1
|
Trindade AC. Controlled Surface Textures of Elastomeric Polyurethane Janus Particles: A Comprehensive Review. Polymers (Basel) 2024; 16:1835. [PMID: 39000690 PMCID: PMC11244459 DOI: 10.3390/polym16131835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Colloidal particle research has witnessed significant advancements in the past century, resulting in a plethora of studies, novel applications, and beneficial products. This review article presents a cost-effective and low-tech method for producing Janus elastomeric particles of varied geometries, including planar films, spherical particles, and cylindrical fibers, utilizing a single elastomeric material and easily accessible chemicals. Different surface textures are attained through strain application or solvent-induced swelling, featuring well-defined wavelengths ranging from sub-microns to millimeters and offering easy adjustability. Such versatility renders these particles potentially invaluable for medical applications, especially in bacterial adhesion studies. The coexistence of "young" regions (smooth, with a small surface area) and "old" regions (wrinkled, with a large surface area) within the same material opens up avenues for biomimetic materials endowed with additional functionalities; for example, a Janus micromanipulator where micro- or nano-sized objects are grasped and transported by an array of wrinkled particles, facilitating precise release at designated locations through wrinkle pattern adjustments. This article underscores the versatility and potential applications of Janus elastomeric particles while highlighting the intriguing prospects of biomimetic materials with controlled surface textures.
Collapse
Affiliation(s)
- Ana Catarina Trindade
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- Atlântica, Instituto Universitário, Fábrica da Pólvora de Barcarena, 2730-036 Barcarena, Portugal
| |
Collapse
|
2
|
Jiang Y, Zhu C, Ma X, Fan D. Janus hydrogels: merging boundaries in tissue engineering for enhanced biomaterials and regenerative therapies. Biomater Sci 2024; 12:2504-2520. [PMID: 38529571 DOI: 10.1039/d3bm01875j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In recent years, the design and synthesis of Janus hydrogels have witnessed a thriving development, overcoming the limitations of single-performance materials and expanding their potential applications in tissue engineering and regenerative medicine. Janus hydrogels, with their exceptional mechanical properties and excellent biocompatibility, have emerged as promising candidates for various biomedical applications, including tissue engineering and regenerative therapies. In this review, we present the latest progress in the synthesis of Janus hydrogels using commonly employed preparation methods. We elucidate the surface and interface interactions of these hydrogels and discuss the enhanced properties bestowed by the unique "Janus" structure in biomaterials. Additionally, we explore the applications of Janus hydrogels in facilitating regenerative therapies, such as drug delivery, wound healing, tissue engineering, and biosensing. Furthermore, we analyze the challenges and future trends associated with the utilization of Janus hydrogels in biomedical applications.
Collapse
Affiliation(s)
- Yingxue Jiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| |
Collapse
|
3
|
Ge Z, Wang Z, Luo C. A grape seed protein-tannic acid powder to transform various non-adhesive hydrogels into adhesive gels. Int J Biol Macromol 2024; 266:131215. [PMID: 38552679 DOI: 10.1016/j.ijbiomac.2024.131215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Realizing adhesion between wet materials remains challenging because of the interfacial water. Current strategies depend on complicated surface modifications, resulting in limited functions. Herein, a facile strategy based on the powder of grape seed protein and tannic acid (GSP-TA) was reported to endow various non-adhesive hydrogels adhesion without chemical modifications for both hydrogels and adherents. The GSP-TA powder has the capability to absorb interfacial water, form an adhesive layer on the hydrogel surface, diffusion into the underneath hydrogel matrix, and establish the initial adhesion within 5 s. By forming multiple non-covalent interactions between powders and substrates, the GSP-TA powder served as an efficient surface treating agent, enabling robust adhesion to solid substrates (wood, cardboard, glass, iron, and rubber) and wet tissues (pigskin, muscle, liver and heart). The adhesive strength for wood, cardboard, glass, iron, and rubber was 145.92 ± 5.93, 123.93 ± 15.98, 66.24 ± 7.67, 98.22 ± 4.13, and 80.83 ± 7.48 kPa, respectively. Because of reversible interactions, the adhesion was also repeatable. Due to the merits of grape seed protein and plant polyphenol, it could be completely degraded within 11 days. Bearing several merits, this strategy has promising applications in wound patches, tissue repair, and sensors.
