1
|
Guo J, Zhang Y, Li X, Zhang X, Huang Y, Yu M, Shao J. Electrostatic fence induced assembly of low-concentration colloidal nanospheres to form liquid photonic crystals. J Colloid Interface Sci 2025; 679:1084-1094. [PMID: 39418894 DOI: 10.1016/j.jcis.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Liquid photonic crystals (LPCs) have great application potential in sensors, anti-counterfeiting materials and detection due to their sensitive dynamic responsiveness. Currently, the preparation of LPCs mainly relies on the supersaturation of colloidal nanospheres. However, the supersaturation method usually fails to obtain LPCs based on low-concentration colloidal nanospheres. In turn, the use of high-concentration colloidal nanospheres results in poor mobility of LPCs, which makes them inappropriate for subsequent utilization in responsive systems. In this study, self-assembly of LPCs with vibrant structural colors is achieved through the electrostatic fence effect by introducing an anionic carboxylate-containing polymer as an inducer into the system of low-concentration negatively charged colloidal nanospheres (≥1.25 wt%). It is shown that the anionic carboxylate groups on the inducer molecules and the appropriate molecular chain length are the decisive factors for the inducing effect. The obtained LPCs exhibit a typical non-close-packed structure with a face-centered cubic arrangement of nanospheres. The nearest inter-nanosphere surface distance is 12.10 nm, and the farthest one is as long as 40.30 nm. The LPCs possess good dynamic recovery performance and sensitive optical response characteristics, which are conducive to application in responsive optical sensors directly or after filling.
Collapse
Affiliation(s)
- Jianjun Guo
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; School of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yalan Zhang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xinyang Li
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xu Zhang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yi Huang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Meilan Yu
- School of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jianzhong Shao
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Liu Y, Zhang M, Wang C, Meng X, Fang X, Zhang W, Ding T, Liu D, Lee GJ, Chen X. Template-Guided Nondeterministic Assembly of Organosilica Nanodots for Multifunctional Physical Unclonable Functions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4124-4136. [PMID: 39743832 DOI: 10.1021/acsami.4c16881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Optical physical unclonable functions (PUFs) are gaining attention as a robust security solution for identification in the expanding Internet of Things (IoT). To enhance the security and functionality of PUFs, integrating multiple optical responses─such as fluorescence and structural color─into a single system is essential. These diverse optical properties enable multilevel authentication, where different layers of security can be verified under varying light conditions, greatly reducing the risk of counterfeiting. However, compactly integrating these photonic components poses significant challenges due to the difficulty of aligning and combining their optical behaviors within a limited space. In this study, we address these challenges by employing a template-guided assembly of organosilica nanodots (OSiNDs), which allows for the simultaneous control of solid-state fluorescence, rainbow holography, and PUF patterns. By precisely tuning the dewetting process, the OSiNDs assemble into nanoisland structures that provide enhanced fluorescence brightness and thermal stability while maintaining distinct holographic properties. Our system produces a 4096-bit key with 3228 bits of entropy, a storage density of 1 Gbit/in2, and a low false positive rate of 10-6. Additionally, it includes multilevel anticounterfeiting features that reveal distinct color patterns under different illumination angles, further boosting security. Comprehensive environmental stability and durability tests, including humidity, thermal, and mechanical abrasion resistance, confirm the robustness of the system, ensuring its functionality under real-world conditions. This multifunctional PUF design establishes a standard for secure, compact optical systems, combining high-performance authentication with practical applications in anticounterfeiting.
