1
|
Ghosh S, Laha P, Mir NUD, Das P, Cha PR, Biswas S. Two Sustainable Pathways of MOF-Catalyzed Room Temperature Chemical Fixation of CO 2 inside Alkynes under Atmospheric Pressure. Inorg Chem 2024. [PMID: 39481091 DOI: 10.1021/acs.inorgchem.4c03431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The rising atmospheric CO2 levels necessitate the development of effective materials for its mitigation. Utilization of adsorbent materials for the reversible physisorption of CO2 has a significantly less impact. Recognizing this need, herein, we present a nitrogen-rich, aqua-stable, Ag(0)-nanoparticle-doped metal-organic framework (MOF) designed for the irreversible chemical conversion of CO2 into valuable fine chemicals. We demonstrate two sustainable pathways for CO2 fixation, utilizing the catalyst, 1'@Ag NPs. The designed catalyst facilitates the cyclization of propargylic amines and alcohols under ambient temperature and pressure conditions. Remarkably, this is the first MOF-based catalyst that allows for quantitative conversion of propargylic amines into 2-oxazolidinones at room temperature with atmospheric CO2 pressure. The process successfully transforms various propargylic amines and alcohols into 2-oxazolidinones and α-alkylidene cyclic carbonates under the CO2 atmosphere. Additionally, the catalyst shows excellent recyclability, maintaining its activity and structural integrity across multiple reuse cycles. Control experiments revealed that the catalytic efficiency of 1'@Ag NPs is attributed to the highly exposed alkynophilic Ag(0) sites on its pore walls. Computational studies further elucidate the mechanistic pathway for CO2 fixation. This work highlights the potential of 1'@Ag NPs to enhance environmental sustainability by converting CO2 into valuable bioactive chemicals under mild conditions.
Collapse
Affiliation(s)
- Subhrajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Paltan Laha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nazir Ud Din Mir
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pritam Das
- School of Advanced Material Engineering, Kookmin University, Seongbok-gu, Seoul 02707, Republic of Korea
| | - Pil-Ryung Cha
- School of Advanced Material Engineering, Kookmin University, Seongbok-gu, Seoul 02707, Republic of Korea
| | - Shyam Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
2
|
O'Hearn DJ, Sensharma D, Raza A, Bezrukov AA, Vandichel M, Mukherjee S, Zaworotko MJ. Crystal engineering of a new platform of hybrid ultramicroporous materials and their C 2H 2/CO 2 separation properties. Chem Sci 2024:d4sc03029j. [PMID: 39397830 PMCID: PMC11465132 DOI: 10.1039/d4sc03029j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Hybrid ultramicroporous materials (HUMs) comprised of combinations of organic and inorganic linker ligands are a leading class of physisorbents for trace separations involving C1, C2 and C3 gases. First generation HUMs are modular in nature since they can be self-assembled from transition metal cations, ditopic linkers and inorganic "pillars", as exemplified by the prototypal variant, SIFSIX-3-Zn (3 = pyrazine, SIFSIX = SiF6 2-). Conversely, HUMs that utilise chelating ligands such as ethylenediamine derivatives are yet to be explored as sorbents. Herein, we report the structures and sorption properties of two HUMs based upon the chelating ligand N 1,N 2-bis(pyridin-4-ylmethyl)ethane-1,2-diamine (enmepy), [Zn(enmepy)(SiF6)] n (SIFSIX-24-Zn) and [Zn(enmepy)(SO4)] n (SOFOUR-2-Zn). These HUMs are isostructural and exhibit high C2H2 uptakes of 85 cm3 g-1 (3.79 mmol g-1) and 79 cm3 g-1 (3.52 mmol g-1), and C2H2/CO2 IAST selectivities of 7.4 and 8.1 (1 bar, 1 : 1 mixture, 298 K), respectively. Dynamic column breakthrough experiments resulted in separation factors of 5.26 and 2.05, and CO2 effluent purities of 99.991 and 99.989%, respectively. Temperature programmed desorption experiments at 60 °C resulted in rapid desorption of CO2, followed by fuel grade C2H2 (>98%), affording productivities of 9.45 and 7.96 L kg-1 and maximum C2H2 outlet purities of 99.92% and 99.66%, respectively. This study introduces the use of diamine chelating ligands in HUMs for gas separations through two parent sorbents that are prototypal for families of related materials, one of which, SOFOUR-2-Zn, uses the earth-friendly sulfate anion as a pillar.