Collapse
Affiliation(s)
- Zhuo Ge
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Zi Wang
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Chunhui Luo
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021, China; Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, Ningxia, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
4
|
Guo X, Wang A, Sheng N, He Y, Liu W, Li Z, Luo F, Li J, Tan H. Janus Polyurethane Adhesive Patch with Antibacterial Properties for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15970-15980. [PMID: 38501704 DOI: 10.1021/acsami.4c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Despite the rapid development of tissue adhesives, flaws including allergies, poor stability, and indiscriminate double-sided adhesive properties limit their application in the medical field. In this work, Janus polyurethane patches were spontaneously prepared by adjusting the difference in the functional group distribution between the top and bottom sides of the patch during emulsion drying. Consequently, poor adhesion was exhibited on the bottom surface, while the top surface can easily adhere to metals, polymers, glasses, and tissues. The difference in adhesive strength to pork skin between the two surfaces is more than 5 times. The quaternary ammonium salt and hydrophilic components on the surface of the polyurethane patch enable the rapid removal and absorption of water from the tissue surface to achieve wet adhesion. Animal experiments have demonstrated that this multifunctional Janus polyurethane patch can promote skin wound closure and healing of infected wounds. This facile and effective strategy to construct Janus polyurethane patch provides a promising method for the development of functional tissue-adhesives.
Collapse
Affiliation(s)
- Xiaolei Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Ao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Nan Sheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Yuanyuan He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Wenkai Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Wang Y, Xu T, Xu L, Miao G, Li F, Miao X, Lu J, Hou Z, Ren G, Zhu X. Mechanical Robust GO/PVA Hydrogel for Strong and Recyclable Adhesion in Air, Underwater, and Underoil Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38287225 DOI: 10.1021/acs.langmuir.3c03366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Adhesive hydrogels are considered to be promising interfacial adhesive materials for various applications; however, their adhesive strength is significantly reduced when immersed in liquid environments (water and oil) due to obstruction of the liquid layer or swelling in liquid, and they could not always be reused when the failure of the adhesive performance occurred. Herein, a graphite oxide/poly(vinyl alcohol) (GO/PVA) hydrogel with strong adhesion in air and under liquid environments was developed by rationally regulating the interactions of water and dimethyl sulfoxide (DMSO) in the binary liquid system. The strong interaction between water and DMSO allowed the water layer of the GO/PVA hydrogel on the hydrogel surface to act as a shield to repel oil in air, under water, and even when immersed in oil, and it also endowed the obtained hydrogel with antiswelling property when immersed in water and oil. Importantly, the GO/PVA hydrogel could serve as an advanced adhesive to firmly bond different substrates in air, under water, and under oil, and interestingly, its dry and wet adhesive performance was repeatable and recyclable. This work is expected to be an important addition to the field of adhesive soft materials.
