1
|
Babu MP, Moodakare SB, Vedarajan R, Ramanujam K. Quasi-Gel Polymer Electrolyte Interfaced with Electrodes through Solvent-Swollen Poly(ethylene oxide) for High-Performance Lithium/Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45399-45410. [PMID: 39146494 DOI: 10.1021/acsami.4c06192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Solid polymer electrolytes (SPEs) are regarded as a superior alternative to traditional liquid electrolytes of lithium-ion batteries (LIBs) due to their improved safety features. The practical implementation of SPEs faces challenges, such as low ionic conductivity at room temperature (RT) and inadequate interfacial contact, leading to high interfacial resistance across the electrode and electrolyte interfaces. In this study, we addressed these issues by designing a quasi-gel polymer electrolyte (QGPE), a blend of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), poly(ethylene oxide) (PEO), and succinonitrile (SN), with the desired mechanical strength, ionic conductivity, and interfacial stability through a simple solution casting technique. The QGPE features a thin solvated PEO layer on its surface, which wets the electrode, reducing the interfacial resistance and ensuring a homogeneous Li-ion flux across the interface. The optimized QGPE exhibits a good lithium-ion conductivity of 1.14 × 10-3 S cm-1 with a superior lithium-ion transference number of 0.7 at 25 °C. The Li/QGPE/Li symmetric cell exhibits a highly reversible lithium plating/stripping process for over 1300 h with minimal voltage polarization of ∼20 mV. The Li/QGPE/LiFePO4 full cell demonstrates good rate capability and excellent long-term cycling performance at a 0.1 C rate at 25 °C, maintaining a specific discharge capacity of 148 mAh g-1 over 200 cycles. The effectiveness of QGPE for LIBs is proven using a graphite/QGPE/LiFePO4 4 × 4 cm pouch cell, showcasing outstanding flexibility and tolerance against intentional abuse.
Collapse
Affiliation(s)
- Mohana Priya Babu
- Clean Energy Lab, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036, India
- The Energy Consortium, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036, India
| | - Sahana B Moodakare
- International Advanced Research Centre for Powder Metallurgy and New Materials, Indian Institute of Technology (IIT) Madras, Research Park, Chennai, Tamil Nadu 600113, India
| | - Raman Vedarajan
- International Advanced Research Centre for Powder Metallurgy and New Materials, Indian Institute of Technology (IIT) Madras, Research Park, Chennai, Tamil Nadu 600113, India
| | - Kothandaraman Ramanujam
- Clean Energy Lab, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036, India
- The Energy Consortium, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
2
|
Xu M, Li D, Feng Y, Yuan Y, Wu Y, Zhao H, Kumar RV, Feng G, Xi K. Microporous Materials in Polymer Electrolytes: The Merit of Order. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405079. [PMID: 38922998 DOI: 10.1002/adma.202405079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Solid-state batteries (SSBs) have garnered significant attention in the critical field of sustainable energy storage due to their potential benefits in safety, energy density, and cycle life. The large-scale, cost-effective production of SSBs necessitates the development of high-performance solid-state electrolytes. However, the manufacturing of SSBs relies heavily on the advancement of suitable solid-state electrolytes. Composite polymer electrolytes (CPEs), which combine the advantages of ordered microporous materials (OMMs) and polymer electrolytes, meet the requirements for high ionic conductivity/transference number, stability with respect to electrodes, compatibility with established manufacturing processes, and cost-effectiveness, making them particularly well-suited for mass production of SSBs. This review delineates how structural ordering dictates the fundamental physicochemical properties of OMMs, including ion transport, thermal transfer, and mechanical stability. The applications of prominent OMMs are critically examined, such as metal-organic frameworks, covalent organic frameworks, and zeolites, in CPEs, highlighting how structural ordering facilitates the fulfillment of property requirements. Finally, an outlook on the field is provided, exploring how the properties of CPEs can be enhanced through the dimensional design of OMMs, and the importance of uncovering the underlying "feature-function" mechanisms of various CPE types is underscored.
