1
|
Ren C, Zhang S, Zhang Z, Li H, Sheng W, Wang X, Li P, Zhang X, Li X, Lin H, Duan H, Guan S, Wang L. Injectable and self-healing carboxymethyl chitosan/carboxymethyl cellulose/marine snail peptide hydrogel for infected wound healing. Int J Biol Macromol 2024; 288:138784. [PMID: 39675611 DOI: 10.1016/j.ijbiomac.2024.138784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/17/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Treatment of bacterial infected full-thickness wounds remains a great challenge in clinic. Herein, a HYP hydrogel was prepared using carboxymethyl chitosan, dialdehyde carboxymethyl cellulose, and marine snail peptide (Tyr-Ile-Ala-Glu-Asp-Ala-Glu-Arg) as starting materials. The marine snail peptide with good antioxidant activity could remove the reactive oxygen species in wound sites, thereby alleviating the excessive inflammatory response. The dynamic Schiff-base bonds endowed HYP with good injectable and self-healing abilities. HYP exhibited suitable gelation time, good rheological properties, and unique porosity structure, which were conducive to wound healing. In vitro biological studies indicated that HYP showed good biocompatibility, low hemolysis ratio, and improved antibacterial and antioxidant activities. In vivo study revealed that HYP could promote wound healing in a bacterial infected full-thickness skin defect rat model. The wound tissues showed reduced number of inflammatory cells, newly formed hair follicles, and obvious collagen deposition. The expression of inflammatory and angiogenesis related biomarkers (IL-6, IL-10, CD31, and α-SMA) significantly improved. Therefore, HYP hydrogel showed great application prospect as a wound dressing for bacterial infected wound.
Collapse
Affiliation(s)
- Chengkun Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Zhihan Zhang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hui Li
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Peihai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Xuanming Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Houwen Lin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China; Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hongdong Duan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Shibing Guan
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China.
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China.
| |
Collapse
|
2
|
Zhang R, Wang L, Meng L, Shang W, Ren Y, Qi Q, Liu J, Cui B, Meng Z, Jiang X, Ding L, Gou Y, He Y, Zhang Q, Ren C. A slime-inspired phycocyanin/κ-carrageenan-based hydrogel bandage with ultra-stretchability, self-healing, antioxidative, and antibacterial activity for wound healing. Int J Biol Macromol 2024; 289:138786. [PMID: 39675612 DOI: 10.1016/j.ijbiomac.2024.138786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/23/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Hydrogels have attracted extensive attention as wound dressing owing to their excellent multifunctionality, flexibility, and biocompatibility. Due to the frequent movement and stretching of skin as well as complex surface of wound, traditional wound dressings have difficulty to adapt to motion and irregular wounds. Furthermore, excessive reactive oxygen species (ROS) and bacterial infection can induce delayed wound healing. To this end, we developed a set of versatile phycocyanin-based dual network hydrogels (PPC hydrogels) with polyvinyl alcohol (PVA) and κ-carrageenan (CRG) as substrate via forming of borate ester bonds, hydrogen bonds, and electrostatic interaction. The PPC hydrogels not only possessed adaptivity, ultra-stretchability (7036.12 %), efficient self-healing and injectability, but also possessed antioxidative and antibacterial capacities conferred by C-phycocyanin (PC) and rhein. Moreover, the hydrogels also exhibited excellent hemostatic ability and high biocompatibility. More remarkably, the PPC-I hydrogel could accelerate wound healing by effect of anti-inflammation (downregulating TNF-α and IL-6) and promoting collagen deposition and angiogenesis (upregulating CD31), which may be utilized as hydrogel bandages and applied to motion and irregular wounds, thereby promising the application prospect of the hydrogels as wound dressing.
Collapse
Affiliation(s)
- Renlong Zhang
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Linlin Wang
- Department of Food Engineering, Shandong Business Institute, Yantai 264670, Shandong, China
| | - Lingjie Meng
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Wenshuo Shang
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Yuhang Ren
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Qianfen Qi
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Jiaxin Liu
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Benke Cui
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Zhihao Meng
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Xue Jiang
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Luyao Ding
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Yanzhe Gou
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Yanhao He
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China.
| | - Qiuyan Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China.
| | - Chunguang Ren
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China.
| |
Collapse
|
3
|
Rong H, Sun S, Lu M, Zhang Y, Liu L, Guo Z, Zhang Z, Ye Z, Zhang J, Chen B, Li S, Dong A. Super-hydrophilic and super-lubricating Zwitterionic hydrogel coatings coupled with polyurethane to reduce postoperative dura mater adhesions and infections. Acta Biomater 2024:S1742-7061(24)00757-8. [PMID: 39675498 DOI: 10.1016/j.actbio.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
The dura trauma or large defects due to neurosurgical procedures can result in potential complications. Dural replacements have proven effective to reduce the risk of seizures, meningitis, cerebrospinal fluid leakage, cerebral herniation, and infection. Although various artificial dural patches have been developed, addressing iatrogenic infections and cerebral adhesions resulting from patches implantation remains a challenge. This study employed a network interpenetration modification strategy to introduce super-hydrophilic and super-lubricity zwitterionic hydrogel coatings on polyurethane Neuro-Patch® (NP®) dura mater patch. The successful modification with the hydrogel coating preserved the intrinsic properties of the NP®, such as their anti-leakage and tensile strength capabilities, while effectively reducing biofouling on the surface of the patches. Additionally, by constructing subdural implantation for each dura mater substitute in rabbits, we observed that artificial dura mater patches modified with the hydrogel coating effectively reduced the incidence of postoperative cerebral adhesions and infections. This suggests a promising application prospect of the hydrogel coating in dural repair. STATEMENT OF SIGNIFICANCE: The development of dural substitutes with anti-leakage, anti-adhesion and anti-infection functions is the key to the treatment of dural defects and cerebrospinal fluid leakage during trauma or neurosurgery. In this study, the amphoteric ionic hydrogel coating was firmly modified on the surface of polyurethane with a mild modification process to give the patch super-hydrophilic and super-lubricating properties. The adhesion of non-specific proteins and bacteria is effectively reduced. The rabbit dural defect repair model showed that the introduction of zwitterionic hydrogel coating effectively reduced the occurrence of postoperative infection, and no tissue adhesion was observed. Taken together, this study offers a promising way to enhance the performance of artificial dural patches, potentially benefiting patients undergoing neurosurgery.
Collapse
Affiliation(s)
- Hui Rong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China
| | - Shupeng Sun
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Key Laboratory of Cerebral Blood Flow Reconstruction and Head and Neck Tumor New Technology Translation, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, PR China; Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, PR China
| | - Manhua Lu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China
| | - Yiqun Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Lingyuan Liu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ziwei Guo
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zimeng Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhanpeng Ye
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, PR China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China
| | - Budong Chen
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Key Laboratory of Cerebral Blood Flow Reconstruction and Head and Neck Tumor New Technology Translation, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, PR China; Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, PR China
| | - Shuangyang Li
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China
| | - Anjie Dong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
4
|
Zhang C, Zhao H, Geng S, Li C, Liu J, Chen Y, Yi M, Liu Y, Guan F, Yao M. Adhesive, Stretchable, and Photothermal Antibacterial Hydrogel Dressings for Wound Healing of Infected Skin Burn at Joints. Biomacromolecules 2024; 25:7750-7766. [PMID: 39540762 DOI: 10.1021/acs.biomac.4c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Dressings for infectious skin burn wounds at joints should have therapeutic functions as well as high tissue-adhesion, stretching, and self-healing properties. This makes it difficult for most hydrogel dressings to simultaneously meet the above-mentioned requirements. In this study, poly(vinyl alcohol), anhydrous sodium borax, epigallocatechin gallate, and copper chloride were used to prepare a hydrogel dressing (PBEC) for the infected burn wound healing at joints. The PBEC hydrogel can adhere to a variety of substrates, has a stretching capacity, and quickly self-healing after being damaged. Additionally, the PBEC hydrogel has the properties of reactive oxygen species scavenging, photothermal sterilization, hemostatic ability, and biocompatibility. Finally, the hydrogel could accelerate the process of wound healing in vivo, especially with the assistance of near-infrared radiation. Therefore, the hydrogel dressing shows great potential for clinical application in the healing of infected burn wounds at joints.
Collapse
Affiliation(s)
- Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Hua Zhao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Shanshan Geng
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Chenghao Li
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Jingmei Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Yuxin Chen
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Ming Yi
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Yuntong Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| |
Collapse
|
5
|
Xing D, Du Y, Dai K, Lang S, Bai Y, Liu G. Polysaccharide-Based Injectable Hydrogel Loaded with Quercetin Promotes Scarless Healing of Burn Wounds by Reducing Inflammation. Biomacromolecules 2024; 25:7529-7542. [PMID: 39467666 DOI: 10.1021/acs.biomac.4c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Moisture loss, infection, and severe inflammatory reactions are the primary factors affecting burn wound healing and leading to scar formation. Herein, we developed a quercetin-loaded polysaccharide-based injectable hydrogel (named PECE). The PECE consists of oxidized sodium alginate (OAlg) coupled with chitosan (CS) via Schiff bases and electrostatic interactions, while Que is incorporated via hydrogen bonding. Benefiting from the hydroxyl and carboxyl groups, PECE features distinguished moisturizing ability. Additionally, the sustained release of Que imparts remarkable antibacterial activity against Escherichia coli and Staphylococcus aureus. Likewise, PECE demonstrates favorable in vitro anti-inflammatory capacity as released Que significantly downregulates pro-inflammatory factors (IL-6 and TNF-α) secreted by RAW 264.7 macrophages. More importantly, in a rat model of deep second-degree burn wounds, PECE effectively inhibits wound infection, reduces inflammation, and promotes angiogenesis and collagen deposition, ultimately minimizing scar formation. Overall, this work presents a promising strategy for scarless healing of burn wounds.