Collapse
Affiliation(s)
- Daniel J O'Hearn
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Ireland
| | - Debobroto Sensharma
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Ireland
| | - Asif Raza
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Ireland
| | - Andrey A Bezrukov
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Ireland
| | - Matthias Vandichel
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Ireland
| | - Soumya Mukherjee
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Ireland
- SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick Limerick V94 T9PX Ireland
| | - Michael J Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Ireland
- SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick Limerick V94 T9PX Ireland
| |
Collapse
|
3
|
Mashhadimoslem H, Abdol MA, Karimi P, Zanganeh K, Shafeen A, Elkamel A, Kamkar M. Computational and Machine Learning Methods for CO 2 Capture Using Metal-Organic Frameworks. ACS NANO 2024; 18:23842-23875. [PMID: 39173133 DOI: 10.1021/acsnano.3c13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Machine learning (ML) using data sets of atomic and molecular force fields (FFs) has made significant progress and provided benefits in the fields of chemistry and material science. This work examines the interactions between chemistry and materials computational science at the atomic and molecular scales for metal-organic framework (MOF) adsorbent development toward carbon dioxide (CO2) capture. Herein, a connection will be drawn between atomic forces predicted by ML algorithms and the structures of MOFs for CO2 adsorption. Our study also takes into account the successes of atomic computational screening in the field of materials science, especially quantum ML, and its relationship to ML algorithms that clarify advancements in the area of CO2 adsorption by MOFs. Additionally, we reviewed the processes for supplying data to ML algorithms for algorithm training, including text mining from scientific articles, and MOF's formula processing linked to the chemical properties of MOFs. To create ML algorithms for future research, we recommend that the digitization of scientific records can help efficiently synthesize advanced MOFs. Finally, a future vision for developing pioneer MOF synthesis routes for CO2 capture is presented in this review article.
Collapse
Affiliation(s)
- Hossein Mashhadimoslem
- Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Mohammad Ali Abdol
- Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Peyman Karimi
- Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Kourosh Zanganeh
- Natural Resources Canada (NRCan), Canmet ENERGY-Ottawa (CE-O), 1 Haanel Dr., Ottawa, ON K1A 1M1 Canada
| | - Ahmed Shafeen
- Natural Resources Canada (NRCan), Canmet ENERGY-Ottawa (CE-O), 1 Haanel Dr., Ottawa, ON K1A 1M1 Canada
| | - Ali Elkamel
- Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Milad Kamkar
- Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
4
|
Abbas M, Murari B, Sheybani S, Joy M, Balkus KJ. Synthesis and Characterization of Highly Fluorinated Hydrophobic Rare-Earth Metal-Organic Frameworks (MOFs). MATERIALS (BASEL, SWITZERLAND) 2024; 17:4213. [PMID: 39274603 PMCID: PMC11396249 DOI: 10.3390/ma17174213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024]
Abstract
Tuning a material's hydrophobicity is desirable in several industrial applications, such as hydrocarbon storage, separation, selective CO2 capture, oil spill cleanup, and water purification. The introduction of fluorine into rare-earth (RE) metal-organic frameworks (MOFs) can make them hydrophobic. In this work, the linker bis(trifluoromethyl)terephthalic acid (TTA) was used to make highly fluorinated MOFs. The reaction of the TTA and RE3+ (RE: Y, Gd, or Eu) ions resulted in the primitive cubic structure (pcu) exhibiting RE dimer nodes (RE-TTA-pcu). The crystal structure of the RE-TTA-pcu was obtained. The use of the 2-fluorobenzoic acid in the synthesis resulted in fluorinated hexaclusters in the face-centered cubic (fcu) framework (RE-TTA-fcu), analogous to the UiO-66 MOF. The RE-TTA-fcu has fluorine on the linker as well as in the cluster. The MOFs were characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis, and contact angle measurements.