Collapse
Affiliation(s)
- Yumin Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Ting Xu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Lide Xu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Gan Miao
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Fangchao Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Xiao Miao
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Jingwei Lu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhiqiang Hou
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Guina Ren
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Xiaotao Zhu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| |
Collapse
|
6
|
Ji Z, Gong D, Zhu M, Yang J, Bao Y, Wang Z, Xu M. Mussel-inspired adhesive and anti-swelling hydrogels for underwater strain sensing. SOFT MATTER 2024; 20:629-639. [PMID: 38163997 DOI: 10.1039/d3sm01503c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The application of hydrogels in an underwater environment is limited due to their swelling behavior and the existence of a hydration layer. In this study, a hydrogel based on poly(sulfobetaine methacrylate) (PSBMA), tannic acid (TA) and montmorillonite (MMT) was prepared with excellent anti-swelling properties and underwater self-adhesion properties. The PSBMA hydrogel has excellent anti-swelling properties due to the strong electrostatic interaction between charged groups of PSBMA chains. Inspired by marine mussels, tannic acid modified montmorillonite (TA@MMT) was introduced. Natural polyphenol tannic acid, as a catechol donor, provides a large number of catechol groups for hydrogels. Montmorillonite acts as the physical cross-linking point of PSBMA chains through electrostatic interaction to improve the cohesion of the hydrogel. By combining the adhesion mechanism of zwitterions and catechol, the hydrogel maintains adhesion in air and underwater environments. In addition, a strain sensor was prepared based on the PSBMA/TA@MMT hydrogel, which can closely fit the human skin and stably monitor different movements in air and in underwater environments. Through a Bluetooth communication system, long-distance information transmission can be achieved. Therefore, the PSBMA/TA@MMT hydrogel broadens the application prospect of wearable devices in the underwater environment.
Collapse
Affiliation(s)
- Zhengxiao Ji
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| | - Dianjinfeng Gong
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| | - Mengni Zhu
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| | - Jiaqi Yang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| | - Yueyue Bao
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| | - Zihui Wang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| | - Min Xu
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
7
|
Huang Y, Chen Y, Cheng G, Li W, Zhang H, Yu C, Fang J, Zuo J, Li Y, Xu L, Sun D. A TA/Cu 2+ Nanoparticle Enhanced Carboxymethyl Chitosan-Based Hydrogel Dressing with Antioxidant Properties and Promoting Wound Healing. Int J Nanomedicine 2024; 19:231-245. [PMID: 38223881 PMCID: PMC10788072 DOI: 10.2147/ijn.s445844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024] Open
Abstract
Background As the first line of immune defense and the largest organ of body, skin is vulnerable to damage caused by surgery, burns, collisions and other factors. Wound healing in the skin is a long and complex physiological process that is influenced by a number of different factors. Proper wound care can greatly improve the speed of wound healing and reduce the generation of scars. However, traditional wound dressings (bandages, gauze, etc.) often used in clinical practice have a single function, lack of active ingredients and are limited in use. Hydrogels with three-dimensional network structure are a potential biomedical material because of their physical and chemical environment similar to extracellular matrix. In particular, hydrogel dressings with low price, good biocompatibility, degradability, antibacterial and angiogenic activity are favored by the public. Methods Here, a carboxymethyl chitosan-based hydrogel dressing (CMCS-TA/Cu2+) reinforced by copper ion crosslinked tannic acid (TA/Cu2+) nanoparticles was developed. This study investigated the physical and chemical characteristics, cytotoxicity, and angiogenesis of TA/Cu2+ nanoparticles and CMCS-TA/Cu2+ hydrogels. Furthermore, a full-thickness skin defect wound model was employed to assess the in vivo wound healing capacity of hydrogel dressings. Results The introduction of TA/Cu2+ nanoparticles not only could increase the mechanical properties of the hydrogel but also continuously releases copper ions to promote cell migration (the cell migration could reach 92% at 48 h) and tubule formation, remove free radicals and promote wound healing (repair rate could reach 90% at 9 days). Conclusion Experiments have proved that CMCS-TA/Cu2+ hydrogel has good cytocompatibility, antioxidant and wound healing ability, providing an advantageous solution for skin repair.