Collapse
Affiliation(s)
- Dandan Xing
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yangrui Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Kang Dai
- Department of stomatology, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China
| | - Shiying Lang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yangjing Bai
- West China School of Nursing, Sichuan University/Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Liu H, Yang Y, Deng L, Shen Z, Huang Q, Shah NG, Chen W, Zhang Y, Wang X, Yu L, Chen Z. Antibacterial and antioxidative hydrogel dressings based on tannic acid-gelatin/oxidized sodium alginate loaded with zinc oxide nanoparticles for promoting wound healing. Int J Biol Macromol 2024; 279:135177. [PMID: 39214222 DOI: 10.1016/j.ijbiomac.2024.135177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Wound infection resulting in delayed wound healing and wound deterioration remains a clinical challenge. Recently, multifunctional hydrogel dressing was a promising strategy which has attracted wide attention in preventing wound infection and promoting wound healing. In this study, a hybrid hydrogel made of gelatin (GL), tannic acid (TA), oxidized sodium alginate (OSA), and zinc oxide nanoparticles (ZnO NPs) was prepared mainly by double network cross-linking approach, named tannic acid-gelatin/oxidized sodium alginate/zinc oxide (TA-GL/OSA/ZnO). The composite hydrogels exhibited improved mechanical properties, which provided by TA modified the structure of GL network, Schiff base reaction between GL and OSA, and the strengthening effect of ZnO NPs. Meanwhile, the composite hydrogel showed high antibacterial activity against Staphylococcus aureus (S. aureus) (97.8 % ± 0.9 %) and Escherichia coli (E. coli) (96.6 % ± 1.2 %), attributed to the synergistic effect of TA and ZnO NPs. Furthermore, benefiting from the good antioxidative properties of TA, the sustain-released Zn2+ with the good capability to kill bacteria, and promoting the regeneration of skin epithelial tissues in BALB/c mice constantly, the multifunctional hydrogel had a significant therapeutic effect on wound healing and broad application prospects.
Collapse
Affiliation(s)
- Huaqi Liu
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuanyuan Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Linglong Deng
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhida Shen
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qiaoyu Huang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Nimra Ghafar Shah
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wenjing Chen
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xianxun Wang
- Department of Orthopedics, Hubei No. 3 People's Hospital of Jianghan University, Wuhan 430033, China.
| | - Li Yu
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zhaoxia Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
7
|
Chen S, Yao J, Huo S, Xu C, Yang R, Tao D, Fang B, Ma G, Zhu Z, Zhang Y, Guo J. Designing injectable dermal matrix hydrogel combined with silver nanoparticles for methicillin-resistant Staphylococcus aureus infected wounds healing. NANO CONVERGENCE 2024; 11:41. [PMID: 39417974 PMCID: PMC11486888 DOI: 10.1186/s40580-024-00447-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Hydrogel-based delivery systems have now emerged as a pivotal platform for addressing chronic tissue defects, leveraging their innate capacity to suppress pathogenic infections and facilitate expedited tissue regeneration. In this work, an injectable hydrogel dressing, termed AgNPs-dermal matrix hydrogel (Ag@ADMH), has been designed to expedite the healing process of wounds afflicted with methicillin-resistant Staphylococcus aureus (MRSA), featuring sustained antibacterial efficacy. The synthesis of the hydrogel dressing entailed a self-assembly process of collagen fibers within an acellular dermal matrix to construct a three-dimensional scaffold, encapsulated with plant polyphenol-functionalized silver nanoparticles (AgNPs). The Ag@ADMH demonstrated exceptional biocompatibility, and enables a sustained release of AgNPs, ensuring prolonged antimicrobial activity. Moreover, the in vitro RT-qPCR analysis revealed that compared with ADMH, Ag@ADMH diminish the expression of iNOS while augmenting CD206 expression, thereby mitigating the inflammatory response and fostering wound healing. Especially, the Ag@ADMH facilitated a reduction in M1 macrophage polarization, as evidenced by a significant decrement in the M1 polarization trend and an enhanced M2/M1 ratio in dermal matrix hydrogels laden with AgNPs, corroborated by confocal microscopy and flow cytometry analyses of macrophage phenotypes. The in vivo assessments indicated that Ag@ADMH minimized fibrous capsule formation. In a full-thickness skin defect model of MRSA infection, the formulation significantly attenuated the inflammatory response by reducing MPO and CD68 expression levels, concurrently promoting collagen synthesis and CD34 expression, pivotal for vasculogenesis, thereby accelerating the resolution of MRSA-infected wounds. These attributes underscore the injectable extracellular matrix hydrogel as a formidable strategy for the remediation and regeneration of infected wounds.
Collapse
Affiliation(s)
- Sunfang Chen
- Department of Orthopedic Surgery, Spine Center, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 321030, China
| | - Jun Yao
- Department of Orthopedic Surgery, Spine Center, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 321030, China
| | - Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Chennan Xu
- Department of Orthopedic Surgery, Spine Center, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 321030, China
| | - Ruting Yang
- Department of Orthopedic Surgery, Spine Center, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 321030, China
| | - Danhua Tao
- Department of Pathology, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 321030, China
| | - Bin Fang
- Department of Orthopedic Surgery, Spine Center, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 321030, China
| | - Gaoxiang Ma
- Department of Orthopedic Surgery, Spine Center, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 321030, China
| | - Zaihua Zhu
- Division of Rheumatology and Immunology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Ye Zhang
- Department of Orthopedic Surgery, Spine Center, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 321030, China.
| | - JingJing Guo
- Department of Pharmacy, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 321030, China.
| |
Collapse
|
8
|
Zhao J, Li T, Yue Y, Li X, Xie Z, Zhang H, Tian X. Advancements in employing two-dimensional nanomaterials for enhancing skin wound healing: a review of current practice. J Nanobiotechnology 2024; 22:520. [PMID: 39210430 PMCID: PMC11363430 DOI: 10.1186/s12951-024-02803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The two-dimensional nanomaterials are characterized by their ultra-thin structure, diverse chemical functional groups, and remarkable anisotropic properties. Since its discovery in 2004, graphene has attracted significant scientific interest due to its potential applications in various fields, including electronics, energy systems, and biomedicine. In medicine, graphene is used for designing smart drug delivery systems, especially for antibiotics, and biosensing. Skin trauma is a prevalent dermatological condition that increasingly contributes to morbidities and mortalities, thus representing a significant health burden. During tissue damage, rapid skin repair is crucial to prevent blood loss and infection. Therefore, drugs used for skin trauma must possess antimicrobial and anti-inflammatory properties. Two-dimensional (2D) nanomaterials possess remarkable physical, chemical, optical, and biological characteristics due to their uniform shape, increased surface area, and surface charge. Graphene and its derivatives, transition-metal dichalcogenides (TMDs), black phosphorous (BP), hexagonal boron nitride (h-BN), MXene, and metal-organic frameworks (MOFs) are among the commonly used 2D nanomaterials. Moreover, they exhibit antibacterial and anti-inflammatory properties. This review presents a comprehensive discussion of the clinical approaches employed for wound healing treatment and explores the applications of commonly used 2D nanomaterials to enhance wound healing outcomes.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Tianjiao Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Yajuan Yue
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Xina Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Zhongjian Xie
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Han Zhang
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China.
| | - Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China.
| |
Collapse
|
9
|
Arshad T, Mundrathi V, Perez VE, Nunez JM, Cho H. Topical Probiotic Hydrogels for Burn Wound Healing. Gels 2024; 10:545. [PMID: 39330147 PMCID: PMC11431453 DOI: 10.3390/gels10090545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Hydrogels have increasingly been used to enhance the effective healing of various wounds, including burn wounds. Similarly, the application of probiotics has recently been explored in wound healing and skin repairs. While probiotics have been consumed to provide therapeutic effects that aid with improving gut health, topical applications have been found to accelerate wound healing both in vitro and in vivo. For wounds that have complex healing mechanisms, such as burn wounds which depend on factors such as the depth of the burn, size of the afflicted area, and cause of the injury, probiotics with or without conventional therapeutic agents topically delivered via hydrogel technology are proven to be effective in the recovery of the damaged skin. This article aims to investigate the microorganisms present in the human skin microbiome and observe the effects of probiotics delivered by hydrogels on burn wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Hyunah Cho
- Industrial Pharmacy, Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (T.A.); (V.M.); (V.E.P.); (J.M.N.)
| |
Collapse
|
10
|
Yang Y, Suo D, Xu T, Zhao S, Xu X, Bei HP, Wong KKY, Li Q, Zheng Z, Li B, Zhao X. Sprayable biomimetic double mask with rapid autophasing and hierarchical programming for scarless wound healing. SCIENCE ADVANCES 2024; 10:eado9479. [PMID: 39141725 PMCID: PMC11323895 DOI: 10.1126/sciadv.ado9479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
Current sprayable hydrogel masks lack the stepwise protection, cleansing, and nourishment of extensive wounds, leading to delayed healing with scarring. Here, we develop a sprayable biomimetic double wound mask (BDM) with rapid autophasing and hierarchical programming for scarless wound healing. The BDMs comprise hydrophobic poly (lactide-co-propylene glycol-co-lactide) dimethacrylate (PLD) as top layer and hydrophilic gelatin methacrylate (GelMA) hydrogel as bottom layer, enabling swift autophasing into bilayered structure. After photocrosslinking, BDMs rapidly solidify with strong interfacial bonding, robust tissue adhesion, and excellent joint adaptiveness. Upon implementation, the bottom GelMA layer could immediately release calcium ion for rapid hemostasis, while the top PLD layer could maintain a moist, breathable, and sterile environment. These traits synergistically suppress the inflammatory tumor necrosis factor-α pathway while coordinating the cyclic guanosine monophosphate/protein kinase G-Wnt/calcium ion signaling pathways to nourish angiogenesis. Collectively, our BDMs with self-regulated construction of bilayered structure could hierarchically program the healing progression with transformative potential for scarless wound healing.