Collapse
Affiliation(s)
- Muhammad Abbas
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| | - Bhargavasairam Murari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| | - Simin Sheybani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| | - Monu Joy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| | - Kenneth J Balkus
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| |
Collapse
|
5
|
Liang B, Zhu P, Gu J, Yuan W, Xiao B, Hu H, Rao M. Advancing Adsorption and Separation with Modified SBA-15: A Comprehensive Review and Future Perspectives. Molecules 2024; 29:3543. [PMID: 39124948 PMCID: PMC11314527 DOI: 10.3390/molecules29153543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Mesoporous silica SBA-15 has emerged as a promising adsorbent and separation material due to its unique structural and physicochemical properties. To further enhance its performance, various surface modification strategies, including metal oxide and noble metal incorporation for improved catalytic activity and stability, organic functionalization with amino and thiol groups for enhanced adsorption capacity and selectivity, and inorganic-organic composite modification for synergistic effects, have been extensively explored. This review provides a comprehensive overview of the recent advances in the surface modification of SBA-15 for adsorption and separation applications. The synthesis methods, structural properties, and advantages of SBA-15 are discussed, followed by a detailed analysis of the different modification strategies and their structure-performance relationships. The adsorption and separation performance of functionalized SBA-15 materials in the removal of organic pollutants, heavy metal ions, gases, and biomolecules, as well as in chromatographic and solid-liquid separation, is critically evaluated. Despite the significant progress, challenges and opportunities for future research are identified, including the development of low-cost and sustainable synthesis routes, rational design of SBA-15-based materials with tailored properties, and integration into practical applications. This review aims to guide future research efforts in developing advanced SBA-15-based materials for sustainable environmental and industrial applications, with an emphasis on green and scalable modification strategies.
Collapse
Affiliation(s)
- Binjun Liang
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Pingxin Zhu
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Jihan Gu
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
- Chongyi Green Metallurgy New Energy Co., Ltd., Ganzhou 341300, China
| | - Weiquan Yuan
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Bin Xiao
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Haixiang Hu
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Mingjun Rao
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
6
|
Di T, Yoshida Y, Otake KI, Kitagawa S, Kitagawa H. Increased CO 2/N 2 selectivity by stepwise fluorination in isoreticular ultramicroporous metal-organic frameworks. Chem Sci 2024; 15:9641-9648. [PMID: 38939130 PMCID: PMC11205276 DOI: 10.1039/d4sc01525h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 06/29/2024] Open
Abstract
Exploration of porous adsorbents with high CO2/N2 selectivity is of great significance for reducing CO2 content in the atmosphere. In this study, a series of isoreticular ultramicroporous fluorinated metal-organic frameworks (MOFs) were prepared to explore the benefits of fluorinated ultramicropores in improving CO2/N2 selectivity. Gas adsorption measurements revealed that the increase in the number of fluorine atoms in a ligand molecule leads to the increased CO2 uptakes and CO2/N2 selectivity. Theoretical calculations indicate that the interaction between the fluorine atoms and adsorbed CO2 molecules enhances the CO2-philicity, offering useful insight into the improvement of CO2/N2 selectivity in isoreticular frameworks.