Collapse
Affiliation(s)
- Yongjun Huang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Yong Chen
- Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, People’s Hospital, Qingyuan, 511518, People’s Republic of China
| | - Guoyun Cheng
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Wenqiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong, Guangzhou Sport University, Guangzhou, 510500, People’s Republic of China
| | - Hongan Zhang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
- The Second Clinical School of Medicine, Southern Medical University, Guangzhou, 510260, People’s Republic of China
| | - Chaoqun Yu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Jia Fang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Jieyi Zuo
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Ying Li
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Lei Xu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Dawei Sun
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| |
Collapse
|
8
|
Chen H, Zheng C, Zhang F, Zhang Z, Zhang L. One-step synthesis of Janus hydrogel via heterogeneous distribution of sodium α-linoleate driven by surfactant self-aggregation. SCIENCE ADVANCES 2023; 9:eadj3186. [PMID: 37939195 PMCID: PMC10631740 DOI: 10.1126/sciadv.adj3186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023]
Abstract
Janus adhesive hydrogels have one-sided adhesive properties and hold promising applications in the health care field. However, a simple method for synthesizing Janus hydrogels is still lacking. In this study, we introduce an innovative method to prepare Janus hydrogels by harnessing a fundamental phenomenon: the self-aggregation of surfactants at high concentrations at the water-air interface. By combining a small amount [0.8 to 3.2 weight %, relative to mass of acrylamide (AM)] of sodium α-linoleate (LAS) with AM through free radical polymerization, we have synthesized Janus adhesive hydrogels. The Janus hydrogels exhibit remarkable adhesive strength and adhesive differences, with the top side (84 J m-2) being 21 times stronger than the bottom side, also an excellent elongation rate. Through comprehensive experiments, including chemical composition, surface morphology, and molecular dynamics (MD) simulations, we thoroughly investigate the mechanisms of the hydrogel's heterogeneous adhesion. This study presents an easy, efficient, and innovative method for preparing one-sided adhesive hydrogels.
Collapse
Affiliation(s)
- Huowen Chen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chuchu Zheng
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Fusheng Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhuqin Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | | |
Collapse
|
9
|
Wang ZY, You Y, Li M, Rong MZ, Zhang MQ. Ultrastrong bonding, on-demand debonding, and easy re-bonding of non-sticking materials enabled by reversibly interlocked macromolecular networks-based Janus-like adhesive. MATERIALS HORIZONS 2023; 10:4398-4406. [PMID: 37466338 DOI: 10.1039/d3mh00514c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Simultaneously gluing hydrophobic and hydrophilic materials is a highly desired but intractable task. Herein, we developed a facile strategy using reversibly interlocked macromolecular networks (ILNs) as an adhesive. As shown by the proof-of-concept assembly of glass/ILNs/fluoropolymer (i.e., a simplified version of a photovoltaic module), the sandwiched ILNs were stratified after hot-pressing owing to temporary decrosslinking enabled by the built-in reversible covalent bonds. The fragmented component networks were enriched near their respective thermodynamically favored substrates to form a Janus-like structure. Strong elaborate interfacial bespoke chemical bonds and mechanical interlocking were thus established accompanied by the reconstruction of ILNs after cooling, which cooperated with the robust cohesion of the core part of the ILNs resulting from topological entanglements and led to a record-high peeling strength of 64.86 N cm-1. Also, the ILN-based Janus-like adhesive possessed reversible recyclability, adhesivity and on-demand de-bondability. The molecular design detailed in this study serves as a guide for developing a high-performance smart adhesive that firmly bonds non-sticking materials. Compared with existing Janus adhesives, our ILNs-based adhesive not only shows extremely useful reversibility but also greatly simplifies the adhesion process with no surface treatment required.