Collapse
Affiliation(s)
- Yuhe Yang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Di Suo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Tianpeng Xu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Shuai Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Xiaoxiao Xu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Ho-Pan Bei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Kenneth Kak-yuen Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Qibin Li
- Research Center for Intelligent Aesthetic Medicine, PolyU-Hangzhou Technology and Innovation Research Institute, Hangzhou, Zhejiang 310016, China
- Hangzhou Industrial Investment Group Co., Ltd., Hangzhou, Zhejiang, 310025, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Bin Li
- Medical 3D Printing Center, Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Orthopedic Institute, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xin Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
- Research Center for Intelligent Aesthetic Medicine, PolyU-Hangzhou Technology and Innovation Research Institute, Hangzhou, Zhejiang 310016, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
11
|
Yu Z, Huang W, Wang F, Nie X, Chen G, Zhang L, Shen AZ, Zhang Z, Wang CH, You YZ. An adhesion-switchable hydrogel dressing for painless dressing removal without secondary damage. J Mater Chem B 2024; 12:5628-5644. [PMID: 38747238 DOI: 10.1039/d4tb00621f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Hydrogels with strong adhesion to wet tissues are considered promising for wound dressings. However, the clinical application of adhesive hydrogel dressing remains a challenge due to the issues of secondary damage during dressing changes. Herein, we fabricated an adhesion-switchable hydrogel formed with poly(acrylamide)-co-poly(N-isopropyl acrylamide), quaternary ammonium chitosan and tannic acid. This hydrogel forms instant and robust adhesion to the skin at body temperature. However, as the temperature rises above the lower critical solution temperature (LCST), the hydrogel loses its adhesion towards the wound area due to the temperature-dependent volume phase transition of the copolymer, occurring around 45 °C. Consequently, the designed hydrogel can be easily detached from adhered tissues upon demand, providing a facile and effective method for painless dressing changes without secondary damage. This hydrogel holds great promise for long-term application in wound dressings.
Collapse
Affiliation(s)
- Zhiling Yu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Weiqiang Huang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fei Wang
- Department of Neurosurgical, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xuan Nie
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guang Chen
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Ai-Zong Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Ze Zhang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chang-Hui Wang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P. R. China
| | - Ye-Zi You
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
12
|
Xu H, Zhang Y, Ma J, Miao H, Chen S, Gao S, Rong H, Deng L, Zhang J, Dong A, Li S. Preparation and characterization of a polyurethane-based sponge wound dressing with a superhydrophobic layer and an antimicrobial adherent hydrogel layer. Acta Biomater 2024; 181:235-248. [PMID: 38692469 DOI: 10.1016/j.actbio.2024.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Bacterial infection poses a significant impediment in wound healing, necessitating the development of dressings with intrinsic antimicrobial properties. In this study, a multilayered wound dressing (STPU@MTAI2/AM1) was reported, comprising a surface-superhydrophobic treated polyurethane (STPU) sponge scaffold coupled with an antimicrobial hydrogel. A superhydrophobic protective outer layer was established on the hydrophilic PU sponge through the application of fluorinated zinc oxide nanoparticles (F-ZnO NPs), thereby resistance to environmental contamination and bacterial invasion. The adhesive and antimicrobial inner layer was an attached hydrogel (MTAI2/AM1) synthesized through the copolymerization of N-[2-(methacryloyloxy)ethyl]-N, N, N-trimethylammonium iodide and acrylamide, exhibits potent adherence to dermal surfaces and broad-spectrum antimicrobial actions against resilient bacterial strains and biofilm formation. STPU@MTAI2/AM1 maintained breathability and flexibility, ensuring comfort and conformity to the wound site. Biocompatibility of the multilayered dressing was demonstrated through hemocompatibility and cytocompatibility studies. The multilayered wound dressing has demonstrated the ability to promote wound healing when addressing MRSA-infected wounds. The hydrogel layer demonstrates no secondary damage when peeled off compared to commercial polyurethane sponge dressing. The STPU@MTAI2/AM1-treated wounds were nearly completely healed by day 14, with an average wound area of 12.2 ± 4.3 %, significantly lower than other groups. Furthermore, the expression of CD31 was significantly higher in the STPU@MTAI2/AM1 group compared to other groups, promoting angiogenesis in the wound and thereby contributing to wound healing. Therefore, the prepared multilayered wound dressing presents a promising therapeutic candidate for the management of infected wounds. STATEMENT OF SIGNIFICANCE: Healing of chronic wounds requires avoidance of biofouling and bacterial infection. However developing a wound dressing which is both anti-biofouling and antimicrobial is a challenge. A multilayered wound dressing with multifunction was developed. Its outer layer was designed to be superhydrophobic and thus anti-biofouling, and its inner layer was broad-spectrum antimicrobial and could inhibit biofilm formation. The multilayered wound dressing with adhesive property could easily be removed from the wound surface preventing the cause of secondary damage. The multilayered wound dressing has demonstrated good abilities to promote MRSA-infected wound healing and presents a viable treatment for MRSA-infected wound.
Collapse
Affiliation(s)
- Hang Xu
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Yufeng Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Jinzhu Ma
- NMPA Key Laboratory for Quality Evaluation of Non-active Implant Devices, Tianjin, 300384, China
| | - Hui Miao
- NMPA Key Laboratory for Quality Evaluation of Non-active Implant Devices, Tianjin, 300384, China
| | - Shangliang Chen
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Shangdong Gao
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China
| | - Hui Rong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Liandong Deng
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.
| | - Shuangyang Li
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
13
|
Bahojb Noruzi E, Vasigh SAH, Eivazzadeh-Keihan R, Aghamirza Moghim Aliabadi H, Salimi Bani M, Shaabani B. Chemical and physical modification of graphene oxide nano-sheets using casein, Zn-Al layered double hydroxide, alginate hydrogel, and magnetic nanoparticles for biomedical applications. Int J Biol Macromol 2024; 269:132047. [PMID: 38702008 DOI: 10.1016/j.ijbiomac.2024.132047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
In our study, we developed a novel nanobiocomposite using graphene oxide (GO), casein (Cas), ZnAl layered double hydroxide (LDH), sodium alginate (Alg), and Fe3O4 magnetic nanoparticles. To synthesize the GO, we used a modified Hummer's method and then covalently functionalized its surface with Cas protein. The functionalized GO was combined with as-synthesized ZnAl LDH, and the composite was conjugated with alginate hydrogel through the gelation process. Finally, we magnetized the nanobiocomposite using in-situ magnetization. The nanobiocomposite was comprehensively characterized using FT-IR, FE-SEM, EDX, and XRD. Its biological potential was assessed through cell viability, hemolysis, and anti-biofilm assays, as well as its application in hyperthermia. The MTT assay showed high cell viability percentages for Hu02 cells after 24, 48, and 72 h of incubation. The nanobiocomposite had a hemolytic effect lower than 3.84 %, and the measured bacterial growth inhibition percentages of E. coli and S. aureus bacteria in the presence of the nanobiocomposite were 52.18 % and 55.72 %, respectively. At a concentration of 1 mg.mL-1 and a frequency of 400 kHz, the nanocomposite exhibits a remarkable specific absorption rate (SAR) of 67.04 W.g-1, showcasing its promising prospects in hyperthermia applications.
Collapse
Affiliation(s)
- Ehsan Bahojb Noruzi
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran
| | | | | | | | - Milad Salimi Bani
- Department of Optics and Photonics, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Behrouz Shaabani
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
14
|
Lv W, Wang Y, Fu H, Liang Z, Huang B, Jiang R, Wu J, Zhao Y. Recent advances of multifunctional zwitterionic polymers for biomedical application. Acta Biomater 2024; 181:19-45. [PMID: 38729548 DOI: 10.1016/j.actbio.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Zwitterionic polymers possess equal total positive and negative charges in the repeating units, making them electrically neutral overall. This unique property results in superhydrophilicity, which makes the zwitterionic polymers highly effective in resisting protein adsorption, thus endowing the drug carriers with long blood circulation time, inhibiting thrombus formation on biomedical devices in contact with blood, and ensuring the good sensitivity of sensors in biomedical application. Moreover, zwitterionic polymers have tumor-targeting ability and pH-responsiveness, rendering them ideal candidates for antitumor drug delivery. Additionally, the high ionic conductivity of zwitterionic polymers makes them an important raw material for ionic skin. Zwitterionic polymers exhibit remarkable resistance to bacterial adsorption and growth, proving their suitability in a wide range of biomedical applications such as ophthalmic applications, and wound dressings. In this paper, we provide an in-depth analysis of the different structures and characteristics of zwitterionic polymers and highlight their unique qualities and suitability for biomedical applications. Furthermore, we discuss the limitations and challenges that must be overcome to realize the full potential of zwitterionic polymers and present an optimistic perspective for zwitterionic polymers in the biomedical fields. STATEMENT OF SIGNIFICANCE: Zwitterionic polymers have a series of excellent properties such as super hydrophilicity, anti-protein adsorption, antibacterial ability and good ionic conductivity. However, biomedical applications of multifunctional zwitterionic polymers are still a major field to be explored. This review focuses on the design and application of zwitterionic polymers-based nanosystems for targeted and responsive delivery of antitumor drugs and cancer diagnostic agents. Moreover, the use of zwitterionic polymers in various biomedical applications such as biomedical devices in contact with blood, biosensors, ionic skin, ophthalmic applications and wound dressings is comprehensively described. We discuss current results and future challenges for a better understanding of multifunctional zwitterionic polymers for biomedical applications.
Collapse
Affiliation(s)
- Wenfeng Lv
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yanhui Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Huayu Fu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ziyang Liang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Bangqi Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ruiqin Jiang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, Guangdong, China; Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Yi Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
15
|
Fathi A, Gholami M, Motasadizadeh H, Malek-Khatabi A, Sedghi R, Dinarvand R. Thermoresponsive in situ forming and self-healing double-network hydrogels as injectable dressings for silymarin/levofloxacin delivery for treatment of third-degree burn wounds. Carbohydr Polym 2024; 331:121856. [PMID: 38388054 DOI: 10.1016/j.carbpol.2024.121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024]
Abstract
Our study aimed to introduce a novel double-cross-linked and thermoresponsive hydrogel with remarkable potential for accelerating third-degree burn wound healing. Burn injuries are recognized as challenging, critical wounds. Especially in third-degree burns, treatment is demanding due to extended wounds, irregular shapes, significant exudation, and intense pain during dressing changes. In this work, hydrogels made of zwitterionic chitosan and dialdehyde starch (ZCS and ZDAS) were created to deliver silymarine (SM) and levofloxacin (LEV). The hydrogels were effortlessly produced using dynamic Schiff base linkages and ionic interactions between ZCS and ZDAS at appropriate times. The pore uniformity, gel fraction, and commendable swelling properties can imply a suitable degree of Schiff base cross-link. The hydrogel demonstrated outstanding shape retention, and significant self-healing and flexibility abilities, enabling it to uphold its form even during bodily movements. After injecting biocompatible hydrogel on the wound, a notable acceleration in wound closure was observed on day 21 (98.1 ± 1.10 %) compared to the control group (75.1 ± 6.13 %), and histopathological analysis revealed a reduction of inflammation that can be linked to remarkable antioxidant and antibiotic properties. The results demonstrate the hydrogel's efficacy in promoting burn wound healing, making it a promising candidate for medical applications.