Collapse
Affiliation(s)
- Ying Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Manman Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Chiyu Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
- Laser Group, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xianrui Meng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Xiaomin Fang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Wenkai Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Tao Ding
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Dun Liu
- Laser Group, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Gil Ju Lee
- School of Electrical and Electronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Xudong Chen
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| |
Collapse
|
3
|
Cai Y, Zheng B, Lin X, You X, Jia Q, Xue N. Efficient and stable extraction of nano-sized plastic particles enabled by bio-inspired magnetic "robots" in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 368:125501. [PMID: 39746636 DOI: 10.1016/j.envpol.2024.125501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/24/2024] [Accepted: 12/07/2024] [Indexed: 01/04/2025]
Abstract
In this research, a rationally-designed strategy was employed to address the crucial issue of removing nano-plastics (NPs) from aquatic environments, which was based on fabricating sea urchin-like structures of Fe3O4 magnetic robots (MagRobots). Through imitating the sea urchin's telescopic tube foot movement and predation mechanism, the unique structures of the MagRobots were designed to adapt to the size and surface interactions of NPs, leading to a high efficiency of NPs removal (99%), as evidenced by the superior performance of 594.3 mg/g for the removal of polystyrene (PS) nanoparticles from water, with 3300% increase over magnetic Fe3O4 without structural design. The adsorption process was further analyzed using density functional theory (DFT) models and adsorption experiments, indicating that it was driven by electrostatic interactions. MagRobots maintained an adsorption capacity of up to 328 mg/g over four cyclic experiments and demonstrated high-capacity adsorption (close to 400 mg/g) in natural water bodies. The results of the simulations were supported by experiments that verified the excellent adsorption performance, regeneration effect, and environmental stability of the MagRobots under both simulated and real-world water conditions. This ingenious structural strategy provided valuable perspectives for the development of efficient magnetic porous materials for wastewater treatment, which would have potential applications for the treatment of NPs in real aquatic ecosystems. The unique sea urchin-like structures of the MagRobots could offer an innovative approach to tackle the challenge of NPs removal.
Collapse
Affiliation(s)
- Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Buyun Zheng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xin You
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qunpo Jia
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ni Xue
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
4
|
Hu T, Zhang S, Qi Y. Unclonable Encryption-Verification Strategy Based on Bilayer Shape Memory Photonic Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405243. [PMID: 39291889 DOI: 10.1002/smll.202405243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Indexed: 09/19/2024]
Abstract
The ability to reversibly exhibit structural color patterns has positioned photonic crystals (PCs) at the forefront of anti-counterfeiting. However, the security offered by the mere reversible display is susceptible to illicit alteration and disclosure. Herein, inspired by the electronic message captcha, bilayer photonic crystal (BPC) systems with integrated decryption and verification modules, are realized by combining inverse opal (IO) and double inverse opal (DIO) with polyacrylate polymers. When the informationized BPC is immersed in ethanol or water, the DIO layer displayed encrypted information due to the solvent-induced ordered rearrangement of polystyrene (PS) microspheres. The verification step is established based on the different structural colors of the IO layer pattern, which result from the deformation or recovery of the macroporous skeleton induced by solvent evaporation. Moreover, through the evaporation-induced random self-assembly of PS@SiO2 and SiO2 microspheres, unclonable structurally colored identifying codes are created in the IO layer, ensuring the uniqueness upon the verification. The decrypted code in the DIO layer is valid only when the IO layer displays the pattern with the predetermined structural color; otherwise, it is a pseudo-code. This structural color-based "decryption-verification" approach offers innovative anti-counterfeiting applications in nanophotonics.
Collapse
Affiliation(s)
- Tong Hu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Yong Qi
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
5
|
Huang J, Yin Y, Liu G, Bai L. Amorphous Photonic Structure Patterns with Thin Film Interference Effects for Multilevel Anticounterfeiting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25034-25041. [PMID: 39529393 DOI: 10.1021/acs.langmuir.4c03189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Colloidal photonic structures with the ability to control and manipulate light propagation offer long-term color stability, low optical loss, and angle-dependent color properties, while combinations of different photonic structures across multiple scales provide an extensive color range and enhanced optical functionalities, presenting significant potential for advanced anticounterfeiting applications. However, the proper design or manufacture of such complex structures is still challenging. In this study, amorphous photonic structures (APSs) with thin film interference (TFI) effects were fabricated for multilevel anticounterfeiting. The APSs inherit the isotropic resonant scattering and render partial TFI effects, resulting in unprecedented dynamic specular and diffuse color-shifting features as the viewing or incident direction shifts. Additionally, incorporating a certain concentration of fluorescent microspheres into the colloidal ink adds a third layer of fluorescent anticounterfeiting mode to the APSs. Enabled by infiltration-assisted (IFAST) colloidal assembly technologies, the sophisticated color distributions and randomly arranged fluorescent microspheres on the microscale of APSs grant unique and inherent fingerprint features. The unique and unpredictable optical and structural characteristics of APSs provide physical unclonable functions (PUFs) to prevent replication and tampering, demonstrating their potential as optical PUF security labels for anticounterfeiting applications through artificial intelligence (AI) reading and authentication.