Collapse
Affiliation(s)
- Zheng Yue Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yang You
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Ming Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Min Zhi Rong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ming Qiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
10
|
Luo J, Wang J, Li Q, Xiong L, Xie R, Lan G, Ning LJ, Xie J, Hu E, Lu B. In situ generation of bioadhesives using dry tannic silk particles: a wet-adhesion strategy relying on removal of hydraulic layer over wet tissues for wound care. Int J Biol Macromol 2023; 250:126087. [PMID: 37536416 DOI: 10.1016/j.ijbiomac.2023.126087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Tissue adhesives have been widely used in biomedical applications. However, the presence of a hydrated layer on the surface of wet tissue severely hinders their adhesion capacities, resulting in ineffective wound treatment. To address this issue, a dry particle dressing (plas@SF/tann-hydro-pwd) capable of removing the hydrated layer and converting in situ to bioadhesives (plas@SF/tann-hydro-gel) was fabricated via simple physical mixing based on the hydrophobic-hydrogen bonding synergistic effect and Schiff-base reaction. It was found that the plas@SF/tann-hydro-gel bioadhesive, which was changed from plas@SF/tann-hydro-pwd dressing by adsorption of water, exhibited good wet adhesion to diverse biological tissues. In addition, the wet adhesion qualities of the plas@SF/tann-hydro-gel adhesive was studied under a variety of demanding conditions, including a wide range of temperatures, varying pH levels, highly concentrated salt solutions, and simulated fluids. Experiments on animals had showed that the adhesive plas@SF/tann-hydro-gel has superior wet adhesion qualities and superior wound healing properties compared to the commercial product Tegaderm™. This study develops a new wet-adhesion technique employing dry particle dressing to eliminate the hydrated layer over wet tissues for the in situ creation of gel bioadhesives for wound healing.
Collapse
Affiliation(s)
- Jinyang Luo
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Junsu Wang
- Chongqing Customs Technology Center, Chongqing 400044, China
| | - Qing Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Li Xiong
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Guangqian Lan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Liang-Ju Ning
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Jing Xie
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Enling Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong
| | - Bitao Lu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
11
|
Zhao W, Wu Z, Liu Y, Dai P, Hai G, Liu F, Shang Y, Cao Z, Yang W. Research Progress of Natural Products and Their Derivatives in Marine Antifouling. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6190. [PMID: 37763467 PMCID: PMC10533101 DOI: 10.3390/ma16186190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
With the increasing awareness of environmental protection, it is necessary to develop natural product extracts as antifouling (AF) agents for alternatives to toxic biocides or metal-based AF paints to control biofouling. This paper briefly summarizes the latest developments in the natural product extracts and their derivatives or analogues from marine microorganisms to terrestrial plants as AF agents in the last five years. Moreover, this paper discusses the structures-activity relationship of these AF compounds and expands their AF mechanisms. Inspired by the molecular structure of natural products, some derivatives or analogues of natural product extracts and some novel strategies for improving the AF activity of protective coatings have been proposed as guidance for the development of a new generation of environmentally friendly AF agents.
Collapse
Affiliation(s)
- Wenwen Zhao
- Xi’an Key Laboratory of High Performance Oil and Gas Field Materials, College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Zhiqiang Wu
- Xi’an Key Laboratory of High Performance Oil and Gas Field Materials, College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Yanming Liu
- Xi’an Key Laboratory of High Performance Oil and Gas Field Materials, College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Pan Dai
- Xi’an Key Laboratory of High Performance Oil and Gas Field Materials, College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Guojuan Hai
- Xi’an Key Laboratory of High Performance Oil and Gas Field Materials, College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Feng Liu
- Xi’an Key Laboratory of High Performance Oil and Gas Field Materials, College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Yu Shang
- Xi’an Key Laboratory of High Performance Oil and Gas Field Materials, College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Zhongyue Cao
- Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wufang Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
12
|
Zhao J, Cai X, Zhang X, Zhang J, Fan J, Ma F, Zhu W, Jia X, Wang S, Meng Z. Hazardous Gases-Responsive Photonic Crystals Cryogenic Sensors Based on Antifreezing and Water Retention Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42046-42055. [PMID: 37622170 DOI: 10.1021/acsami.3c06443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Nowadays, the sensing of hazardous gases is urgent for the consideration of public safety and human health, especially in extreme conditions of low temperatures. In this study, a photonic crystals (PhCs) sensor with water retention and antifreezing properties was developed and applied to visual hazardous gases sensing at low temperature, passively. The sensor was prepared by dip-coating with poly(methyl methacrylate) (PMMA) colloidal microspheres followed by embedding in k-carrageenan/polyacrylamide-ethylene glycol (k-CA/PAM-EG) hydrogel. The sensor responded to hazardous gases, including ammonia, toluene, xylene, acetone, methanol, ethanol, and 1-propanol, with a change in the reflection wavelength and visible structural color. At room temperature, the reflection wavelength of the sensor blue-shifted 49 nm in ammonia, and the structural color changed from red to yellow. For low temperatures, the sensor showed great water retention and antifreezing properties even at -57 °C due to the double network. The sensor still had a great response to hazardous gases after freezing at -20 °C for 12 h and testing at 0 °C, and the obtained results were similar to those at room temperature. Based on this excellent stability and visual sensing at low temperature, the sensor demonstrates the potential for detection of hazardous vapors in extreme environments.