Collapse
Affiliation(s)
- Anna Fathi
- Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411 Tehran, Iran
| | - Marziye Gholami
- Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411 Tehran, Iran
| | - Hamidreza Motasadizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran
| | - Atefeh Malek-Khatabi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Sedghi
- Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411 Tehran, Iran.
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran; Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
16
|
Hui Z, Pan X, Li Y, Zhang C, Zuo X, Tang J, Wang Y, Qiu N, Zheng S, Ye X, Hu R, Song D, Fang W, Yang J, Yan G. Dynamic carboxymethyl chitosan prodrug hydrogel precisely mediates robust therapy on wound infection. Int J Biol Macromol 2024; 260:129529. [PMID: 38237819 DOI: 10.1016/j.ijbiomac.2024.129529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/28/2023] [Accepted: 01/13/2024] [Indexed: 02/28/2024]
Abstract
Dynamic antibacterial polysaccharide prodrug hydrogels are in great demand for treatment of wound infection owing to their unique advantages such as excellent biocompatibility, superior antimicrobial property as well as favorable wound healing capacity. Herein, this work highlights the successful development of a dynamic carboxymethyl chitosan (CMC) prodrug hydrogel, which is facilely constructed through Schiffer base reaction between antibacterial components (amikacin and CMC) and crosslinker (dialdehyde PEG). Moderate dynamic imine linkages endow the hydrogel with excellent injectable and self-healing capability as well as targeted on-demand drug release in slightly alkaline condition at infected wound. All ingredients and their strong intermolecular interactions endow the hydrogel with favorable swelling and moisture retention capability. Moreover, the covalent and non-covalent interactions also endow the hydrogel with superior adhesion and mechanical property. These attractive characteristics enable hydrogel to effectively kill pathogens, promote wound healing and reduce side effects of amikacin. Thereby, such a dynamic CMC prodrug hydrogel may open a new avenue for a robust therapy on wound infection, greatly advancing their use in clinics.
Collapse
Affiliation(s)
- Zhenzhen Hui
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, Anhui 233100, China; Anhui Province Quartz Sand Purification and Photovoltaic Glass Engineering Research Center, Fengyang, Anhui 233100, China
| | - Xinyuan Pan
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Ying Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Chensong Zhang
- Department of Oncology Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Xuzhong Zuo
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Jing Tang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Yanping Wang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Nannan Qiu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Shengbiao Zheng
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Xiangju Ye
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Ruizhang Hu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Dongpo Song
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Wei Fang
- School of Life Science, Anhui University, Hefei, Anhui 230601, China.
| | - Jie Yang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Guoqing Yan
- School of Life Science, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
17
|
Horta-Velázquez A, Mota-Morales JD, Morales-Narváez E. Next-generation of smart dressings: Integrating multiplexed sensors and theranostic functions. Int J Biol Macromol 2024; 254:127737. [PMID: 38287589 DOI: 10.1016/j.ijbiomac.2023.127737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Non-healing wounds represent a significant burden for healthcare systems and society, giving rise to severe economic and human issues. Currently, the use of dressings and visual assessment represent the primary and standard care for wounds. Conventional dressings, like cotton gauze, provide only passive physical protection. Besides, they end up paradoxically hampering the wound-healing process by producing tissue damage and pain when removed during routine check-ups. In response to these limitations, researchers, engineers, and technologists are developing innovative dressings that incorporate advanced diagnostic and therapeutic functionalities, coined as "smart dressings". Now, the maturation of smart dressing is bringing them closer to real-life applications, leading to an exciting new generation of these devices. The next generation of smart dressings is capable of monitoring in real-time multiple biomarkers while including pro-healing capabilities in a single platform. Such multiplexed and theranostic smart dressings are expected to offer a timely biomarker-directed diagnosis of non-healing wounds while enabling rapid, automated, and personalized treatments of infection and chronicity. Herein, we provide an insightful overview of these advantageous devices, delving into the diverse spectrum of possible engineering strategies. This encompasses the use of electrochemical and optical platforms with diverse multiplexing architectures, such as multi-zone sensing arrays and multi-layered devices. Open or closed-loop theranostic mechanisms using various stimuli-responsive materials that could be internally or externally controlled are also included. Finally, a critical discussion on the main challenges and future directions of smart dressings is also offered.
Collapse
Affiliation(s)
| | - Josué D Mota-Morales
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, Mexico
| | - Eden Morales-Narváez
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, Mexico.
| |
Collapse
|
18
|
Li J, Su J, Liang J, Zhang K, Xie M, Cai B, Li J. A hyaluronic acid / chitosan composite functionalized hydrogel based on enzyme-catalyzed and Schiff base reaction for promoting wound healing. Int J Biol Macromol 2024; 255:128284. [PMID: 37992934 DOI: 10.1016/j.ijbiomac.2023.128284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The healing of full-thickness skin defect has been a clinical challenge. Hydrogels with multiple functions inspired by extracellular matrix are expected to be used as wound dressing. In this paper, dopamine-grafted oxidized hyaluronic acid was blended with quaternary ammonium chitosan to form a composite functionalized hydrogel by enzyme-catalyzed cross-linking and Schiff base reaction. The hydrogel has convenient preparation, good biocompatibility, antibacterial and antioxidant, high adhesion and self-healing properties. The results in vivo show that the hydrogel can effectively close the wound and accelerate the speed of wound healing by up-regulating the expression of angiogenic protein and promoting the distribution of collagen deposition more uniform and regular. It is expected that this composite functionalized hydrogel dressing has great potential in wound regeneration.
Collapse
Affiliation(s)
- Jiankang Li
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Jingjing Su
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Jiaheng Liang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Mengbo Xie
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
19
|
Ding S, He S, Ye K, Shao X, Yang Q, Yang G. Photopolymerizable, immunomodulatory hydrogels of gelatin methacryloyl and carboxymethyl chitosan as all-in-one strategic dressing for wound healing. Int J Biol Macromol 2023; 253:127151. [PMID: 37778580 DOI: 10.1016/j.ijbiomac.2023.127151] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Microenvironment regeneration in wound tissue is crucial for wound healing. However, achieving desirable wound microenvironment regeneration involves multiple stages, including hemostasis, inflammation, proliferation, and remodeling. Traditional wound dressings face challenges in fully manipulating all these stages to achieve quick and complete wound healing. Herein, we present a VEGF-loaded, versatile wound dressing hydrogel based on gelatin methacryloyl (GelMA) and carboxymethyl chitosan (CMCS), which could be easily fabricated using UV irradiation. The newly designed GelMA-CMCS@VEGF hydrogel not only exhibited strong tissue adhesion capacity due to the interactions between CMCS active groups and biological tissues, but also possessed desirable extensible properties for frequently moving skins and joints. Furthermore, the hydrogel demonstrates exceptional abilities in blood cell coagulation, hemostasis and cell recruitment, leading to the promotion of endothelial cells proliferation, adhesion, migration and angiogenesis. Additionally, in vivo studies demonstrated that the hydrogel drastically shortened hemostatic time, and achieved satisfactory therapeutic efficacy by suppressing inflammation, modulating M1/M2 polarization of macrophages, significantly promoting collagen deposition, stimulating angiogenesis, epithelialization and tissue remodeling. This work contributes to the design of versatile hydrogel dressings for rapid and complete wound healing therapy.
Collapse
Affiliation(s)
- Sheng Ding
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shaoqin He
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kang Ye
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinyu Shao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
20
|
Zhang N, Zhang X, Zhu Y, Wang D, Li R, Li S, Meng R, Liu Z, Chen D. Bimetal-Organic Framework-Loaded PVA/Chitosan Composite Hydrogel with Interfacial Antibacterial and Adhesive Hemostatic Features for Wound Dressings. Polymers (Basel) 2023; 15:4362. [PMID: 38006086 PMCID: PMC10674882 DOI: 10.3390/polym15224362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Silver-containing wound dressings have shown attractive advantages in the treatment of wound infection due to their excellent antibacterial activity. However, the introduction of silver ions or AgNPs directly into the wound can cause deposition in the body as particles. Here, with the aim of designing low-silver wound dressings, a bimetallic-MOF antibacterial material called AgCu@MOF was developed using 3, 5-pyridine dicarboxylic acid as the ligand and Ag+ and Cu2+ as metal ion sites. PCbM (PVA/chitosan/AgCu@MOF) hydrogel was successfully constructed in PVA/chitosan wound dressing loaded with AgCu@MOF. The active sites on the surface of AgCu@MOF increased the lipophilicity to bacteria and caused the bacterial membrane to undergo lipid peroxidation, which resulted in the strong bactericidal properties of AgCu@MOF, and the antimicrobial activity of the dressing PCbM was as high as 99.9%. The chelation of silver ions in AgCu@MOF with chitosan occupied the surface functional groups of chitosan and reduced the crosslinking density of chitosan. PCbM changes the hydrogel crosslinking network, thus improving the water retention and water permeability of PCbM hydrogel so that the hydrogel has the function of binding wet tissue. As a wound adhesive, PCbM hydrogel reduces the amount of wound bleeding and has good biocompatibility. PCbM hydrogel-treated mice achieved 96% wound recovery on day 14. The strong antibacterial, tissue adhesion, and hemostatic ability of PCbM make it a potential wound dressing.
Collapse
Affiliation(s)
- Nan Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiuwen Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yueyuan Zhu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ren Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuangying Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ruizhi Meng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhihui Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dan Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
- Qingdao High-Tech Industry Promotion Centre (Qingdao Technology Market Service Centre), Qingdao 266112, China
| |
Collapse
|
21
|
Gu R, Zhou H, Zhang Z, Lv Y, Pan Y, Li Q, Shi C, Wang Y, Wei L. Research progress related to thermosensitive hydrogel dressings in wound healing: a review. NANOSCALE ADVANCES 2023; 5:6017-6037. [PMID: 37941954 PMCID: PMC10629053 DOI: 10.1039/d3na00407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/27/2023] [Indexed: 11/10/2023]
Abstract
Wound healing is a dynamic and complex process in which the microenvironment at the wound site plays an important role. As a common material for wound healing, dressings accelerate wound healing and prevent external wound infections. Hydrogels have become a hot topic in wound-dressing research because of their high water content, good biocompatibility, and adjustable physical and chemical properties. Intelligent hydrogel dressings have attracted considerable attention because of their excellent environmental responsiveness. As smart polymer hydrogels, thermosensitive hydrogels can respond to small temperature changes in the environment, and their special properties make them superior to other hydrogels. This review mainly focuses on the research progress in thermosensitive intelligent hydrogel dressings for wound healing. Polymers suitable for hydrogel formation and the appropriate molecular design of the hydrogel network to achieve thermosensitive hydrogel properties are discussed, followed by the application of thermosensitive hydrogels as wound dressings. We also discuss the future perspectives of thermosensitive hydrogels as wound dressings and provide systematic theoretical support for wound healing.
