• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4670595)   Today's Articles (5470)
For: Roy D, Mandal SC, Pathak B. Machine Learning-Driven High-Throughput Screening of Alloy-Based Catalysts for Selective CO2 Hydrogenation to Methanol. ACS Appl Mater Interfaces 2021;13:56151-56163. [PMID: 34787997 DOI: 10.1021/acsami.1c16696] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Number Cited by Other Article(s)
1
Kreitz B, Gusmão GS, Nai D, Sahoo SJ, Peterson AA, Bross DH, Goldsmith CF, Medford AJ. Unifying thermochemistry concepts in computational heterogeneous catalysis. Chem Soc Rev 2025;54:560-589. [PMID: 39611700 DOI: 10.1039/d4cs00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
2
Sharma RK, Jena MK, Minhas H, Pathak B. Machine-Learning-Assisted Screening of Nanocluster Electrocatalysts: Mapping and Reshaping the Activity Volcano for the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2024;16:63589-63601. [PMID: 39527073 DOI: 10.1021/acsami.4c14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
3
Araújo TP, Mitchell S, Pérez‐Ramírez J. Design Principles of Catalytic Materials for CO2 Hydrogenation to Methanol. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024;36:e2409322. [PMID: 39300859 PMCID: PMC11602685 DOI: 10.1002/adma.202409322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/02/2024] [Indexed: 09/22/2024]
4
Wang D, Zan R, Zhu X, Zhang Y, Wang Y, Gu Y, Li Y. A machine learning-assisted study of the formation of oxygen vacancies in anatase titanium dioxide. RSC Adv 2024;14:33198-33205. [PMID: 39439839 PMCID: PMC11494461 DOI: 10.1039/d4ra04422c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]  Open
5
Zada H, Yu J, Sun J. Active Sites for CO2 Hydrogenation to Methanol: Mechanistic Insights and Reaction Control. CHEMSUSCHEM 2024:e202401846. [PMID: 39356246 DOI: 10.1002/cssc.202401846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/03/2024]
6
Qin H, Zhang H, Wu K, Wang X, Fan W. A systematic theoretical study of CO2 hydrogenation towards methanol on Cu-based bimetallic catalysts: role of the CHO&CH3OH descriptor in thermodynamic analysis. Phys Chem Chem Phys 2024;26:19088-19104. [PMID: 38842113 DOI: 10.1039/d4cp01009d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
7
Zhou Q, Shou H, Qiao S, Cao Y, Zhang P, Wei S, Chen S, Wu X, Song L. Analyzing the Active Site and Predicting the Overall Activity of Alloy Catalysts. J Am Chem Soc 2024;146:15167-15175. [PMID: 38717376 DOI: 10.1021/jacs.4c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
8
Das S, Chowdhury S, Tiwary CS. High-entropy-based nano-materials for sustainable environmental applications. NANOSCALE 2024;16:8256-8272. [PMID: 38587499 DOI: 10.1039/d4nr00474d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
9
Lei H, Zhao W, Zhang W, Yang J. Theoretical Insights into Amido Group-Mediated Enhancement of CO2 Hydrogenation to Methanol on Cobalt Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024;16:8822-8831. [PMID: 38345828 DOI: 10.1021/acsami.3c17456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
10
Roy D, Charan Mandal S, Das A, Pathak B. Unravelling CO2 Reduction Reaction Intermediates on High Entropy Alloy Catalysts: An Interpretable Machine Learning Approach to Establish Scaling Relations. Chemistry 2024;30:e202302679. [PMID: 37966848 DOI: 10.1002/chem.202302679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
11
Yang X, Dang J, Zhang C, Li J, Niu S, Gao H, Liu B, Guo Z, Ma H. Comparing the Catalytic Effect of Metals for Energetic Materials: Machine Learning Prediction of Adsorption Energies on Metals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024;40:1087-1095. [PMID: 38109273 DOI: 10.1021/acs.langmuir.3c03348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
12
Dahale C, Goverapet Srinivasan S, Rai B. Effects of Segregation on the Catalytic Properties of AgAuCuPdPt High-Entropy Alloy for CO Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38044859 DOI: 10.1021/acsami.3c12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
13
Ren JT, Chen L, Wang HY, Yuan ZY. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem Soc Rev 2023;52:8319-8373. [PMID: 37920962 DOI: 10.1039/d3cs00557g] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
14