Collapse
Affiliation(s)
- Jingran Huang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yin Yin
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guiwu Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ling Bai
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Meng Z, Liu Y, Huang H, Wu S. Flexible self-supporting photonic crystals: Fabrications and responsive structural colors. Adv Colloid Interface Sci 2024; 333:103272. [PMID: 39216399 DOI: 10.1016/j.cis.2024.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Photonic crystals (PCs) play an increasingly significant role in anti-counterfeiting, sensors, displays, and other fields due to their tunable structural colors produced by light manipulation of photonic stop bands. Flexible self-supporting photonic crystals (FSPCs) eliminate the requirement for conventional structures to rely on the existence of hard substrates, as well as the problem of poor mechanical qualities caused by the stiffness of the building blocks. Meanwhile, diverse production techniques and materials provide FSPCs with varied stimulus-responsive color-changing capacities, thus they have received an abundance of focus. This review summarizes the preparation strategies and variable structural colors of FSPCs. First, a series of preparation strategies by integrating polymers with PCs are summarized, including assembly of colloidal spheres on flexible substrates, polymer packaging, polymer-based direct assembly, nanoimprinting, and 3D printing. Subsequently, variable structural colors of FSPCs with different stimulations, such as viewing angle, chemical stimulation (solvents, ions, pH, biomolecules, etc.), temperature, mechanical/magnetic stress, and light, are described in detail. Finally, the outlook and challenges regarding FSPCs are presented, and several potential directions for their fabrication and application are discussed. It's believed that FSPCs will be a valuable platform for advancing the practical implementation of optical metamaterials.
Collapse
Affiliation(s)
- Zhipeng Meng
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yukun Liu
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Haofei Huang
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China..
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China..
| |
Collapse
|
7
|
Torun I, Huang C, Kiremitler NB, Kalay M, Shim M, Onses MS. Coffee-Ring Mediated Thinning and Thickness-Dependent Dewetting Modes in Printed Polymer Droplets Coupled with Assembly of Quantum Dots for Anti-Counterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405429. [PMID: 39077934 DOI: 10.1002/smll.202405429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Molecular transport processes in printed polymer droplets hold enormous importance for understanding wetting phenomena and designing systems in applications such as encoding, electronics, photonics, and sensing. This paper studies thickness-dependent dewetting modes that are activated by thermal annealing and driven by interfacial interactions within microscopically confined polymeric features. The printing of poly(2-vinylpyridine) is performed in a regime where coffee-ring effects lead to strong thinning of the central region of the deposit. Thermal annealing leads to two different modes of dewetting that depend on the thickness of the central region. Mode I refers to the formation of randomly positioned small features surrounded by large hemispherical ones located along the periphery of the printed features and occurs when the central regions are thin. Observed at large central thicknesses, Mode II mediates significant molecular transport from edges toward the center of the printed droplet with thermal annealing and forms a hemispherical feature from the initial ring-like deposit. The selective adsorption of red, green, and blue emitting quantum dots over the poly(2-vinylpyridine) results in photoluminescent patterns. The selective assembly of photoluminescent quantum dots over patterned surfaces leads to deterministic and stochastic features beneficial to creating security labels for anti-counterfeiting applications.