Collapse
Affiliation(s)
- Ruting Gu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Haiqing Zhou
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Zirui Zhang
- Emergency Departments, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Yun Lv
- School of Nursing, Qingdao University Qingdao 266000 China
| | - Yueshuai Pan
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Qianqian Li
- Ophthalmology Department, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Changfang Shi
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Yanhui Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Lili Wei
- Office of the Dean, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| |
Collapse
|
22
|
Li Q, Song H, Li S, Hu P, Zhang C, Zhang J, Feng Z, Kong D, Wang W, Huang P. Macrophage metabolism reprogramming EGCG-Cu coordination capsules delivered in polyzwitterionic hydrogel for burn wound healing and regeneration. Bioact Mater 2023; 29:251-264. [PMID: 37533477 PMCID: PMC10391721 DOI: 10.1016/j.bioactmat.2023.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023] Open
Abstract
Excessive reactive oxygen species (ROS) at severe burn injury sites may promote metabolic reprogramming of macrophages to induce a deteriorative and uncontrolled inflammation cycle, leading to delayed wound healing and regeneration. Here, a novel bioactive, anti-fouling, flexible polyzwitterionic hydrogel encapsulated with epigallocatechin gallate (EGCG)-copper (Cu) capsules (termed as EGCG-Cu@CBgel) is engineered for burn wound management, which is dedicated to synergistically exerting ROS-scavenging, immune metabolic regulation and pro-angiogenic effects. EGCG-Cu@CBgel can scavenge ROS to normalize intracellular redox homeostasis, effectively relieving oxidative damages and blocking proinflammatory signal transduction. Importantly, EGCG-Cu can inhibit the activity of hexokinase and phosphofructokinase, alleviate accumulation of pyruvate and convert it to acetyl coenzyme A (CoA), whereby inhibits glycolysis and normalizes tricarboxylic acid (TCA) cycle. Additionally, metabolic reprogramming of macrophages by EGCG-Cu downregulates M1-type polarization and the expression of proinflammatory cytokines both in vitro and in vivo. Meanwhile, copper ions (Cu2+) released from the hydrogel facilitate angiogenesis. EGCG-Cu@CBgel significantly accelerates the healing of severe burn wound via promoting wound closure, weakening tissue-damaging inflammatory responses and enhancing the remodeling of pathological structure. Overall, this study demonstrates the great potential of bioactive hydrogel dressing in treating burn wounds without unnecessary secondary damage to newly formed skin, and highlights the importance of immunometabolism modulation in tissue repair and regeneration.
Collapse
Affiliation(s)
- Qinghua Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Shuangyang Li
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Pengbo Hu
- Emergency Department of Binzhou Medical University Hospital, Binzhou, Shandong Province, 256600, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ju Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
23
|
Antony IR, Pradeep A, Pillai AV, Menon RR, Kumar VA, Jayakumar R. Antiseptic Chitosan-Poly(hexamethylene) Biguanide Hydrogel for the Treatment of Infectious Wounds. J Funct Biomater 2023; 14:528. [PMID: 37888193 PMCID: PMC10607813 DOI: 10.3390/jfb14100528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Topical wound infections create the ideal conditions for microbial colonization and growth in terms of moisture, temperature, and nutrients. When they are not protected, numerous types of bacteria from the internal microbiota and the external environment may colonize them, creating a polymicrobial population. Treatment of these wounds often necessitates the use of antibiotics that may have systemic harmful effects. Unlike antibiotics, topical antiseptics exhibit a wider range of activity and reduced systemic toxicity and resistance. In order to address this issue, we developed an antiseptic Chitosan-Poly (hexamethylene) Biguanide (CS-PHMB) hydrogel. The prepared hydrogel was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). SEM images showed the smooth morphology and characteristic FTIR peaks of PHMB and confirmed the incorporation of the antiseptic into the chitosan (CS) hydrogel. A Water Vapor Permeation Rate study confirms the moisture retention ability of the CS-PHMB hydrogel. Rheological studies proved the gel strength and temperature stability. The prepared hydrogel inhibited the growth of S. aureus, P. aeruginosa, E. coli, methicillin-resistant Staphylococcus aureus (MRSA), and K. pneumoniae, which confirms its antibacterial properties. It also inhibited biofilm formation for S. aureus and E. coli. CS-PHMB hydrogel is also found to be hemo- and cytocompatible in nature. Thus, the developed CS-PHMB hydrogel is a very potent candidate to be used for treating infectious topical wounds with low systemic toxicity.
Collapse
Affiliation(s)
- Irine Rose Antony
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (I.R.A.); (A.P.)
| | - Aathira Pradeep
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (I.R.A.); (A.P.)
| | - Anoop Vasudevan Pillai
- Department of General Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (A.V.P.); (R.R.M.)
| | - Riju Ramachandran Menon
- Department of General Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (A.V.P.); (R.R.M.)
| | - Vasudevan Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India;
| | - Rangasamy Jayakumar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (I.R.A.); (A.P.)
| |
Collapse
|
24
|
Zhang Y, Wang T, Zhang D, Xia S, Jiao Z, Cai B, Shen P, Yang C, Deng Y. Chitosan based macromolecular hydrogel loaded total glycosides of paeony enhances diabetic wound healing by regulating oxidative stress microenvironment. Int J Biol Macromol 2023; 250:126010. [PMID: 37517747 DOI: 10.1016/j.ijbiomac.2023.126010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Oxidative stress microenvironment caused by reactive oxygen species (ROS) accumulation seriously hinders wound healing in diabetes, which brings great burden to global health. Various wound dressings on the market focus on delivering active substances to promote wound healing in diabetes. However, the complex pathological microenvironment of diabetic wounds often leads to the inactivation of delivery factors, which often leads to treatment failure, and thus, emerging therapeutic approaches are urgently needed. In this study, a macromolecular hydrogel synthesized by crosslinking N-carboxyethyl chitosan, hyaluronic acid-aldehyde, and adipic acid dihydrazide, with self-healing and injectable abilities was used to deliver total glycosides of paeony (TGP). The TGP incorporated hydrogel could obviously induce fibroblasts proliferation and secretion of various extracellular matrix proteins and growth factors, induce migration and angiogenesis of vein endothelial cells, and enhance macrophages polarization to M2 phenotype by eliminating accumulated ROS. In diabetic wound models, the ROS-scavenging hydrogel efficiently enhanced proliferation, re-epithelialization, collagen deposition, as well as angiogenesis in the wound area. Besides, the dressing induced the macrophages polarization from M1 phenotype (pro-inflammatory) to M2 phenotype (anti-inflammatory) and decreased the levels of inflammatory cytokines, thereby enhancing the diabetic wound healing. The wounds treated with TGP incorporated hydrogel almost completely healed 16 days after treatment. However, the residual wound areas in the groups of Con, INTRA, and Gel are 55.2 ± 4.6 %, 33.7 ± 6.5 %, and 34.9 ± 6.1 % on the 16th day, respectively. This hydrogel with pathological microenvironment improvement ability affords a novel therapeutic strategy for enhancing healing of chronic diabetic wound.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China; Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Tianchang Wang
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Dahe Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Simo Xia
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Zixian Jiao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Bin Cai
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Pei Shen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| | - Yiwen Deng
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China..
| |
Collapse
|
25
|
Zhang YL, Wang C, Yuan XQ, Yan HH, Li CB, Wang CH, Xie XR, Hou GG. Multifunctional xyloglucan-containing electrospun nanofibrous dressings for accelerating infected wound healing. Int J Biol Macromol 2023; 247:125504. [PMID: 37356692 DOI: 10.1016/j.ijbiomac.2023.125504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Preventing wound infection is a major challenge in biomedicine. Conventional wound dressings often have poor moisturizing and antimicrobial properties unfavorable for wound healing. In this study, we prepared a multifunctional electrospun nanofiber dressing (PCQX-M) containing xyloglucan, quaternized chitosan, Polyvinyl alcohol, and collagen. By applying the concept of wet healing, xyloglucan and quaternized chitosan polysaccharides with excellent water solubility were employed to improve the absorption and moisturizing properties and maintain a moist microenvironment for the wound healing process. PCQX-M demonstrated high mechanical, thermodynamic, and biocompatible properties, providing suitable healing conditions for wounds. In addition, PCQX-M showed exceptional antibacterial properties and a potential inhibitory effect on the growth of microorganisms in infected wounds. More intriguingly, the restorative healing effect was investigated on a mouse model of whole skin injury infected with Staphylococcus aureus. Wound healing, collagen deposition, and immunofluorescence results showed that PCQX-M significantly promoted cell proliferation and angiogenesis at the injury site and facilitated the healing of the infected wound. Our study suggests that PCQX-M has excellent potential for clinical application in infected wound healing.
Collapse
Affiliation(s)
- Yu-Long Zhang
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Chen Wang
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Xiao-Qian Yuan
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Huan-Huan Yan
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Cheng-Bo Li
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Chun-Hua Wang
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Xian-Rui Xie
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China.
| | - Gui-Ge Hou
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China.
| |
Collapse
|
26
|
Lyu X, Hu Y, Shi S, Wang S, Li H, Wang Y, Zhou K. Hydrogel Bioelectronics for Health Monitoring. BIOSENSORS 2023; 13:815. [PMID: 37622901 PMCID: PMC10452556 DOI: 10.3390/bios13080815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Hydrogels are considered an ideal platform for personalized healthcare due to their unique characteristics, such as their outstanding softness, appealing biocompatibility, excellent mechanical properties, etc. Owing to the high similarity between hydrogels and biological tissues, hydrogels have emerged as a promising material candidate for next generation bioelectronic interfaces. In this review, we discuss (i) the introduction of hydrogel and its traditional applications, (ii) the work principles of hydrogel in bioelectronics, (iii) the recent advances in hydrogel bioelectronics for health monitoring, and (iv) the outlook for future hydrogel bioelectronics' development.