Collapse
Affiliation(s)
- Tuo Di
- Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Yukihiro Yoshida
- Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Institute for Advanced Study, Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Institute for Advanced Study, Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
7
|
Morelli Venturi D, Sole Notari M, Trovarelli L, Mosconi E, Alothman AA, Molokova A, Ruser N, Meier C, Achenbach B, Lomachenko KA, Del Giacco T, Costantino F, Stock N. Synthesis, Structure and (Photo)Catalytic Behavior of Ce-MOFs Containing Perfluoroalkylcarboxylate Linkers: Experimental and Theoretical Insights. Chemistry 2024; 30:e202400433. [PMID: 38568800 DOI: 10.1002/chem.202400433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Cerium-based Metal-Organic frameworks (Ce-MOFs) are attracting increasing interest due to their similar structural features to zirconium MOFs. The redox behavior of Ce(III/IV) adds a range of properties to the compounds. Recently, perfluorinated linkers have been used in the synthesis of MOFs to introduce new characteristic into the structure. We report the synthesis and structural characterization of Ce(IV)-based MOFs constructed using two perfluorinated alkyl linkers. Their structure, based on hexanuclear Ce6O4(OH)4 12+ clusters linked to each other by the dicarboxylate ions, has been solved ab-initio from X-ray powder diffraction data and refined by the Rietveld method. The crystallization kinetics and the MOF formation mechanism was also invesitigated by Synchrotron radiation with XAS spectroscopies (EXAFS and XANES). The MOFs present the same fcu cubic topology as observed in MOF-801 and UiO-66, and they showed good stability in water at different pH conditions. The electronic structure of these MOFs has been studied by DFT calculations in order to obtain insights into the density of states structure of the reported compounds, resulting in band gaps in the range of 2.8-3.1 eV. Their catalytic properties were tested both thermally and under visible light irradiation for the degradation of methyl orange (MO) dye.
Collapse
Affiliation(s)
- Diletta Morelli Venturi
- Institute of Inorganic Chemistry, Christian-Albrecht University of Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Christian-Albrecht University of Kiel, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
| | - Maria Sole Notari
- Department of chemistry, biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Letizia Trovarelli
- Department of chemistry, biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Edoardo Mosconi
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto 8, 06123, Perugia, Italy
- Chemistry Department, College of Science, King Saud University, 11451, Riyadh, Kingdom of Saudi Arabia
| | - Asma A Alothman
- Chemistry Department, College of Science, King Saud University, 11451, Riyadh, Kingdom of Saudi Arabia
| | - Anastasia Molokova
- European Synchrotron Radiation Facility, Avenue des Martyrs 71, 38043, Grenoble Cedex 9, France
| | - Niklas Ruser
- Institute of Inorganic Chemistry, Christian-Albrecht University of Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Christoph Meier
- Institute of Inorganic Chemistry, Christian-Albrecht University of Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Bastian Achenbach
- Institute of Inorganic Chemistry, Christian-Albrecht University of Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Kirill A Lomachenko
- European Synchrotron Radiation Facility, Avenue des Martyrs 71, 38043, Grenoble Cedex 9, France
| | - Tiziana Del Giacco
- Department of chemistry, biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Ferdinando Costantino
- Department of chemistry, biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Norbert Stock
- Institute of Inorganic Chemistry, Christian-Albrecht University of Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Christian-Albrecht University of Kiel, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
| |
Collapse
|
8
|
Bolat S, Demir S, Erer H, Pelit F, Dzingelevičienė R, Ligor T, Buszewski B, Pelit L. MOF-801 based solid phase microextraction fiber for the monitoring of indoor BTEX pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133607. [PMID: 38280318 DOI: 10.1016/j.jhazmat.2024.133607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Benzene, toluene, ethylbenzene and xylenes (BTEX) are some of the better-known indoor air pollutants, for which effective monitoring is important. The analysis of BTEX can be performed by different type of solid phase microextraction (SPME) fibers. This study presents a proposal for a low cost, convenient and environmentally friendly analytical method for the determination of BTEX in air samples using custom made SPME fibers. In this context, custom made metal organic frameworks (MOF-801) were coated on a stainless-steel wire for SPME fiber preparation. The analysis of BTEX was performed by introducing SPME fiber into an analyte-containing Tedlar bag in steady-state conditions. After the sampling step, the analytes were analyzed using gas chromatography mass spectrometry in selected ion monitoring mode. Parameters that affect the analysis results were optimized; these include desorption temperature and time, preconditioning time, extraction temperature and time, and sample volume. Under optimized conditions, analytical figure of merits of developed method were obtained, including limits of detection (LOD) (0.012 - 0.048 mg/m3), linear ranges (0.041-18 mg/m3), intraday and interday repeatability (2.08 - 4.04% and 3.94 - 6.35%), and fiber to fiber reproducibility (7.51 - 11.17%). The proposed method was successfully applied to real air samples with an acceptable recovery values between 84.5% and 110.9%. The developed method can be applied for the effective monitoring of BTEX.