Collapse
Affiliation(s)
- Ming Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Danyang Li
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yuhe Feng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yu Yuan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yutong Wu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Hongyang Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - R Vasant Kumar
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Guodong Feng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Kai Xi
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
3
|
Wei L, Xu X, Xi K, Lei Y, Cheng X, Shi X, Wu H, Gao Y. Ultralong Cycling and Interfacial Regulation of Bilayer Heterogeneous Composite Solid-State Electrolytes in Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33578-33589. [PMID: 38905020 DOI: 10.1021/acsami.4c06026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Under the background of "carbon neutral", lithium-ion batteries (LIB) have been widely used in portable electronic devices and large-scale energy storage systems, but the current commercial electrolyte is mainly liquid organic compounds, which have serious safety risks. In this paper, a bilayer heterogeneous composite solid-state electrolyte (PLPE) was constructed with the 3D LiX zeolite nanofiber (LiX-NF) layer and in-situ interfacial layer, which greatly extends the life span of lithium metal batteries (LMB). LiX-NF not only offers a continuous fast path for Li+, but also zeolite's Lewis acid-base interaction can immobilize large anions, which significantly improves the electrochemical performance of the electrolyte. In addition, the in-situ interfacial layer at the electrode-electrolyte interface can effectively facilitate the uniform deposition of Li+ and inhibit the growth of lithium dendrites. As a result, the Li/Li battery assembled with PLPE can be stably cycled for more than 2500 h at 0.1 mA cm-2. Meanwhile, the initial discharge capacity of the LiFePO4/PLPE/Li battery can be 162.43 mAh g-1 at 0.5 C, and the capacity retention rate is 82.74% after 500 cycles. These results emphasize that this bilayer heterogeneous composite solid-state electrolyte has distinct properties and shows excellent potential for application in LMB.
Collapse
Affiliation(s)
- Lai Wei
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xin Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kang Xi
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yue Lei
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiang Cheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiaobei Shi
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Haihua Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yunfang Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
4
|
Tao M, Du G, Zou W, Cao J, Li W, Zheng G, Liang Z, Cui Z, Du L, Song H. Li ions traffic controller on thin lithium metal anode: Regulating deposition, optimizing and protecting solid electrolyte interphase. J Colloid Interface Sci 2024; 663:532-540. [PMID: 38422978 DOI: 10.1016/j.jcis.2024.02.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024]
Abstract
The performance of thin lithium metal anodes is affected due to issues that weaken the electrode-electrolyte interphase. In this work, a coating layer serving as a Li+ traffic controller based on hexadecyl trimethyl ammonium bis(trifluoromethanesulphonyl)imide ([CTA][TFSI]) and poly (vinylidene difluoride co-hexafluoropropylene) (P(VDF-HFP)) is used to stabilize the thin lithium metal interface. The CTA+ ions in the coating layer can effectively regulate the distribution of Li+ concentration to promote uniform deposition of lithium. The anion of [CTA][TFSI] can optimize solid electrolyte interphase (SEI) with inorganic-rich components, which improve the ionic conductivity and reaction kinetics. Furthermore, the flexible polymer skeleton can fortify the fragile SEI, facilitating the consistent operation of the battery. Due to these improvements, a thin Li metal anode (4 mAh cm-2) with a coating layer in a Li||Li symmetric cell demonstrates a lifespan of 600 h at 1 mA cm-2 and 1 mAh cm-2. Notably, full cells with an ultra-low negative electrode/positive electrode = 1 (N/P = 1) demonstrate a stable performance over 200 cycles and 90 cycles at 0.5C and 1C (1C = 170 mA g-1), respectively.