Collapse
Affiliation(s)
- Xinyan Lyu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; (X.L.); (S.W.); (H.L.)
| | - Yan Hu
- The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (Y.H.); (S.S.)
| | - Shuai Shi
- The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (Y.H.); (S.S.)
| | - Siyuan Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; (X.L.); (S.W.); (H.L.)
| | - Haowen Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; (X.L.); (S.W.); (H.L.)
| | - Yuheng Wang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China;
| | - Kun Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; (X.L.); (S.W.); (H.L.)
- The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (Y.H.); (S.S.)
| |
Collapse
|
27
|
Guo Z, Yan L, Zhou B, Zhao P, Wang W, Dong S, Cheng B, Yang J, Li B, Wang X. In situ photo-crosslinking silk fibroin based hydrogel accelerates diabetic wound healing through antibacterial and antioxidant. Int J Biol Macromol 2023:125028. [PMID: 37244328 DOI: 10.1016/j.ijbiomac.2023.125028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Bacterial infection and excessive reactive oxygen species (ROS) in diabetic wounds lead to a prolonged inflammatory phase, and injuries are highly susceptible to developing into chronic wounds. Improving the poor microenvironment is vital to achieving effective diabetic wound healing. In this work, methacrylated silk fibroin (SFMA) was combined with ε-polylysine (EPL) and manganese dioxide nanoparticles (BMNPs) to form an SF@(EPL-BM) hydrogel with in situ forming, antibacterial and antioxidant properties. EPL imparted high antibacterial activity (>96 %) to the hydrogel. BMNPs and EPL showed good scavenging activity against a variety of free radicals. SF@(EPL-BM) hydrogel had low cytotoxicity and could alleviate H2O2-induced oxidative stress in L929 cells. In diabetic wounds infected with Staphylococcus aureus (S. aureus), the SF@(EPL-BM) hydrogel exhibited better antibacterial properties and reduced wound ROS levels more significantly than that of the control in vivo. In this process, the pro-inflammatory factor TNF-α was down-regulated, and the vascularization marker CD31 was up-regulated. H&E and Masson staining showed a rapid transition from the inflammatory to the proliferative phase of the wounds, with significant new tissue and collagen deposition. These results confirm that this multifunctional hydrogel dressing holds well potential for chronic wound healing.
Collapse
Affiliation(s)
- Zhendong Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan 528200, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Lisi Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Bo Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Peiwen Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Wenyuan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Siyan Dong
- Biotechnology Institute WUT-AMU School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; School of Biosciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430060, PR China
| | - Jing Yang
- School of Foreign Languages, Wuhan University of Technology, Wuhan 430070, PR China
| | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Hainan Institute, Wuhan University of Technology, Sanya 572000, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China; Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, PR China.
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan 528200, PR China; Hainan Institute, Wuhan University of Technology, Sanya 572000, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China; Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
28
|
Shang Y, Wang P, Wan X, Wang L, Liu X, Yuan J, Chi B, Shen J. Chlorhexidine-loaded polysulfobetaine/keratin hydrogels with antioxidant and antibacterial activity for infected wound healing. Int J Biol Macromol 2023; 242:124754. [PMID: 37164138 DOI: 10.1016/j.ijbiomac.2023.124754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Multifunctional hydrogel dressings are promising for wound healing. In the study, chlorhexidine(CHX) loaded double network hydrogels were prepared by free radical polymerization of sulfobetaine and oxidative self-crosslinking of reduced keratin. The introduced keratin and CHX endowed hydrogels with cytocompatibility, antioxidant capability as well as enhanced antibacterial activity due to the antifouling property of polysulfobetaine. These hydrogels exhibited acidity, glutathione(GSH), and trypsin triple-responsive release behaviors, resulting in the accelerated release of CHX under wound microenvironments. Intriguingly, the freeze-drying hydrogels could be ground to powders and sprinkled on the irregular wound bed, followed by absorbing wound fluid to reform hydrogel in situ. These aerogel powders were more convenient for sterilization, formulation, and storage. Further, these aerogel powders could be rejected after being mixed with an appropriate amount of water. In vivo infected wound healing confirmed that the aerogel powder dressing significantly promoted collagen deposition and reduced inflammation, thereby accelerating the closure and regeneration of skin wounds. Taken together, these degradable aerogel powders have great potential applications for wound healing.
Collapse
Affiliation(s)
- Yushuang Shang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiuzhen Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Lijuan Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xu Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jiang Yuan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
29
|
Qin Y, Li H, Shen HX, Wang CF, Chen S. Rapid Preparation of Superabsorbent Self-Healing Hydrogels by Frontal Polymerization. Gels 2023; 9:gels9050380. [PMID: 37232973 DOI: 10.3390/gels9050380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels have received increasing interest owing to their excellent physicochemical properties and wide applications. In this paper, we report the rapid fabrication of new hydrogels possessing a super water swelling capacity and self-healing ability using a fast, energy-efficient, and convenient method of frontal polymerization (FP). Self-sustained copolymerization of acrylamide (AM), 3-[Dimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azaniumyl]propane-1-sulfonate (SBMA), and acrylic acid (AA) within 10 min via FP yielded highly transparent and stretchable poly(AM-co-SBMA-co-AA) hydrogels. Thermogravimetric analysis and Fourier transform infrared spectroscopy confirmed the successful fabrication of poly(AM-co-SBMA-co-AA) hydrogels with a single copolymer composition without branched polymers. The effect of monomer ratio on FP features as well as porous morphology, swelling behavior, and self-healing performance of the hydrogels were systematically investigated, showing that the properties of the hydrogels could be tuned by adjusting the chemical composition. The resulting hydrogels were superabsorbent and sensitive to pH, exhibiting a high swelling ratio of up to 11,802% in water and 13,588% in an alkaline environment. The rheological data revealed a stable gel network. These hydrogels also had a favorable self-healing ability with a healing efficiency of up to 95%. This work contributes a simple and efficient method for the rapid preparation of superabsorbent and self-healing hydrogels.
Collapse
Affiliation(s)
- Ying Qin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China
| | - Hao Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China
| | - Hai-Xia Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China
| |
Collapse
|
30
|
Dual-crosslinked bioadhesive hydrogel as NIR/pH stimulus-responsiveness platform for effectively accelerating wound healing. J Colloid Interface Sci 2023; 637:20-32. [PMID: 36682115 DOI: 10.1016/j.jcis.2023.01.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Adhesive hydrogels have emerged as promising candidates to solve life-threatening infectious skin injuries. However, the inadequate mechanical characteristics and biological adherence limit the traditional wound dressing unable to adapt to high-frequency movement and real-time monitoring of wound healing, calling for the development of bioadhesive materials guided wound healing. In this work, a multifunctional bioadhesive hydrogel with double colorimetric-integrated of polyethylene glycol (PVA)-dextran (Dex)-borax-bromothymol blue (BTB)-fluorescein thiocyanate (FITC) and functionalization by tungsten disulfide-catechol nanozyme (CL/WS2) was created. Hydrogel is a perfect biological adhesive, which can achieve repeatable and strong tissue adhesion strength (8.3 ± 0.6 kPa), which is 1.66 times that of commercial dressings. Based on the strong biological adhesion of the hydrogel, a sensor is integrated into the hydrogel to collect visual image of bacterial infection from a smartphone and transform it into an on-site pH signal for remote evaluation of the wound's dynamic status in real time. Ultimately, the adhesiveness hydrogel has high worth in managing the burden related to wound healing and paving the way for intelligent wound management in the future.
Collapse
|
31
|
Pilipenko I, Murzova A, Savin A, Mohamed AA, Vladimirova E, Koshel E, Shamova O, Kumacheva E. Dual-Function Hydrogel Dressings with a Dynamic Exchange of Iron Ions and an Antibiotic Drug for Treatment of Infected Wounds. ACS APPLIED BIO MATERIALS 2023; 6:1896-1905. [PMID: 37043630 DOI: 10.1021/acsabm.3c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Bacterial infection is a major problem with diabetic wounds that may result in nonhealing chronic ulcers. Here, we report an approach to antibacterial hydrogel dressings for enhanced treatment of infected skin wounds. A fibrous hydrogel was derived from cellulose nanocrystals that were modified with dopamine and cross-linked with gelatin. The hydrogel was loaded with gentamicin, an antibiotic drug. Enhanced antibacterial hydrogel performance resulted from (i) a highly specific sequestration of Fe3+ ions (much needed by bacteria) from the wound exudate and (ii) a dynamic exchange between gentamicin released from the hydrogel and Fe3+ ions withdrawn from the wound exudate. Such exchange was possible due to the high value of the binding constant of Fe3+ ions to dopamine. The hydrogel did not affect the metabolic activity of skin-related cells and showed enhanced antibacterial performance against common wound pathogens such as S. aureus and P. aeruginosa. Furthermore, it promoted healing of infected diabetic wounds due to a synergistic antibacterial effect providing the dynamic exchange between Fe3+ ions and gentamicin. This work provides a strategy for the design of dual-function wound dressings, with both starving and killing bacteria and enhanced wound healing performance.