Collapse
Affiliation(s)
- Ilker Torun
- Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey
- ERNAM - Nanotechnology Application and Research Center, Erciyes University, Kayseri, 38039, Turkey
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Conan Huang
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - N Burak Kiremitler
- Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey
- ERNAM - Nanotechnology Application and Research Center, Erciyes University, Kayseri, 38039, Turkey
| | - Mustafa Kalay
- Department of Electricity and Energy, Kayseri University, Kayseri, 38039, Turkey
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mustafa Serdar Onses
- Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey
- ERNAM - Nanotechnology Application and Research Center, Erciyes University, Kayseri, 38039, Turkey
| |
Collapse
|
8
|
Lin X, Li Q, Tang Y, Chen Z, Chen R, Sun Y, Lin W, Yi G, Li Q. Physical Unclonable Functions with Hyperspectral Imaging System for Ultrafast Storage and Authentication Enabled by Random Structural Color Domains. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401983. [PMID: 38894574 PMCID: PMC11336904 DOI: 10.1002/advs.202401983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/28/2024] [Indexed: 06/21/2024]
Abstract
Physical unclonable function (PUF) is attractive in modern encryption technologies. Addressing the disadvantage of slow data storage/authentication in optical PUF is paramount for practical applications but remains an on-going challenge. Here, a highly efficient PUF strategy based on random structural color domains (SCDs) of cellulose nanocrystal (CNC) is proposed for the first time, combing with hyperspectral imaging system (HIS) for ultrafast storage and authentication. By controlling the growth and fusion behavior of the tactoids of CNC, the SCDs display an irregular and random distribution of colors, shapes, sizes, and reflectance spectra, which grant unique and inherent fingerprint-like characteristics that are non-duplicated. Based on images and spectra, these fingerprint features are used to develop two sets of PUF key generation methods, which can be respectively authenticated at the user-end and the manufacturer-front-end that achieving a high coding capacity of at least 22304. Notably, the use of HIS greatly shortens the time of key reading and generation (≈5 s for recording, 0.5-0.7 s for authentication). This new optical PUF labels can not only solve slow data storage and complicated authentication in optical PUF, but also impulse the development of CNC in industrial applications by reducing color uniformity requirement.
Collapse
Affiliation(s)
- Xiaofeng Lin
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang CenterJieyang515200China
| | - Quhai Li
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical EngineeringSoutheast UniversityNanjing211189China
| | - Zhaohan Chen
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
| | - Ruilian Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSun Yat‐sen UniversityGuangzhou510275China
| | - Yingjuan Sun
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang CenterJieyang515200China
| | - Wenjing Lin
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang CenterJieyang515200China
| | - Guobin Yi
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang CenterJieyang515200China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical EngineeringSoutheast UniversityNanjing211189China
- Materials Science Graduate ProgramKent State UniversityKentOH44242USA
| |
Collapse
|
9
|
Zhu M, Li H, Guo Q, Guo J, Wang C. Electrically Responsive Photonic Crystals with Enhanced Suspension Stability and Color Saturation for Electrophoretic Displays and Smart Windows. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32543-32553. [PMID: 38861471 DOI: 10.1021/acsami.4c06766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Electrophoretic displays (EPDs) based on photonic crystals show great potential due to their reduced eye fatigue and low power consumption. However, the current image quality and service life of this system still face great challenges. In this work, we fabricated a new kind of electrically responsive photonic crystal (ERPC) device based on PSMA@SiO2 liquid colloidal crystals (LCCs) for EPDs. By introduction of the PSMA core with lower density and higher refractive index, the suspension stability and color saturation of PSMA@SiO2 LCCs were greatly enhanced compared with those of bare SiO2 LCCs. The PSMA@SiO2 LCCs showed brilliant colors, wide color tuning range (∼200 nm), and good reversibility under low voltages (<4 V). Interestingly, the transparency of PSMA@SiO2 LCCs could also be obviously regulated by an electric field, which was different from the traditional ways that change the thickness of PCs or contrast of refractive index (Δn) between the nanospheres and matrix. This transparency modulation offered a novel idea for the transmittance control of smart windows. As a proof of concept, we fabricated a new type of patterned ERPC device to demonstrate their potential in electrophoretic displays and smart windows with controllable transmittance under an electric field.