Collapse
Affiliation(s)
- Jiang Zhao
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaolu Cai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaojing Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang, Henan Province 471039, China
| | - Jiaojiao Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jing Fan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Feng Ma
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Wei Zhu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiyu Jia
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Shushan Wang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China
| |
Collapse
|
13
|
Ni P, Huang H, Zhang L, Chen Y, Liang Z, Weng Y, Fang Y, Liu H. Mussel Foot Protein Inspired Tape-Type Adhesive with Water-Responsive, High Conformal, Tough, and On-Demand Detachable Adhesion to Wet Tissue. Adv Healthc Mater 2023; 12:e2203342. [PMID: 36912388 DOI: 10.1002/adhm.202203342] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Indexed: 03/14/2023]
Abstract
Wet adhesion is highly demanded in noninvasive wound closure, tissue repair, and biomedical devices, but it is still a big challenge for developing biosafe and tough wet bioadhesives due to low or even nonadhesion in the wet state for conventional adhesives. Inspired by the wet-adhesion-contributing factors of mussel foot proteins, a water-responsive dry robust tissue adhesive PAGU tape is made with thickness of <0.5 mm through fast UV-initiated copolymerization of acrylic acid (AA), gelatin (Gel), and hexadecenyl-1,2-catechol (UH). The tape shows strong cohesive mechanical properties and strong interfacial adhesion bonds. Upon application onto wet tissue, the adhesive tape can conform to the tissue, quickly dry tissue surface through absorbing surface/interfacial water and then allows formation of interfacial bonding with a high interfacial toughness of ≈818 J m-2 . Furthermore, it can be readily detached by treating with aq. urea solution. A highly efficient avenue is provided here for producing conformable, tough, and easy detachable wet bioadhesive tapes.
Collapse
Affiliation(s)
- Peng Ni
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Hongjian Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Lidan Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Yiming Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Ziyi Liang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Yunxiang Weng
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Yan Fang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Haiqing Liu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| |
Collapse
|
14
|
Li Z, Liu P, Chen S, Liu X, Yu Y, Li T, Wan Y, Tang N, Liu Y, Gu Y. Bioinspired marine antifouling coatings: Antifouling mechanisms, design strategies and application feasibility studies. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
15
|
He Y, Li Q, Chen P, Duan Q, Zhan J, Cai X, Wang L, Hou H, Qiu X. A smart adhesive Janus hydrogel for non-invasive cardiac repair and tissue adhesion prevention. Nat Commun 2022; 13:7666. [PMID: 36509756 PMCID: PMC9744843 DOI: 10.1038/s41467-022-35437-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Multifunctional hydrogel with asymmetric and reversible adhesion characteristics is essential to handle the obstructions towards bioapplications of trauma removal and postoperative tissue synechia. Herein, we developed a responsively reversible and asymmetrically adhesive Janus hydrogel that enables on-demand stimuli-triggered detachment for efficient myocardial infarction (MI) repair, and synchronously prevents tissue synechia and inflammatory intrusion after surgery. In contrast with most irreversibly and hard-to-removable adhesives, this Janus hydrogel exhibited a reversible adhesion capability and can be noninvasively detached on-demand just by slight biologics. It is interesting that the adhesion behaves exhibited a molecularly encoded adhesion-adaptive stiffening feature similar to the self-protective stress-strain effect of biological tissues. In vitro and in vivo experiments demonstrated that Janus hydrogel can promote the maturation and functions of cardiomyocytes, and facilitate MI repair by reducing oxidative damage and inflammatory response, reconstructing electrical conduction and blood supply in infarcted area. Furthermore, no secondary injury and tissue synechia were triggered after transplantation of Janus hydrogel. This smart Janus hydrogel reported herein offers a potential strategy for clinically transformable cardiac patch and anti-postoperative tissue synechia barrier.