Collapse
Affiliation(s)
- Iuliia Pilipenko
- SCAMT Institute, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Anna Murzova
- SCAMT Institute, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Artemii Savin
- SCAMT Institute, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Al-Abbass Mohamed
- SCAMT Institute, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Elizaveta Vladimirova
- Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Saint Petersburg 197376, Russian Federation
| | - Elena Koshel
- SCAMT Institute, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Olga Shamova
- Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Saint Petersburg 197376, Russian Federation
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 2Y2, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
32
|
Zhao P, Zhang Y, Chen X, Xu C, Guo J, Deng M, Qu X, Huang P, Feng Z, Zhang J. Versatile Hydrogel Dressing with Skin Adaptiveness and Mild Photothermal Antibacterial Activity for Methicillin-Resistant Staphylococcus Aureus-Infected Dynamic Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206585. [PMID: 36776018 PMCID: PMC10104652 DOI: 10.1002/advs.202206585] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Bacterial infection often induces chronic repair of wound healing owing to aggravated inflammation. Hydrogel dressing exhibiting intrinsic antibacterial activity may substantially reduce the use of antibiotics for infected wound management. Hence, a versatile hydrogel dressing (rGB/QCS/PDA-PAM) exhibiting skin adaptiveness on dynamic wounds and mild photothermal antibacterial activity is developed for safe and efficient infected wound treatment. Phenylboronic acid-functionalized graphene (rGB) and oxadiazole-decorated quaternary carboxymethyl chitosan (QCS) are incorporated into a polydopamine-polyacrylamide (PDA-PAM) network with multiple covalent and noncovalent bonds, which conferred the hydrogel with flexible mechanical properties, strong tissue adhesion and excellent self-healing ability on the dynamic wounds. Moreover, the glycocalyx-mimicking phenylboronic acid on the surface of rGB enables the hydrogel to specifically capture bacteria. The enhanced membrane permeability of QCS enhanced bacterial vulnerability to photothermal therapy(PTT), which is demonstrated by efficient mild PTT antibacteria against methicillin-resistant Staphylococcus aureus in vitro and in vivo at temperatures of <49.6 °C. Consequently, the hydrogel demonstrate accelerated tissue regeneration on MRSA-infected wound in vivo, with an intact epidermis, abundant collagen deposition and prominent angiogenesis. Therefore, rGB/QCS/PDA-PAM is a versatile hydrogel dressing exhibiting inherent antibacterial activity and has considerable potential in treating wounds infected with drug-resistant bacteria.
Collapse
Affiliation(s)
- Peng Zhao
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Yu Zhang
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Xiaoai Chen
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Chang Xu
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Jingzhe Guo
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Meigui Deng
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical College236 Baidi Road, Nankai DistrictTianjin300192P. R. China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical College236 Baidi Road, Nankai DistrictTianjin300192P. R. China
| | - Jimin Zhang
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| |
Collapse
|
33
|
Lee G, Seo H, Kim D, Shin S, Kwon K. All polymeric conductive strain sensors with excellent skin adhesion, recovery, and long-term stability prepared from an anion-zwitterion based hydrogel. RSC Adv 2023; 13:1672-1683. [PMID: 36688068 PMCID: PMC9827471 DOI: 10.1039/d2ra07990a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Developing a high-performing hydrogel with long-lasting skin adhesion, high ionic conductivity, mechanical stability, and fatigue resistance is a crucial issue in the field of wearable electronic devices. Because of their weak mechanical properties, zwitterion-based hydrogels are not suitable for application in wearable strain sensors despite their excellent adhesion to the skin. In this study, a hydrogel of polymer without additive was prepared by using polymerizable monomers consisting of zwitterionic 3-(1-vinyl-3-imidazolio)propanesulfonate (VIPS), anionic 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPSs), and acrylamide (AAm); the hydrogel is abbreviated as P(AMPSs/VIPS-co-AAm). The P(AMPSs/VIPS-co-AAm) hydrogel shows exceptional adhesive strength, reaching up to 26.29 kPa (lap shear to porcine skin) and high stretchability (with a fracture strain of 1282% and stress of 40 kPa). The high polarity of the AMPSs/VIPS pair improves the interfacial adhesion to the skin, the internal cohesion and recovery tendency. Unique structural characteristics of the hydrogel impart excellent fatigue resistance, network toughening, and electrical stability after multiple deformations. Thus, the prepared hydrogel has an ionic conductivity (0.51 S m-1), strain sensitivity, and long-term skin adhesion, and it demonstrates potential to be applied for wearable strain sensors.
Collapse
Affiliation(s)
- Goeun Lee
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH)Republic of Korea,Department of Chemical and Biomolecular Engineering, Yonsei University (YU)Seodaemun-guSeoul03722Republic of Korea
| | - Hyunsu Seo
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH)Republic of Korea
| | - Daewoo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University (YU)Seodaemun-guSeoul03722Republic of Korea
| | - Seunghan Shin
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH)Republic of Korea,Department of Green Process and System Engineering, Korea University of Science & Technology (UST)CheonanChungnam 31056Republic of Korea
| | - Kiok Kwon
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH)Republic of Korea
| |
Collapse
|
34
|
Aliphatic polycarbonate-based hydrogel dressing for wound healing. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Feng Z, Zhang Y, Yang C, Liu X, Huangfu Y, Zhang C, Huang P, Dong A, Liu J, Liu J, Kong D, Wang W. Bioinspired and Inflammation-Modulatory Glycopeptide Hydrogels for Radiation-Induced Chronic Skin Injury Repair. Adv Healthc Mater 2023; 12:e2201671. [PMID: 36183357 DOI: 10.1002/adhm.202201671] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Indexed: 02/03/2023]
Abstract
Clinical wound management of radiation-induced skin injury (RSI) remains a great challenge due to acute injuries induced by excessive reactive oxygen species (ROS), and the concomitant repetitive inflammatory microenvironment caused by an imbalance in macrophage homeostasis. Herein, a cutaneous extracellular matrix (ECM)-inspired glycopeptide hydrogel (GK@TAgel ) is rationally designed for accelerating wound healing through modulating the chronic inflammation in RSI. The glycopeptide hydrogel not only replicates ECM-like glycoprotein components and nanofibrous architecture, but also displays effective ROS scavenging and radioprotective capability that can reduce the acute injuries after exposure to irradiation. Importantly, the mannose receptor (MR) in GK@TAgel exhibits high affinity and bioactivity to drive the M2 macrophage polarization, thereby overcoming the persistent inflammatory microenvironment in chronic RSI. The repair of RSI in mice demonstrates that GK@TAgel significantly reduces the hyperplasia of epithelial, promotes appendage regeneration and angiogenesis, and decreased the proinflammatory cytokine expression, which is superior to the treatment of commercial radioprotective drug amifostine. Collectively, the ECM-mimetic hydrogel dressing can protect the tissue from irradiation and heal the chronic wound in RSI, holding great potential in clinical wound management and tissue regeneration.
Collapse
Affiliation(s)
- Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Yumin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Chunfang Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xiang Liu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yini Huangfu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.,Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing, 100144, China
| |
Collapse
|
36
|
Alginate foam gel modified by graphene oxide for wound dressing. Int J Biol Macromol 2022; 223:391-403. [PMID: 36356865 DOI: 10.1016/j.ijbiomac.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/07/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Recently, hydrogel dressings have been rapidly developed for wound healing. However, it is still a huge challenge to endow hydrogel wound dressings with excellent hemostatic performance. Here, a new wound treatment material, foam gel wound dressing, is reported, which possesses rapid hemostasis and antibacterial properties. The foam gel dressing is composed of chitooligosaccharide modified graphene oxide (CG) nanocomposites and calcium alginate foam substrate. In this system, CG has a strong interaction with platelets, which is helpful for rapid hemostasis. So the wound dressing could stop bleeding quickly within 10 s. Meanwhile, CG also provides excellent antibacterial properties to dressings, which is conducive to wound healing. Full-thickness wound healing experiments showed that compared with blank control and CG-free foam gel dressings, CG-loaded foam gel dressings shows better healing properties, and the wounds covered with them are almost completely healed within 12 days. In addition, histological morphology analysis displays CG-loaded wound dressing could significantly accelerate wound healing by reducing the inflammatory response and promoting vascular remodeling. This unique strategy provides a simple and practical method for the clinical application of the next generation of wound dressings.
Collapse
|
37
|
Zhang X, Shi L, Xiao W, Wang Z, Wang S. Design of Adhesive Hemostatic Hydrogels Guided by the Interfacial Interactions with Tissue Surface. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xiaobin Zhang
- Key Laboratory of Bio-inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Lianxin Shi
- Key Laboratory of Bio-inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P.R. China
- Binzhou Institute of Technology Binzhou 256600 P.R. China
| | - Wuyi Xiao
- Key Laboratory of Bio-inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Zhao Wang
- Key Laboratory of Bio-inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Shutao Wang
- Key Laboratory of Bio-inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
- Qingdao Casfuture Research Institute Co. Ltd Qingdao 266109 P.R. China
| |
Collapse
|
38
|
Wang Y, He C, Chen C, Dong W, Yang X, Wu Y, Kong Q, Yan B. Thermoresponsive Self-Healing Zwitterionic Hydrogel as an In Situ Gelling Wound Dressing for Rapid Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55342-55353. [PMID: 36473731 DOI: 10.1021/acsami.2c15820] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
It is highly desired yet challenging to fabricate biocompatible injectable self-healing hydrogels with anti-bacterial adhesion properties for complex wounds that can autonomously adapt to different shapes and depths and can promote angiogenesis and dermal collagen synthesis for rapid wound healing. Herein, an injectable zwitterionic hydrogel with excellent self-healing property, good cytocompatibility, and antibacterial adhesion was developed from a thermoresponsive ABA triblock copolymer poly[(N-isopropyl acrylamide)-co-(butyl acrylate)-co-(sulfobetaine methacrylate)]-b-poly(ethylene glycol)-b-poly[(N-isopropyl acrylamide)-co-(butyl acrylate)-co-(sulfobetaine methacrylate)] (PZOPZ). The prepared PZOPZ hydrogel exhibits a distinct thermal-induced sol-gel transition around physiological temperature and could be easily applied in a sol state and in situ gelled to adapt complex wounds of different shapes and depths for complete coverage. Meanwhile, the hydrogel possesses a rapid self-healing ability and can recover autonomously from damage to maintain structural and functional integrity. In addition, the CCK-8 and 2D/3D cell culture experiments revealed that the PZOPZ hydrogel dressing shows low cytotoxicity to L929 cells and can effectively prevent the adhesion of Staphylococcus aureus and Escherichia coli. In vivo investigations verified that the PZOPZ hydrogel could increase angiogenesis and dermal collagen synthesis and shorten the transition from the inflammatory to the proliferative stage, thereby providing more favorable conditions for faster wound healing. Overall, this work provides a promising strategy to develop injectable zwitterionic hydrogel dressings with multiple functions for clinic wound management.