Collapse
Affiliation(s)
- Serkan Bolat
- Department of Occupational Health and Safety, Vocational School, İzmir University of Economics, İzmir, Türkiye; Department of Chemistry, Faculty of Science, Ege University, İzmir, Türkiye.
| | - Sevde Demir
- Department of Chemistry, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Hakan Erer
- Department of Chemistry, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Füsun Pelit
- Department of Chemistry, Faculty of Science, Ege University, İzmir, Türkiye; Translational Pulmonary Research Center (Ege TPRC), Ege University, İzmir, Türkiye
| | - Reda Dzingelevičienė
- Faculty of Health Sciences, Marine Research Institute, Klaipeda University, Klaipeda, Lithuania
| | - Tomasz Ligor
- Department of Environmental Chemistry and Bioanalytics, Nicolaus Copernicus University, Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Nicolaus Copernicus University, Toruń, Poland; Prof. Jan Czochralski Kuyavian-Pomeranian Science and Technology Center, 4 Krasińskiego str., 87 100 Toruń, Poland
| | - Levent Pelit
- Department of Chemistry, Faculty of Science, Ege University, İzmir, Türkiye; Translational Pulmonary Research Center (Ege TPRC), Ege University, İzmir, Türkiye
| |
Collapse
|
9
|
Morelli Venturi D, Costantino F. Recent advances in the chemistry and applications of fluorinated metal-organic frameworks (F-MOFs). RSC Adv 2023; 13:29215-29230. [PMID: 37809027 PMCID: PMC10551664 DOI: 10.1039/d3ra04940j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023] Open
Abstract
Metal-organic frameworks are a class of porous crystalline materials based on the ordered connection of metal centers or metal clusters by organic linkers with comprehensive functionalities. The interest in these materials is rapidly moving towards their application in industry and real life. In this context, cheap and sustainable synthetic strategies of MOFs with tailored structures and functions are nowadays a topic widely studied from different points of view. In this review, fluorinated MOFs (F-MOFs) and their applications are investigated. The principal aim is to provide an overview of the structural features and the main application of MOFs containing fluorine atoms both as anionic units or as coordinating elements of more complex inorganic units and, therefore, directly linked to the structural metals or as part of fluorinated linkers used in the synthesis of MOFs. Herein we present a review of F-MOFs reported in the recent literature compared to benchmark compounds published over the last 10 years. The compounds are discussed in terms of their structure and properties according to the aforementioned classification, with an insight into the different chemical nature of the bonds. The application fields of F-MOFs, especially in sustainability related issues, such as harmful gas sorption and separation, will also be discussed. F-MOFs are compounds containing fluorine atoms in their framework and they can be based on: (a) fluorinated metallic or semi-metallic anionic clusters or: (b) fluorinated organic linkers or (c) eventually containing both the building blocks. The nature of a covalent C-F bond in terms of length, charge separation and dipole moment sensibly differs from that of a partly ionic M-F (M = metal) one so that the two classes of materials (points a and b) have different properties and they find various application fields. The study shows how the insertion of polar M-F and C-F bonds in the MOF structure may confer several advantages in terms of interaction with gaseous molecules and the compounds can find application in gas sorption and separation. In addition, hydrophobicity tends to increase compared to non-fluorinated analogues, resulting in an overall improvement in moisture stability.