Collapse
Affiliation(s)
- Yutong He
- grid.284723.80000 0000 8877 7471The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515 People’s Republic of China
| | - Qian Li
- grid.484195.5Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515 People’s Republic of China ,grid.284723.80000 0000 8877 7471School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515 People’s Republic of China
| | - Pinger Chen
- grid.484195.5Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515 People’s Republic of China ,grid.284723.80000 0000 8877 7471School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515 People’s Republic of China
| | - Qixiang Duan
- grid.484195.5Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515 People’s Republic of China ,grid.284723.80000 0000 8877 7471School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515 People’s Republic of China
| | - Jiamian Zhan
- grid.484195.5Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515 People’s Republic of China ,grid.284723.80000 0000 8877 7471School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515 People’s Republic of China
| | - Xiaohui Cai
- grid.284723.80000 0000 8877 7471School of Pharmaceutical Science, Southern Medical University, Guangzhou, Guangdong 510515 People’s Republic of China
| | - Leyu Wang
- grid.484195.5Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515 People’s Republic of China ,grid.284723.80000 0000 8877 7471Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515 People’s Republic of China
| | - Honghao Hou
- grid.484195.5Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515 People’s Republic of China ,grid.284723.80000 0000 8877 7471School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515 People’s Republic of China
| | - Xiaozhong Qiu
- grid.284723.80000 0000 8877 7471The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515 People’s Republic of China
| |
Collapse
|
16
|
Kim Y, Jeong Y, Kang SM. Surface Coating with Naphthalene Trisulfonate/Hafnium(IV) Complexes: Versatility and Post-Functionalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12711-12716. [PMID: 36209435 DOI: 10.1021/acs.langmuir.2c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Naphthalene trisulfonate is found to have versatile surface coating capability when combined with hafnium(IV) ions, thereby forming complexes. Solid substrates such as titanium/titanium dioxide, glass, and nylon immersed in a solution of naphthalene trisulfonate and HfIV produces naphthalene trisulfonate/HfIV complex coating. The coating is not produced when the HfIV ions are absent or when naphthalene monosulfonate replaces naphthalene trisulfonate; this indicates the significance of HfIV ions and multiple sulfonates in this coating system. The versatile surface coating property of naphthalene trisulfonate/HfIV complexes is attributed to the coexistence of hydrophobic aromatic and hydrophilic side groups in naphthalene trisulfonate. Additionally, HfIV ion-mediated cross-linking reactions between naphthalene trisulfonate molecules induce molecular assembly, facilitating versatile surface coating. Post-functionalization of the coating is accomplished through additional HfIV-mediated coordinate bond formation; alginate and λ-carrageenan are successfully grafted onto the coating for nonbiofouling applications.