Collapse
Affiliation(s)
- Mengli Tao
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Guangyuan Du
- School of Materials, Sun Yat-sen University, Shenzhen 518107, China
| | - Wenwu Zou
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiaqi Cao
- School of Materials, Sun Yat-sen University, Shenzhen 518107, China
| | - Wei Li
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Guangli Zheng
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhenxing Liang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhiming Cui
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Li Du
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huiyu Song
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
5
|
Costa CM, Cardoso VF, Martins P, Correia DM, Gonçalves R, Costa P, Correia V, Ribeiro C, Fernandes MM, Martins PM, Lanceros-Méndez S. Smart and Multifunctional Materials Based on Electroactive Poly(vinylidene fluoride): Recent Advances and Opportunities in Sensors, Actuators, Energy, Environmental, and Biomedical Applications. Chem Rev 2023; 123:11392-11487. [PMID: 37729110 PMCID: PMC10571047 DOI: 10.1021/acs.chemrev.3c00196] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 09/22/2023]
Abstract
From scientific and technological points of view, poly(vinylidene fluoride), PVDF, is one of the most exciting polymers due to its overall physicochemical characteristics. This polymer can crystalize into five crystalline phases and can be processed in the form of films, fibers, membranes, and specific microstructures, being the physical properties controllable over a wide range through appropriate chemical modifications. Moreover, PVDF-based materials are characterized by excellent chemical, mechanical, thermal, and radiation resistance, and for their outstanding electroactive properties, including high dielectric, piezoelectric, pyroelectric, and ferroelectric response, being the best among polymer systems and thus noteworthy for an increasing number of technologies. This review summarizes and critically discusses the latest advances in PVDF and its copolymers, composites, and blends, including their main characteristics and processability, together with their tailorability and implementation in areas including sensors, actuators, energy harvesting and storage devices, environmental membranes, microfluidic, tissue engineering, and antimicrobial applications. The main conclusions, challenges and future trends concerning materials and application areas are also presented.
Collapse
Affiliation(s)
- Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Vanessa F. Cardoso
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro Martins
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | | | - Renato Gonçalves
- Center of
Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Pedro Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
for Polymers and Composites IPC, University
of Minho, 4804-533 Guimarães, Portugal
| | - Vitor Correia
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Clarisse Ribeiro
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Margarida M. Fernandes
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro M. Martins
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Centre
of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications
and Nanostructures, UPV/EHU
Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
6
|
Barbosa JC, Correia DM, Fidalgo-Marijuan A, Gonçalves R, Ferdov S, de Zea Bermudez V, Lanceros-Mendez S, Costa CM. High Performance Ternary Solid Polymer Electrolytes Based on High Dielectric Poly(vinylidene fluoride) Copolymers for Solid State Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37379238 DOI: 10.1021/acsami.3c03361] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Renewable energy sources require efficient energy storage systems. Lithium-ion batteries stand out among those systems, but safety and cycling stability problems still need to be improved. This can be achieved by the implementation of solid polymer electrolytes (SPE) instead of the typically used separator/electrolyte system. Thus, ternary SPEs have been developed based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene), P(VDF-TrFE-CFE) as host polymers, clinoptilolite (CPT) zeolite added to stabilize the battery cycling performance, and ionic liquids (ILs) (1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN])), 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([PMPyr][TFSI]) or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), incorporated to increase the ionic conductivity. The samples were processed by doctor blade with solvent evaporation at 160 °C. The nature of the polymer matrix and fillers affect the morphology and mechanical properties of the samples and play an important role in electrochemical parameters such as ionic conductivity value, electrochemical window stability, and lithium-transference number. The best ionic conductivity (4.2 × 10-5 S cm-1) and lithium transference number (0.59) were obtained for the PVDF-HFP-CPT-[PMPyr][TFSI] sample. Charge-discharge battery tests at C/10 showed excellent battery performance with values of 150 mAh g-1 after 50 cycles, regardless of the polymer matrix and IL used. In the rate performance tests, the best SPE was the one based on the P(VDF-TrFE-CFE) host polymer, with a discharge value at C-rate of 98.7 mAh g-1, as it promoted ionic dissociation. This study proves for the first time the suitability of P(VDF-TrFE-CFE) as SPE in lithium-ion batteries, showing the relevance of the proper selection of the polymer matrix, IL type, and lithium salt in the formulation of the ternary SPE, in order to optimize solid-state battery performance. In particular, the enhancement of the ionic conductivity provided by the IL and the effect of the high dielectric constant polymer P(VDF-TrFE-CFE) in improving battery cyclability in a wide range of discharge rates must be highlighted.
