mCuLP). After mCuLP nanosystems targeting into the tumor sites, released LOX consumes lactate to H2O2. Subsequently, the produced H2O2 is further catalyzed by Cu2+-chelated mPDA to produce oxygen, supplying the oxygen source for the closed-loop of lactate depletion. Meanwhile, the mild PTT caused by the photothermal mPDA induces ICD of tumor cells to promote DC maturation and then T lymphocyte infiltration to kill tumor cells, which forms another closed-loop for cancer immunity. Therefore, this dual closed-loop strategy of mCuLP nanosystems effectively inhibits tumor growth, providing a promising treatment modality to cancer immunotherapy.
Collapse
Affiliation(s)
- Xiao Zheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092 Shanghai, P. R. China
| | - Ying Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092 Shanghai, P. R. China
| | - Yiqiong Liu
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092 Shanghai, P. R. China
| | - Tingting Zhang
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092 Shanghai, P. R. China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092 Shanghai, P. R. China
| | - Jie Zang
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092 Shanghai, P. R. China
| | - Yan Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092 Shanghai, P. R. China
| | - Ruiqing He
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092 Shanghai, P. R. China
| | - Gaowei Chong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092 Shanghai, P. R. China
| | - Shuangrong Ruan
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092 Shanghai, P. R. China
| | - Dailin Xu
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092 Shanghai, P. R. China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092 Shanghai, P. R. China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092 Shanghai, P. R. China
| |
Collapse
|
38
|
Li M, Li N, Qi J, Gao D, Zhou M, Wei X, Xing C. Mild-Temperature Photothermal Effect Enhanced by Functional Conjugated Polymer Nanoparticles through Enzyme-Mediated Starvation. ACS APPLIED BIO MATERIALS 2022; 5:2536-2542. [PMID: 35535955 DOI: 10.1021/acsabm.2c00288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mild-temperature photothermal therapy (PTT) is being extensively explored because it causes less injury to normal cells. However, the effect of mild-temperature PTT is decreased because of heat shock protein (HSP) overexpression. To solve this problem, we designed functional conjugated polymer nanoparticles (CPNs-G) that enhance the mild-temperature photothermal effect. Upon near-infrared (NIR) light irradiation, CPNs-G generate local heat to realize the photothermal effect. Meanwhile, the increased temperature enhances the catalytic activity of GOx, thus impeding the generation of adenosine triphosphate (ATP) and inhibiting HSP expression. Therefore, this work provides a strategy for overcoming thermoresistance through an enzyme-mediated starvation effect regulated by NIR light.
Collapse
Affiliation(s)
- Mengying Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300131, P.R. China
| | - Ning Li
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Junjie Qi
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300131, P.R. China
| | - Dong Gao
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Mei Zhou
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Xiao Wei
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300131, P.R. China
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| |
Collapse
|
39
|
Li D, Wang T, Li L, Zhang L, Wang C, Dong X. Designed formation of Prussian Blue/CuS Janus nanostructure with enhanced NIR-I and NIR-II dual window response for tumor thermotherapy. J Colloid Interface Sci 2022; 613:671-680. [DOI: 10.1016/j.jcis.2022.01.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022]
|
40
|
Wang P, Tong F, Luo J, Li Z, Wei J, Liu Y. Fucoidan-Mediated Anisotropic Calcium Carbonate Nanorods of pH-Responsive Drug Release for Antitumor Therapy. Front Bioeng Biotechnol 2022; 10:845821. [PMID: 35497329 PMCID: PMC9043484 DOI: 10.3389/fbioe.2022.845821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
The shape of nanoparticles can determine their physical properties and then greatly impact the physiological reactions on cells or tissues during treatment. Traditionally spherical nanoparticles are more widely applied in biomedicine but are not necessarily the best. The superiority of anisotropic nanoparticles has been realized in recent years. The synthesis of the distinct-shaped metal/metal oxide nanoparticles is easily controlled. However, their biotoxicity is still up for debate. Hence, we designed CaCO3 nanorods for drug delivery prepared at mild condition by polysaccharide-regulated biomineralization in the presence of fucoidan with sulfate groups. The CaCO3 nanorods with a pH sensitivity–loaded antitumor drug mitoxantrone hydrochloride (MTO) showed excellent antitumor efficacy for the HeLa cells and MCF-7 cells in vitro. We believe that anisotropic nanoparticles will bring forth an emblematic shift in nanotechnology for application in biomedicine.