Collapse
Affiliation(s)
- Mengjing Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Huateng Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Qilin Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Hong KI, Choi S, Oh S, Ahn HS, Jang WD. Electrofluorochromic Hydrogels by Oligothiophene-Based Color-Tunable Fluorescent Dye Doping. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31384-31391. [PMID: 38855921 DOI: 10.1021/acsami.4c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Soft electronic materials hold great promise for advancing flexible functional devices. Among the various soft materials available, hydrogels are particularly attractive for soft electronic device development due to their inherent properties, including transparency, shape adaptability through swelling/deswelling, and self-healing capabilities. Transparent hydrogels contribute to the creation of advanced smart devices such as sensors, smart windows, and anticounterfeiting technologies. Poly(vinyl alcohol) hydrogels are used as a platform for creating electrofluorochromic (EFC) devices in combination with oligothiophene-conjugated benzothiazole derivatives (OCBs) as fluorescent emitters. OCBs demonstrated excited-state intramolecular proton transfer (ESIPT) behavior with a large Stokes shift and emission changes responsive to solvent polarity and pH stimuli. Even in the solid state, OCBs exhibited strong fluorescence emission across a wide range of colors from blue to red, making them exceptionally well-suited for EFC device development. Their quantum yields in the powder state were obtained between 2.3% and 19.9%. Through the incorporation of OCBs into a PVA hydrogel (OCB@PVA), we achieved the successful fabrication of flexible EFC devices, including electronic paper and smart panels. When electric potentials (-2.4 and +2.4 V) were applied in OCB@PVA, fluorescence color changes were observed by an electrochemically induced pH change owing to electrohydrolysis of water. These devices demonstrated the potential of OCB@PVA hydrogels in the realm of flexible electronics. They could be used to create innovative and versatile devices with stimuli-responsive fluorescence properties.
Collapse
Affiliation(s)
- Kyeong-Im Hong
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Suhyuk Choi
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangyoon Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyun S Ahn
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Gao Y, Ge K, Zhang Z, Li Z, Hu S, Ji H, Li M, Feng H. Fine Optimization of Colloidal Photonic Crystal Structural Color for Physically Unclonable Multiplex Encryption and Anti-Counterfeiting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305876. [PMID: 38576190 PMCID: PMC11132029 DOI: 10.1002/advs.202305876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/28/2024] [Indexed: 04/06/2024]
Abstract
Robust anti-counterfeiting techniques aim for easy identification while remaining difficult to forge, especially for high-value items such as currency and passports. However, many existing anti-counterfeiting techniques rely on deterministic processes, resulting in loopholes for duplication and counterfeiting. Therefore, achieving high-level encryption and easy authentication through conventional anti-counterfeiting techniques has remained a significant challenge. To address this, this work proposes a solution that combined fluorescence and structural colors, creating a physically unclonable multiplex encryption system (PUMES). In this study, the physicochemical properties of colloidal photonic inks are systematically adjusted to construct a comprehensive printing phase diagram, revealing the printable region. Furthermore, the brightness and color saturation of inkjet-printed colloidal photonic crystal structural colors are optimized by controlling the substrate's hydrophobicity, printed droplet volume, and the addition of noble metals. Finally, fluorescence is incorporated to build PUMES, including macroscopic fluorescence and structural color patterns, as well as microscopic physically unclonable fluorescence patterns. The PUMES with intrinsic randomness and high encoding capacity are authenticated by a deep learning algorithm, which proved to be reliable and efficient under various observation conditions. This approach can provide easy identification and formidable resistance against counterfeiting, making it highly promising for the next-generation anti-counterfeiting of currency and passports.