Collapse
Affiliation(s)
- João C Barbosa
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho 4710-057 Braga, Portugal
- CQ-VR, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | | | - Arkaitz Fidalgo-Marijuan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Renato Gonçalves
- Centre of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Stanislav Ferdov
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho 4710-057 Braga, Portugal
| | - Verónica de Zea Bermudez
- CQ-VR, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Department of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho 4710-057 Braga, Portugal
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Carlos M Costa
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-053 Braga, Portugal
| |
Collapse
|
7
|
Barbosa J, Correia DM, Fidalgo-Marijuan A, Gonçalves R, Ferdov S, de Zea Bermudez V, Costa CM, Lanceros-Mendez S. Influence of Solvent Evaporation Temperature on the Performance of Ternary Solid Polymer Electrolytes Based on Poly(vinylidene fluoride- co-hexafluoropropylene) Combining an Ionic Liquid and a Zeolite. ACS APPLIED ENERGY MATERIALS 2023; 6:5239-5248. [PMID: 37234969 PMCID: PMC10206616 DOI: 10.1021/acsaem.3c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Solid polymer electrolytes (SPEs) will allow improving safety and durability in next-generation solid-state lithium-ion batteries (LIBs). Within the SPE class, ternary composites are a suitable approach as they provide high room-temperature ionic conductivity and excellent cycling and electrochemical stability. In this work, ternary SPEs based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as a polymer host, clinoptilolite (CPT) zeolite, and 1-butyl-3-methylimidazolium thiocyanate ([Bmim][SCN])) ionic liquid (IL) as fillers were produced by solvent evaporation at different temperatures (room temperature, 80, 120, and 160 °C). Solvent evaporation temperature affects the morphology, degree of crystallinity, and mechanical properties of the samples as well as the ionic conductivity and lithium transference number. The highest ionic conductivity (1.2 × 10-4 S·cm-1) and lithium transference number (0.66) have been obtained for the SPE prepared at room temperature and 160 °C, respectively. Charge-discharge battery tests show the highest value of discharge capacity of 149 and 136 mAh·g-1 at C/10 and C/2 rates, respectively, for the SPE prepared at 160 °C. We conclude that the fine control of the solvent evaporation temperature during the preparation of the SPE allows us to optimize solid-state battery performance.
Collapse
Affiliation(s)
- João
C. Barbosa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of
Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- CQ-VR, University
of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | | | - Arkaitz Fidalgo-Marijuan
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Department
of Organic and Inorganic Chemistry, University
of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Renato Gonçalves
- Center
of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Stanislav Ferdov
- Physics
Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of
Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Verónica de Zea Bermudez
- CQ-VR, University
of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Department
of Chemistry, University of Trás-os-Montes
e Alto Douro, 5000-801 Vila Real, Portugal
| | - Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of
Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-053 Braga, Portugal
| | - Senentxu Lanceros-Mendez
- Physics
Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of
Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
8
|
Chen H, Fan J, Chen X, Ma Z, Zhang L, Chen X. Gold Nanoparticle (Au NP)-Decorated Ionic Liquid (IL) Based Liposome: A Stable, Biocompatible, and Conductive Biomimetic Platform for the Fabrication of an Enzymatic Electrochemical Glucose Biosensor. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2153256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hongzhuang Chen
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Jialin Fan
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Xue Chen
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Zhenkuan Ma
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Ling Zhang
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Xuwei Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
9
|
Poly(vinylidene fluoride-co-hexafluoropropylene) based tri-composites with zeolite and ionic liquid for electromechanical actuator and lithium-ion battery applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|