Collapse
Affiliation(s)
- Diletta Morelli Venturi
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel Max-Eyth-Str. 2 24118 Kiel Germany
| | - Ferdinando Costantino
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia Via Elce di Sotto, 8 06123 Perugia Italy
| |
Collapse
|
10
|
Liang Q, Xiao W, Zhang C, Zhu D, Wang SL, Tian SY, Long T, Yue EL, Wang JJ, Hou XY. MOFs-based Fe@YAU-101/GCE electrochemical sensor platform for highly selective detecting trace multiplex heavy metal ions. Talanta 2023; 259:124491. [PMID: 37023672 DOI: 10.1016/j.talanta.2023.124491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 04/05/2023]
Abstract
The construction of sensors with specific recognition functions can easily, sensitively and efficiently detect heavy metal ions, which is a demand in the field of electrochemical sensing and an important topic in the detection of environmental pollutants. An electrochemical sensor based on MOFs composites was developed for sensing of multiplex metal ions. The large surface area, adjustable porosities and channels in MOFs facilitate successful loading of sufficient quantities highly active units. The active units and pore structures of MOFs are regulated and synergetic with each other to enhance the electrochemical activity of MOFs composites. Thus, the selectivity, sensitivity and reproducibility of MOFs composites have been improved. Fortunately, after characterization, Fe@YAU-101/GCE sensor with strong signal was successfully constructed. In the presence of target metal ions in solution, the Fe@YAU-101/GCE can efficiently and synchronously identify Hg2+, Pb2+, and Cd2+. The detection limits (LOD) are 6.67 × 10-10 M(Cd2+), 3.33 × 10-10 M(Pb2+) and 1.33 × 10-8 M (Hg2+), and are superior to the permissible limits set by the National Environmental Protection Agency. The electrochemical sensor is simple without sophisticated instrumentation and testing processes, hence promising for practical applications.
Collapse
Affiliation(s)
- Qian Liang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China
| | - Wang Xiao
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China.
| | - Cheng Zhang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China
| | - Ding Zhu
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China
| | - Si-Lu Wang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China
| | - Si-Yu Tian
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China
| | - Tang Long
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China
| | - Er-Lin Yue
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China
| | - Ji-Jiang Wang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China
| | - Xiang-Yang Hou
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China
| |
Collapse
|
11
|
Abbas M, Maceda AM, Xiao Z, Zhou HC, Balkus KJ. Transformation of a copper-based metal-organic polyhedron into a mixed linker MOF for CO 2 capture. Dalton Trans 2023; 52:4415-4422. [PMID: 36916445 DOI: 10.1039/d2dt04162f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A new mixed linker metal-organic framework (MOF) has been synthesized from a copper-based metal-organic polyhedron (MOP-1) and 2,2'-bipyridine (2,2'-bipy). The CuMOF-Bipy with a formula of [Cu2(2,2'-bpy)2(m-BDC)2]n is comprised of a binuclear Cu(II) node coordinated to 2,2'-bipy, and isophthalic acid (m-BDC), which bridges to neighboring nodes. The crystal structure of CuMOF-Bipy consists of a stacked two-dimensional framework with the sql topology. CuMOF-Bipy was characterized by single-crystal X-ray diffraction (SC-XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and CO2 sorption. CuMOF-Bipy was shown to have one-dimensional sinusoidal channels that allow diffusion of CO2 but not N2.
Collapse
Affiliation(s)
- Muhammad Abbas
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| | - Amanda M Maceda
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| | - Zhifeng Xiao
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - Kenneth J Balkus
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| |
Collapse
|