Collapse
Affiliation(s)
- Yejin Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Yeonwoo Jeong
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
17
|
Highly stretchable, elastic, antimicrobial conductive hydrogels with environment-adaptive adhesive property for health monitoring. J Colloid Interface Sci 2022; 622:612-624. [DOI: 10.1016/j.jcis.2022.04.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
|
18
|
Morphology regulation and application of nano cobalt oxide (Co3O4) electrocatalysts for chlorine evolution toward marine anti-biofouling. J Colloid Interface Sci 2022; 628:794-806. [DOI: 10.1016/j.jcis.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
|
19
|
Yu H, Xiao Q, Qi G, Chen F, Tu B, Zhang S, Li Y, Chen Y, Yu H, Duan P. A Hydrogen Bonds-Crosslinked Hydrogels With Self-Healing and Adhesive Properties for Hemostatic. Front Bioeng Biotechnol 2022; 10:855013. [PMID: 35497342 PMCID: PMC9046721 DOI: 10.3389/fbioe.2022.855013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Hydrogels with adhesive properties have the potential for rapid haemostasis and wound healing in uncontrolled non-pressurized surface bleeding. Herein, a typical hydrogen bond-crosslinked hydrogel with the above functions was constructed by directly mixing solutions of humic acid (HA) and polyvinylpyrrolidone (PVP), in which the HA worked as a crosslinking agent to form hydrogen bonds with the PVP. By altering the concentration of HA, a cluster of stable and uniform hydrogels were prepared within 10 s. The dynamic and reversible nature of the hydrogen bonds gave the HA/PVP complex (HPC) hydrogels injectability and good flexibility, as well as a self-healing ability. Moreover, the numerous functional groups in the hydrogels enhanced the cohesion strength and interaction on the interface between the hydrogel and the substrate, endowing them with good adhesion properties. The unique chemical composition and cross-linking mechanism gave the HPC hydrogel good biocompatibility. Taking advantage of all these features, the HPC hydrogels obtained in this work were broadly applied as haemostatic agents and showed a good therapeutic effect. This work might lead to an improvement in the development of multifunctional non-covalent hydrogels for application to biomaterials.
Collapse
Affiliation(s)
- Han Yu
- Department of Pathology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Pathophysiology and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- *Correspondence: Han Yu, ; Hui Yu, ; Peng Duan,
| | - Qiaohong Xiao
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Guilin Qi
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Feixiang Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Biyue Tu
- Fourth Clinical College, Hubei University of Medicine, Shiyan, China
| | - Suo Zhang
- Fourth Clinical College, Hubei University of Medicine, Shiyan, China
| | - Yinping Li
- Department of Pathophysiology and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hui Yu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- *Correspondence: Han Yu, ; Hui Yu, ; Peng Duan,
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- *Correspondence: Han Yu, ; Hui Yu, ; Peng Duan,
| |
Collapse
|
20
|
Wan X, Jia L, Liu X, Dai B, Jiang L, Wang S. WET-Induced Layered Organohydrogel as Bioinspired "Sticky-Slippy Skin" for Robust Underwater Oil-Repellency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110408. [PMID: 35180331 DOI: 10.1002/adma.202110408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Underwater superoleophobic surfaces featuring anti-oil-fouling properties are of great significance in widespread fields. However, their complicated engineering process and weak interfacial adhesion strength with underlying substrates severely hamper these ideal surfaces toward practical applications. Here, a moss-inspired sticky-slippy skin composed of layered organohydrogel is reported through a one-step wetting-enabled-transfer (WET) strategy, which unprecedentedly integrates robust inherent adhesion with durable anti-oil-fouling properties. The sticky organogel layer can be simply attached to various substrates, from metals and plastics to glass, independent of any surface pretreatment. The slippy hydrogel layer enables stable underwater superoleophobicity and ultralow oil adhesion for diverse kinds of oils. The sticky-slippy skin features outstanding comprehensive properties including easy-pasting, anti-swelling/anti-bending, compatibility with commercial adhesives, acid/alkali resistance, environmental friendliness, and substrate universality. The design strategy with integrated functions provides a clue to accelerate the development of bioinspired multifunctional interfacial materials toward real-world applications.
Collapse
Affiliation(s)
- Xizi Wan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lanxin Jia
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xi Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Bing Dai
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|