Collapse
Affiliation(s)
- Yifan Gao
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Kongyu Ge
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Zhen Zhang
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Zhan Li
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Shaowei Hu
- State Key Laboratory of Advanced Welding and Joining (Shenzhen)Harbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Hongjun Ji
- State Key Laboratory of Advanced Welding and Joining (Shenzhen)Harbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Mingyu Li
- State Key Laboratory of Advanced Welding and Joining (Shenzhen)Harbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Huanhuan Feng
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| |
Collapse
|
12
|
Bi R, Li X, Ou X, Huang J, Huang D, Chen G, Sheng Y, Hong W, Wang Y, Hu W, Guo SZ. 3D-Printed Biomimetic Structural Colors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306646. [PMID: 37759391 DOI: 10.1002/smll.202306646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Indexed: 09/29/2023]
Abstract
Resolution control and expansibility have always been challenges to the fabrication of structural color materials. Here, a facile strategy to print cholesteric liquid crystal elastomers (CLCEs) into complex structural color patterns with variable resolution and enhanced expansibility is reported. A volatile solvent is introduced into the synthesized CLC oligomers, modifying its rheological properties and allowing direct-ink-writing (DIW) under mild conditions. The combination of printing shear flow and anisotropic deswelling of ink drives the CLC molecules into an ordered cholesteric arrangement. The authors meticulously investigate the influence of printing parameters to achieve resolution control over a wide range, allowing for the printing of multi-sized 1D or 2D patterns with constant quality. Furthermore, such solvent-cast direct-ink-writing (DIW) strategy is highly expandable and can be integrated easily into the DIW of bionic robots. Multi-responsive bionic butterfly and flower are printed with biomimetic in both locomotion and coloration. Such designs dramatically reduced the processing difficulty of precise full-color printing and expanded the capability of structural color materials to collaborate with other systems.
Collapse
Affiliation(s)
- Ran Bi
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaohong Li
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xingcheng Ou
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiaqi Huang
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dantong Huang
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Guoliang Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yu Sheng
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wei Hong
- Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yan Wang
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510050, P. R. China
| | - Weijie Hu
- School of Chemistry, Guangdong University of Petrochemical Technology, Guangdong, 525000, P. R. China
| | - Shuang-Zhuang Guo
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
13
|
Liu J, Zhou J, Meng Y, Zhu L, Xu J, Huang Z, Wang S, Xia Y. Artificial Skin with Patterned Stripes for Color Camouflage and Thermoregulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48601-48612. [PMID: 37787638 DOI: 10.1021/acsami.3c08872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Chameleons are famous for their quick color changing abilities, and it is commonly assumed that they do this for camouflage. However, recent reports revealed that chameleons also change color for body temperature regulation. Inspired by the structure of the panther chameleon's skin, a stripe-patterned poly(N-isopropylacrylamide) (PNIPAM) and polyacrylamide (PAM) hydrogel film with a laminated structure is fabricated in this work; thus, both camouflage and thermoregulation can be achieved through controlling Vis and NIR light effectively. For the PNIPAM stripe, the upper layer is the native PNIPAM hydrogel and the lower layer is the carbon nanotube-composited PNIPAM hydrogel. Thus, the PNIPAM stripe is capable of reaching 28 °C at a low environmental temperature (12 °C) and a low radiation intensity (20 mW cm-2), while preventing the body temperature from rising by changing to white under a strong radiation intensity (100 mW cm-2). For the PAM stripe, the upper layer combines colloidal photonic crystals and displays a tunable structural color by stretching, and the lower layer is mixed with PNIPAM microgels for thermal regulation. Through the fabrication of multifunctional patterns, the film can achieve both dynamic structural color and thermoregulation by precisely controlling solar radiation absorption, scattering, and reflection. More importantly, in the stripe-patterned system, the shrinkage of the PNIPAM stripes can effectively trigger the elongation of the PAM stripe, which endows the structural color changing process to be self-powered completely. The performances show that the stripe-patterned film may have potential applications in intelligent coatings, especially in areas with large temperature differences during the day such as high plains.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jie Zhou
- Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yaru Meng
- Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Liqian Zhu
- Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jintao Xu
- Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zehua Huang
- Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Shengjie Wang
- Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yongqing Xia
- Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
14
|
Zhou J, Chen R, Wu J, Tang Z, Pan G, Fang Z, Zhu Y, Lin W, Lin X, Yi G. Portable Comestible-Liquid Quality Test Enabled by Stretchable and Reusable Ion-Detection Photonic Papers. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36884009 DOI: 10.1021/acsami.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Currently, there have been widespread investigation conducted into responsive photonic crystal hydrogels (RPCHs) characterized by high selectivity and sensitivity for colorimetric indicators and physical/chemical sensors. In spite of this, it remains challenging to use RPCHs for sensing due to their limited mechanical property and molding capability. In the present study, a double-network structure is proposed to design highly stretchable, sensitive, and reusable ion-detection photonic papers (IDPPs) for assessing the quality of visual and portable comestible liquids (e.g., soy sauce). It is constructed by integrating polyacrylamide and poly-methacryloxyethyl trimethyl ammonium chloride with highly ordered polystyrene microspheres. The double-network structure improves the mechanical properties of IDPPs with their elongation at break increasing from 110 to 1600%. Meanwhile, the optical properties of photonic crystals are retained. The IDPPs achieve a fast ion response by applying control on the swelling behavior of the hydration radius of the counter ions through ion exchange. Given a certain concentration range (0.01-0.10 M), chloride ions can be detected fast (3-30 s) by exchanging ions with a small hydration radius through an IDPP, which is clearly observable. Due to the improvement of mechanical properties and the reversible exchange of ions derived from IDPPs, their reusability is significantly enhanced (>30 times). Characterized by a simple operation, high durability, and excellent sustainability, these IDPPs are promising for practical application in food security and human health assessment.