Collapse
Affiliation(s)
- Ye Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610041, China
- Department of Orthopedics, Affiliated Hospital of North Sichuan Medical College, Nanchong637000, China
| | - Changyuan He
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610041, China
| | - Chong Chen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610041, China
| | - Wentao Dong
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610041, China
| | - Xuekun Yang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610041, China
| | - Ye Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610041, China
| | - Qingquan Kong
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610041, China
| | - Bin Yan
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610041, China
| |
Collapse
|
39
|
Han X, Su Y, Che G, Wei Q, Zheng H, Zhou J, Li Y. Supramolecular Hydrogel Dressing: Effect of Lignin on the Self-Healing, Antibacterial, Antioxidant, and Biological Activity Improvement. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50199-50214. [PMID: 36288120 DOI: 10.1021/acsami.2c15411] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The functionalization and performance improvement of supramolecular hydrogels are very important for their application in the wound dressing field. Inspired by the role of lignin in plant cell walls, sulfonated lignin is introduced into the supramolecular hydrogel to improve functionality, mechanical strength, and biological activity. According to the chemical structure characteristics of the sulfonated lignin and the requirements for wound dressing, a novel polymer system is designed and successfully synthesized to cooperate with the sulfonated lignin to form the supramolecular hydrogel dressings. The introduction of the sulfonated lignin can effectively improve the mechanical strength, self-healing property, antioxidant activity, and biological activity of the obtained supramolecular hydrogel dressings. In the rat wound healing model experiment, the supramolecular hydrogel dressings can maintain the moist environment on the wound surface, clean up the excretion of wound tissue, promote wound healing, and reduce the occurrence of inflammation. This supramolecular hydrogel dressing shows obvious potential for wound management and treatment by a facile and effective approach and has great promise for long-term application of wound dressings. This strategy for designing polymers according to the chemical structure characteristics of the sulfonated lignin and the application requirements has reference value for further development of biomass-based compound materials.
Collapse
Affiliation(s)
- Xiao Han
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian, Liaoning Province116034, P. R. China
| | - Yingying Su
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian, Liaoning Province116034, P. R. China
| | - Guanda Che
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian, Liaoning Province116034, P. R. China
| | - Qiulin Wei
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian, Liaoning Province116034, P. R. China
| | - Hao Zheng
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian, Liaoning Province116034, P. R. China
| | - Jinghui Zhou
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian, Liaoning Province116034, P. R. China
| | - Yao Li
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian, Liaoning Province116034, P. R. China
| |
Collapse
|
40
|
Madej-Kiełbik L, Gzyra-Jagieła K, Jóźwik-Pruska J, Dziuba R, Bednarowicz A. Biopolymer Composites with Sensors for Environmental and Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7493. [PMID: 36363084 PMCID: PMC9659006 DOI: 10.3390/ma15217493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
One of the biggest economic and environmental sustainability problems is the over-reliance on petroleum chemicals in polymer production. This paper presents an overview of the current state of knowledge on biopolymers combined with biosensors in terms of properties, compounding methods and applications, with a focus on medical and environmental aspects. Therefore, this article is devoted to environmentally friendly polymer materials. The paper presents an overview of the current state of knowledge on biopolymers combined with biosensors in terms of properties, compounding methods and applications, with a special focus on medical and environmental aspects. The paper presents the current state of knowledge, as well as prospects. The article shows that biopolymers made from renewable raw materials are of great interest in various fields of science and industry. These materials not only replace existing polymers in many applications, but also provide new combinations of properties for new applications. Composite materials based on biopolymers are considered superior to traditional non-biodegradable materials due to their ability to degrade when exposed to environmental factors. The paper highlights the combination of polymers with nanomaterials which allows the preparation of chemical sensors, thus enabling their use in environmental or medical applications due to their biocompatibility and sensitivity. This review focuses on analyzing the state of research in the field of biopolymer-sensor composites.
Collapse
Affiliation(s)
- Longina Madej-Kiełbik
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
| | - Karolina Gzyra-Jagieła
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
- Faculty of Material Technologies and Textile Design, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Lodz, Poland
| | - Jagoda Jóźwik-Pruska
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
| | - Radosław Dziuba
- Department of World Economy and European Integration, University of Lodz, 41/43 Rewolucji 1905 Str., 90-214 Lodz, Poland
| | - Anna Bednarowicz
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
- Faculty of Material Technologies and Textile Design, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Lodz, Poland
| |
Collapse
|
41
|
Poloxam Thermosensitive Hydrogels Loaded with hFGF2-Linked Camelina Lipid Droplets Accelerate Skin Regeneration in Deep Second-Degree Burns. Int J Mol Sci 2022; 23:ijms232112716. [PMID: 36361508 PMCID: PMC9657430 DOI: 10.3390/ijms232112716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023] Open
Abstract
Burn injuries are difficult to manage due to the defect of large skin tissues, leading to major disability or even death. Human fibroblast growth factor 2 (hFGF2) is known to promote burn wound healing. However, direct administration of hFGF2 to the wound area would affect the bioactivity. To provide a supportive environment for hFGF2 and control its release in a steady fashion, in this research, we developed novel thermosensitive poloxam hydrogels delivered with hFGF2-linked Camelina lipid droplets (CLD-hFGF2 hydrogels). Cryopreserved scanning electron microscopy (SEM) results indicated that the incorporation of CLD-hFGF2 does not significantly affect the inner structure of hydrogels. The rheological properties showed that CLD-hFGF2 hydrogels gelated in response to temperature, thus optimizing the delivery method. In vitro, CLD-hFGF2 could be released from hydrogels for 3 days after drug delivery (the release rate was 72%), and the release solution could still promote the proliferation and migration of NIH3T3 cells. In vivo, compared with hydrogels alone or with direct CLD-hFGF2 administration, CLD-hFGF2 hydrogels had the most obvious effect on deep second-degree burn wound healing. This work indicates that CLD-hFGF2 hydrogels have potential application value in burn wound healing.
Collapse
|
42
|
Li J, Wang C, Han X, Liu S, Gao X, Guo C, Wu X. Aramid Nanofibers-Reinforced Rhein Fibrous Hydrogels as Antibacterial and Anti-Inflammatory Burn Wound Dressings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45167-45177. [PMID: 36181475 DOI: 10.1021/acsami.2c12869] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Burn injuries are one of the most devastating traumas. The development of polymer-based hydrogel dressings to prevent bacterial infection and accelerate burn wound healing is continuously desired. Mechanical strong hydrogels that encapsulated antibacterial drugs have gained increasing attention. Herein, aramid nanofibers (ANFs)-reinforced rhein fibrous hydrogels (ANFs/Rhein) were fabricated through a one-pot procedure to serve as a possible treatment for the Staphylococcus aureus-infected burn wound. ANFs preserved the highly aligned backbones and the mechanical properties of Kevlar, and its combination with an antibacterial drug rhein produced a composite hydrogel that possesses favorable physicochemical properties including appropriate mechanical strength, high water holding capacity, satisfactory antibacterial efficiency, and excellent biocompatibility. As wound dressings, ANFs/Rhein hydrogels provided a moist environment for the wound site and released antibacterial drugs continuously to improve the wound healing rate by efficiently restraining bacterial infection, reducing inflammation, enhancing collagen deposition, and promoting the formation of blood vessels, in this way to offer a potential treatment strategy for bacteria-associated burn wound healing.
Collapse
Affiliation(s)
- Junyao Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chunru Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiangsheng Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Shuai Liu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xintao Gao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
43
|
Lin W, Wei X, Liu S, Zhang J, Yang T, Chen S. Recent Advances in Mechanical Reinforcement of Zwitterionic Hydrogels. Gels 2022; 8:gels8090580. [PMID: 36135292 PMCID: PMC9498500 DOI: 10.3390/gels8090580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/28/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
As a nonspecific protein adsorption material, a strong hydration layer provides zwitterionic hydrogels with excellent application potential while weakening the interaction between zwitterionic units, leading to poor mechanical properties. The unique anti-polyelectrolyte effect in ionic solution further restricts the application value due to the worsening mechanical strength. To overcome the limitations of zwitterionic hydrogels that can only be used in scenarios that do not require mechanical properties, several methods for strengthening mechanical properties based on enhancing intermolecular interaction forces and polymer network structure design have been extensively studied. Here, we review the works on preparing tough zwitterionic hydrogel. Based on the spatial and molecular structure design, tough zwitterionic hydrogels have been considered as an important candidate for advanced biomedical and soft ionotronic devices.
Collapse
Affiliation(s)
- Weifeng Lin
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xinyue Wei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sihang Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (S.L.); (S.C.)
| | - Juan Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Zhejiang Poly Pharm Co., Ltd., Hangzhou 311199, China
| | - Tian Yang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Correspondence: (S.L.); (S.C.)
| |
Collapse
|
44
|
Antibacterial conductive self-healable supramolecular hydrogel dressing for infected motional wound healing. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1322-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
45
|
Wang H, Li X, Ji Y, Xu J, Ye Z, Wang S, Du X. Highly transparent, mechanical, and self-adhesive zwitterionic conductive hydrogels with polyurethane as a cross-linker for wireless strain sensors. J Mater Chem B 2022; 10:2933-2943. [PMID: 35302157 DOI: 10.1039/d2tb00157h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zwitterionic hydrogels have attracted a myriad of research interests for their excellent flexibility and biocompatibility as flexible wearable sensors. It is desired to create E-skins that integrate high mechanical strength, sensory sensitivity, and broad adhesion, possessing potential in the fields of intelligent robots and bionic prostheses. In this work, a novel macromolecular cross-linker (MPU) based on waterborne polyurethane (WPU) was designed and applied to synthesize multifunctional conductive hydrogels (PASU-Zn hydrogels). Importantly, in the presence of MPU, the hydrogels exhibited well-balanced mechanical properties (elongation at break 1193%, tensile strength 1.02 MPa, outstanding puncture resistance, and self-recovery abilities). When assembled as wireless strain sensors, PASU-Zn sensors displayed distinguished sensing characteristics to detect mechanotransduction signals of human movements in real-time. Specifically, owing to the dipole-dipole interaction and hydrogen bonding of zwitterions and MPU, the hydrogels have remarkable self-adhesion properties to various surfaces of wood, PDMS, and pigskin, allowing them to stick to skins by themselves without using any adhesive tapes when used. It is deemed that the as-designed zwitterionic hydrogels show great promise for wearable devices and bionic skins.
Collapse
Affiliation(s)
- Haibo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China. .,The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Xiaoyi Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Ying Ji
- Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Junhuai Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Zhifan Ye
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Shuang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xiaosheng Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|