Collapse
Affiliation(s)
- Pei Wang
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Fei Tong
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Jun Luo
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
- *Correspondence: Junchao Wei, ; Yuangang Liu,
| | - Yuangang Liu
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, China
- *Correspondence: Junchao Wei, ; Yuangang Liu,
| |
Collapse
|
41
|
|
42
|
Lu Y, Zhang P, Lin L, Gao X, Zhou Y, Feng J, Zhang H. Ultra-small bimetallic phosphide for dual-modal MRI imaging guided photothermal ablation of tumor. Dalton Trans 2022; 51:4423-4428. [DOI: 10.1039/d1dt03898b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal phosphides have been proved to be the potential theranostic agents of tumor. However, the limitation of single-modal imaging or treatment effect of such materials need to be further improved....
Collapse
|
43
|
Zhong D, Wang Y, Xie F, Chen S, Yang X, Ma Z, Wang S, Iqbal MZ, Ge J, Zhang Q, Zhao R, Kong X. Biomineralized Prussian Blue Nanotherapeutic for Enhanced Cancer Photothermal Therapy. J Mater Chem B 2022; 10:4889-4896. [DOI: 10.1039/d2tb00775d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal therapy is a promising tumor ablation technique that converts light into heat energy to kill cancer cells. Prussian blue (PB), a biocompatible photothermal reagent, has been widely explored for...
Collapse
|
44
|
Zhou Z, Jiang N, Chen J, Zheng C, Guo Y, Ye R, Qi R, Shen J. Selectively down-regulated PD-L1 by albumin-phenformin nanoparticles mediated mitochondrial dysfunction to stimulate tumor-specific immunological response for enhanced mild-temperature photothermal efficacy. J Nanobiotechnology 2021; 19:375. [PMID: 34794446 PMCID: PMC8600872 DOI: 10.1186/s12951-021-01124-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
Background Mild-temperature photothermal therapy (mild-PTT) has emerged as a highly promising antitumor strategy by triggering immunogenic cell death (ICD) to elicit both innate and adaptive immune responses for tumor control. However, mild-PTT still leads to the risk of tumor recurrence or metastasis because it could hardly completely eradicate tumors due to its impaired immunological efficacy owing to the enhanced PD-L1 expression in tumor cells after treatment. Results In this study, we described a hydrogen peroxide (H2O2) responsive manganese dioxide mineralized albumin nanocomposite loading with mitochondria function inhibitor phenformin (PM) and near-infrared photothermal dye indocyanine green (ICG) by modified two-step biomineralization method. In combination with ICG induced mild-PTT and PM mediated mitochondria dysfunction, PD-L1 expression was obviously down-regulated and the generated immunological responses was able to effectively attack the remaining tumor cells. Meanwhile, the risk of tumor metastasis was effectively inhibited by reducing the expression of tumor invasion-related signal molecules (TGF-β and vimentin) after combining treatment. Conclusion Such a strategy offers novel insight into the development of nanomedicine for mild-PTT as well as cancer immunotherapy, which can provide protection against tumor relapse post elimination of their initial and metastatic tumors. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01124-8. Over-expression of PD-L1 after mild-photothermal therapy significantly limited its efficacy. Phenformin could effectively downregulate PD-L1 expression and inhibit tumor metastasis through AMPK activation. Hydrogen peroxide responsive manganese dioxide mineralized albumin nanocomplex co-loading with phenformin and ICG named ICG@PM@NP was constructed by modified two-step biomineralization method. ICG@PM@NP could enhance T cell infiltration and antitumor metastasis in vivo. ICG@PM@NP mediated mild-photothermal therapy could make up the defects of conventional mild-photothermal therapy in lacking the anti-metastasis ability and inducing enhanced PD-L1 expression.
Collapse
Affiliation(s)
- Zaigang Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ning Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiashe Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chunjuan Zheng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuanyuan Guo
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ruirong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Ruogu Qi
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China. .,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, Zhejiang, China.
| |
Collapse
|