Collapse
Affiliation(s)
- Jie Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Ruilian Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jianyu Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Zilun Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Guoyi Pan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Ziquan Fang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Yongxiang Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| |
Collapse
|
15
|
A flexible and stretchable photonic crystal film with sensitive structural color-changing properties for spoiled milk detection. Food Chem X 2022; 16:100526. [DOI: 10.1016/j.fochx.2022.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
|
16
|
Li G, Liu Y, Xu Q, Liang H, Wang X. Deep learning enabled inverse design of nanocrystal-based optical diffusers for efficient white LED lighting. APPLIED OPTICS 2022; 61:8783-8791. [PMID: 36256012 DOI: 10.1364/ao.471243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Angular color uniformity and luminous flux are the most important figures of merit for a white-light-emitting diode (WLED), and simultaneous improvement of both figures of merit is desired. The cellulose-nanocrystal (CNC)-based optical diffuser has been applied on the WLED module to enhance angular color uniformity, but it inevitably causes the reduction of luminous flux. Here we demonstrate a deep-learning-based inverse design approach to design CNC-coated WLED modules. The developed forward neural network successfully predicts two figures of merit with high accuracy, and the inverse predicting model can rapidly design the structural parameters of CNC film. Further explorations taking advantage of both forward and inverse neutral networks can effectively construct the coating layer for WLED modules to reach the best performance.
Collapse
|
17
|
Park G, Park H, Wolska JM, Park JG, Yoon DK. Racemized photonic crystals for physical unclonable function. MATERIALS HORIZONS 2022; 9:2542-2550. [PMID: 35972262 DOI: 10.1039/d2mh00710j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As Internet of Things-based technologies continue to digitalize our society, the development of secure and robust identification systems against evolving adversaries remains a grave challenge. Recently, physical unclonable functions (PUFs) have garnered tremendous scientific interest due to their intrinsic randomness, which makes them difficult to counterfeit. Herein, we present a facile approach for fabricating optical PUFs using spontaneous mirror symmetry breaking of molecular self-assembly. The PUF composed of racemic helical structures that generate chiroptical signals exhibits high encoding capacity (∼1013 000), precise recognition rate, and impressive reconfigurability. The present study demonstrates that the utilization of random symmetry breaking is a promising approach to the design of high-level security systems.
Collapse
Affiliation(s)
- Geonhyeong Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Hyewon Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Joanna M Wolska
- Faculty of Chemistry, University of Warsaw, Warsaw, 02-093, Poland
| | - Jesse G Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- KAIST Institute for Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
18
|
A facile way to construct highly stable PUF tags for unclonable anti-counterfeiting and authentication with computer vision. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Ai M, Wang Z, Chen X, Chen C, Wang Y, Ma J. Multi-color inkless UV printing using angle-independent structural color paper. JOURNAL OF MATERIALS CHEMISTRY C 2022; 10:16446-16452. [DOI: 10.1039/d2tc03370d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
We propose a multi-color UV printing technique based on the UV induced degradation and collapse of amorphous inverse opal structured PEGDA photonic paper, and realized chromatography printing via multi-step UV printing with patterned masks.
Collapse
Affiliation(s)
- Meixing Ai
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Zhihao Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xianmei Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Chong Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yunlong Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jun Ma
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|