Ojelade OA. CO2 Hydrogenation to Gasoline and Aromatics: Mechanistic and Predictive Insights from DFT, DRIFTS and Machine Learning. Chempluschem 2023;88:e202300301. [PMID: 37580947 DOI: 10.1002/cplu.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
15
Chaka M, Geffe CA, Rodriguez A, Seriani N, Wu Q, Mekonnen YS. High-Throughput Screening of Promising Redox-Active Molecules with MolGAT. ACS OMEGA 2023;8:24268-24278. [PMID: 37457475 PMCID: PMC10339396 DOI: 10.1021/acsomega.3c01295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
16
Bang K, Hong D, Park Y, Kim D, Han SS, Lee HM. Machine learning-enabled exploration of the electrochemical stability of real-scale metallic nanoparticles. Nat Commun 2023;14:3004. [PMID: 37230963 PMCID: PMC10213026 DOI: 10.1038/s41467-023-38758-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/10/2023] [Indexed: 05/27/2023]  Open
17
Liu Z, Tian W, Cui Z, Liu B. A universal microkinetic-machine learning bimetallic catalyst screening method for steam methane reforming. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
18
Jena MK, Roy D, Pathak B. Machine Learning Aided Interpretable Approach for Single Nucleotide-Based DNA Sequencing using a Model Nanopore. J Phys Chem Lett 2022;13:11818-11830. [PMID: 36520020 DOI: 10.1021/acs.jpclett.2c02824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
19
Cui P, Xing G, Nong Z, Chen L, Lai Z, Liu Y, Zhu J. Recent Advances on Composition-Microstructure-Properties Relationships of Precipitation Hardening Stainless Steel. MATERIALS (BASEL, SWITZERLAND) 2022;15:8443. [PMID: 36499939 PMCID: PMC9737682 DOI: 10.3390/ma15238443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
20
Mittal S, Manna S, Pathak B. Machine Learning Prediction of the Transmission Function for Protein Sequencing with Graphene Nanoslit. ACS APPLIED MATERIALS & INTERFACES 2022;14:51645-51655. [PMID: 36374991 DOI: 10.1021/acsami.2c13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
21
Chen ZW, Gariepy Z, Chen L, Yao X, Anand A, Liu SJ, Tetsassi Feugmo CG, Tamblyn I, Singh CV. Machine-Learning-Driven High-Entropy Alloy Catalyst Discovery to Circumvent the Scaling Relation for CO2 Reduction Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
22
Joshi H, Wilde N, Asche TS, Wolf D. Developing Catalysts via Structure‐Property Relations Discovered by Machine Learning: An Industrial Perspective. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
23
High-throughput materials screening algorithm based on first-principles density functional theory and artificial neural network for high-entropy alloys. Sci Rep 2022;12:16653. [PMID: 36198732 PMCID: PMC9534987 DOI: 10.1038/s41598-022-21209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022]  Open
24
Tran R, Wang D, Kingsbury R, Palizhati A, Persson KA, Jain A, Ulissi ZW. Screening of bimetallic electrocatalysts for water purification with machine learning. J Chem Phys 2022;157:074102. [DOI: 10.1063/5.0092948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
25
Pandit NK, Roy D, Mandal SC, Pathak B. Rational Designing of Bimetallic/Trimetallic Hydrogen Evolution Reaction Catalysts Using Supervised Machine Learning. J Phys Chem Lett 2022;13:7583-7593. [PMID: 35950905 DOI: 10.1021/acs.jpclett.2c01401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
26
Roy D, Mandal SC, Pathak B. Machine Learning Assisted Exploration of High Entropy Alloy-Based Catalysts for Selective CO2 Reduction to Methanol. J Phys Chem Lett 2022;13:5991-6002. [PMID: 35737450 DOI: 10.1021/acs.jpclett.2c00929] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
27
Restuccia P, Ahmad EA, Harrison NM. A transferable prediction model of molecular adsorption on metals based on adsorbate and substrate properties. Phys Chem Chem Phys 2022;24:16545-16555. [PMID: 35766802 DOI: 10.1039/d2cp01572b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
28
Sulley GA, Montemore MM. Recent progress towards a universal machine learning model for reaction energetics in heterogeneous catalysis. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
29
Catalytic Hydrogenation of CO2 to Methanol: A Review. Catalysts 2022. [DOI: 10.3390/catal12040403] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]  Open
30
Liu Y, Hong W, Cao B. MolNet‐3D: Deep Learning of Molecular Representations and Properties from 3D Topography. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA