1
|
Tsai YS, Yang SC, Yang TH, Wu CH, Lin TC, Kung CW. Sulfonate-Functionalized Metal-Organic Framework as a Porous "Proton Reservoir" for Boosting Electrochemical Reduction of Nitrate to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62185-62194. [PMID: 39486896 PMCID: PMC11565520 DOI: 10.1021/acsami.4c14786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
The electrochemical reduction reaction of nitrate (NO3RR) is an attractive route to produce ammonia at ambient conditions, but the conversion from nitrate to ammonia, which requires nine protons, has to compete with both the two-proton process of nitrite formation and the hydrogen evolution reaction. Extensive research efforts have thus been made in recent studies to develop electrocatalysts for the NO3RR facilitating the production of ammonia. Rather than designing another better electrocatalyst, herein, we synthesize an electrochemically inactive, porous, and chemically robust zirconium-based metal-organic framework (MOF) with enriched intraframework sulfonate groups, SO3-MOF-808, as a coating deposited on top of the catalytically active copper-based electrode. Although both the overall reaction rate and electrochemically active surface area of the electrode are barely affected by the MOF coating, with negatively charged sulfonate groups capable of enriching more protons near the electrode surface, the MOF coating significantly promotes the selectivity of the NO3RR toward the production of ammonia. In contrast, the use of MOF coating with positively charged trimethylammonium groups to repulse protons strongly facilitates the conversion of nitrate to nitrite, with selectivity of more than 90% at all potentials. Under the optimal operating conditions, the copper electrocatalyst with SO3-MOF-808 coating can achieve a Faradaic efficiency of 87.5% for ammonia production, a nitrate-to-ammonia selectivity of 95.6%, and an ammonia production rate of 97 μmol/cm2 h, outperforming all of those achieved by both the pristine copper (75.0%; 93.9%; 87 μmol/cm2 h) and copper with optimized Nafion coating (83.3%; 86.9%; 64 μmol/cm2 h). Findings here suggest the function of MOF as an advanced alternative to the commercially available Nafion to enrich protons near the surface of electrocatalyst for NO3RR, and shed light on the potential of utilizing such electrochemically inactive MOF coatings in a range of proton-coupled electrocatalytic reactions.
Collapse
Affiliation(s)
- Yun-Shan Tsai
- Department
of Chemical Engineering, National Cheng
Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Shang-Cheng Yang
- Department
of Chemical Engineering, National Cheng
Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Tzu-Hsien Yang
- Department
of Chemical Engineering, National Cheng
Kung University, 1 University Road, Tainan City 70101, Taiwan
- Program
on Key Materials, Academy of Innovative Semiconductor and Sustainable
Manufacturing, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Chung-Huan Wu
- Department
of Chemical Engineering, National Cheng
Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Tzu-Chi Lin
- Department
of Chemical Engineering, National Cheng
Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Chung-Wei Kung
- Department
of Chemical Engineering, National Cheng
Kung University, 1 University Road, Tainan City 70101, Taiwan
- Program
on Key Materials, Academy of Innovative Semiconductor and Sustainable
Manufacturing, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan
| |
Collapse
|
2
|
Luo R, Li BJ, Wang ZP, Chen MG, Zhuang GL, Li Q, Tong JP, Wang WT, Fan YH, Shao F. Two-Dimensional MOF Constructed by a Binuclear-Copper Motif for High-Performance Electrocatalytic NO Reduction to NH 3. JACS AU 2024; 4:3823-3832. [PMID: 39483236 PMCID: PMC11522898 DOI: 10.1021/jacsau.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024]
Abstract
Ambient electrochemical NO reduction presents a dual solution for sustainable NO reduction and NH3 synthesis. However, their complex kinetics and energy demands necessitate high-performance electrocatalysts to ensure effective and selective process outcomes. Herein, we report that a two-dimensional Cu-based metal-organic framework (MOF), {[Cu(HL)]·H2O} n , (Cu-OUC, H3L = 5-(2'-carboxylphenoxy)isophthalic acid) acts as a stable electrocatalyst with high efficiency for NO-to-NH3 conversion. Electrochemical experimental studies showed that in 0.1 M K2SO4 solution, the as-prepared Cu-OUC achieved a peak Faradaic efficiency of 96.91% and a notable NH3 yield as high as 3415.82 μg h-1 mg-1. The Zn-NO battery in aqueous solution can produce electricity possessing a power density of 2.04 mW cm-2 while simultaneously achieving an NH3 yield of 616.92 μg h-1 mg-1. Theoretical calculations revealed that the surface of Cu-OUC effectively facilitates NO activation through a two-way charge transfer mechanism of "electron acceptance and donation", with the *NO formation step being the potential-determining stage. The study pioneers the use of a MOF as an electrocatalyst for ambient NO-to-NH3 conversion.
Collapse
Affiliation(s)
- Rong Luo
- Key
Laboratory of Marine Chemistry Theory and Technology, Ministry of
Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Bao-Jing Li
- Key
Laboratory of Marine Chemistry Theory and Technology, Ministry of
Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhan-Peng Wang
- Institute
of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical
Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ming-Guang Chen
- Baotou
Research Institute of Rare Earths, Baotou 014040, China
| | - Gui-Lin Zhuang
- Institute
of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical
Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Quan Li
- Key
Laboratory of Marine Chemistry Theory and Technology, Ministry of
Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jia-Ping Tong
- Laboratory
of Physicochemical Analysis, Training Base, Army Logistics Academy, Chongqing 400041, China
| | - Wen-Tai Wang
- Key
Laboratory of Marine Chemistry Theory and Technology, Ministry of
Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yu-Hua Fan
- Key
Laboratory of Marine Chemistry Theory and Technology, Ministry of
Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Feng Shao
- Key
Laboratory of Marine Chemistry Theory and Technology, Ministry of
Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
3
|
Zou Y, Yan Y, Xue Q, Zhang C, Bao T, Zhang X, Yuan L, Qiao S, Song L, Zou J, Yu C, Liu C. MOF-on-MOF Heterostructured Electrocatalysts for Efficient Nitrate Reduction to Ammonia. Angew Chem Int Ed Engl 2024; 63:e202409799. [PMID: 39039911 DOI: 10.1002/anie.202409799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Electrocatalytic nitrate reduction reaction (NO3 -RR) is an important route for sustainable NH3 synthesis and environmental remediation. Metal-organic frameworks (MOFs) are one family of promising NO3 -RR electrocatalysts, however, there is plenty of room to improve in their performance, calling for new design principles. Herein, a MOF-on-MOF heterostructured electrocatalyst with interfacial dual active sites and build-in electric field is fabricated for efficient NO3 -RR to NH3 production. By growing Co-HHTP (HHTP=2,3,6,7,10,11-hexahydroxytriphenylene) nanorods on Ni-BDC (BDC=1,4-benzenedicarboxylate) nanosheets, experimental and theoretical investigations demonstrate the formation of Ni-O-Co bonds at the interface of MOF-on-MOF heterostructure, leading to dual active sites tailed for NO3 -RR. The Ni sites facilitate the adsorption and activation of NO3 -, while the Co sites boost the H2O decomposition to supply active hydrogen (Hads) for N-containing intermediates hydrogenation on adjacent Ni sites, cooperatively reducing the energy barriers of NO3 -RR process. Together with the accelerated electron transfer enabled by built-in electric field, remarkable NO3 -RR performance is achieved with an NH3 yield rate of 11.46 mg h-1 cm-2 and a Faradaic efficiency of 98.4 %, outperforming most reported MOF-based electrocatalysts. This work provides new insights into the design of high-performance NO3 -RR electrocatalysts.
Collapse
Affiliation(s)
- Yingying Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yuechen Yan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Qingsong Xue
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xinchan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Li Song
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Jin Zou
- Materials Engineering and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
4
|
He X, Wu Z, Lu J, Liu J, Li B, Liu X, Tao W, Li Z. A Sunlight-Driven Self-Cleaning CuCo-MOF Composite Membrane for Highly Efficient Emulsion Separation and Water Purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402589. [PMID: 38881318 DOI: 10.1002/smll.202402589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 06/18/2024]
Abstract
The fouling phenomenon of membranes has hindered the rapid development of separation technology in wastewater treatment. The integration of materials into membranes with both excellent separation performance and self-cleaning properties still pose challenges. Here, a self-assembled composite membrane with solar-driven self-cleaning performance is reported for the treatment of complex oil-water emulsions. The mechanical robustness of the composite membrane is enhanced by the electrostatic attraction between chitosan and metal-organic frameworks (MOF) CuCo-HHTP as well as the crosslinking effect of glutaraldehyde. Molecular dynamics (MD) simulations also revealed the hydrogen bonding interaction between chitosan and CuCo-HHTP. The composite membrane of CuCo-HHTP-5@CS/MPVDF exhibits a high flux ranging from 700.6 to 2350.6 L∙m-2∙h-1∙bar-1 and excellent separation efficiency (>99.0%) for various oil-water emulsions, including crude oil, kerosene, and other light oils. The addition of CuCo-HHTP shows remarkable photothermal effects, thus demonstrating excellent solar-driven self-cleaning capability and antibacterial performance (with an efficiency of ≈100%). Furthermore, CuCo-HHTP-5@CS/MPVDF can activate peroxomonosulfate (PMS) under sunlight, quickly removing oil-fouling and dyes. Density functional theory (DFT) calculations indicate that the bimetallic sites of Cu and Co in CuCo-HHTP effectively promoted the activation of PMS. This study provides distinctive insights into the multifaceted applications of MOFs-derived photothermal anti-fouling composite membranes.
Collapse
Affiliation(s)
- Xuanting He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zixuan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jihan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jiaxiang Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Boyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaohui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wenquan Tao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
5
|
Zhang S, Hong H, Zhang R, Wei Z, Wang Y, Chen D, Li C, Li P, Cui H, Hou Y, Wang S, Ho JC, Guo Y, Huang Z, Zhi C. Modulating the Leverage Relationship in Nitrogen Fixation Through Hydrogen-Bond-Regulated Proton Transfer. Angew Chem Int Ed Engl 2024:e202412830. [PMID: 39157915 DOI: 10.1002/anie.202412830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 08/20/2024]
Abstract
In the electrochemical nitrogen reduction reaction (NRR), a leverage relationship exists between NH3-producing activity and selectivity because of the competing hydrogen evolution reaction (HER), which means that high activity with strong protons adsorption causes low product selectivity. Herein, we design a novel metal-organic hydrogen bonding framework (MOHBF) material to modulate this leverage relationship by a hydrogen-bond-regulated proton transfer pathway. The MOHBF material was composited with reduced graphene oxide (rGO) to form a Ni-N2O2 molecular catalyst (Ni-N2O2/rGO). The unique structure of O atoms in Ni-O-C and N-O-H could form hydrogen bonds with H2O molecules to interfere with protons being directly adsorbed onto Ni active sites, thus regulating the proton transfer mechanism and slowing the HER kinetics, thereby modulating the leverage relationship. Moreover, this catalyst has abundant Ni-single-atom sites enriched with Ni-N/O coordination, conducive to the adsorption and activation of N2. The Ni-N2O2/rGO exhibits simultaneously enhanced activity and selectivity of NH3 production with a maximum NH3 yield rate of 209.7 μg h-1 mgcat. -1 and a Faradaic efficiency of 45.7 %, outperforming other reported single-atom NRR catalysts.
Collapse
Affiliation(s)
- Shaoce Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Rong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Zhiquan Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yiqiao Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Dong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Chuan Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Huilin Cui
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Yue Hou
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Shengnan Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ying Guo
- College of Materials Science and Engineering, Shenzhen University, 518061, Shenzhen, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
- Centre for Functional Photonics, City University of Hong Kong, Kowloon, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
6
|
Li M, Wen Y, Fang Y, Shan B. Molecular Wiring of Electrocatalytic Nitrate reduction to Ammonia and Water Oxidation by Iron-Coordinated Macroporous Conductive Networks. Angew Chem Int Ed Engl 2024; 63:e202405746. [PMID: 38666518 DOI: 10.1002/anie.202405746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 07/02/2024]
Abstract
Developing stable electrocatalysts with accessible isolated sites is desirable but highly challenging due to metal agglomeration and low surface stability of host materials. Here we report a general approach for synthesis of single-site Fe electrocatalysts by integrating a solvated Fe complex in conductive macroporous organic networks through redox-active coordination linkages. Electrochemical activation of the electrode exposes high-density coordinately unsaturated Fe sites for efficient adsorption and conversion of reaction substrates such as NO3 - and H2O. Using the electrode with isolated active Fe sites, electrocatalytic NO3 - reduction and H2O oxidation can be coupled in a single cell to produce NH3 and O2 at Faradaic efficiencies of 97 % and 100 %, respectively. The electrode exhibits excellent robustness in electrocatalysis for 200 hours with small decrease in catalytic efficiencies. Both the maximized Fe-site efficiency and the microscopic localization effect of the conductive organic matrix contribute to the high catalytic performances, which provides new understandings in tuning the efficiencies of metal catalysts for high-performance electrocatalytic cells.
Collapse
Affiliation(s)
- Mengjie Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yingke Wen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yanjie Fang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Bing Shan
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Hangzhou, 310058, China
| |
Collapse
|
7
|
Xiong Y, Wang Y, Tsang CC, Zhou J, Hao F, Liu F, Wang J, Xi S, Zhao J, Fan Z. Metal Doped Unconventional Phase IrNi Nanobranches: Tunable Electrochemical Nitrate Reduction Performance and Pollutants Upcycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10863-10873. [PMID: 38842426 DOI: 10.1021/acs.est.4c04014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Electrochemical nitrate reduction (NO3RR) provides a new option to abate nitrate contamination with a low carbon footprint. Restricted by competitive hydrogen evolution, achieving satisfied nitrate reduction performance in neutral media is still a challenge, especially for the regulation of this multielectron multiproton reaction. Herein, facile element doping is adopted to tune the catalytic behavior of IrNi alloy nanobranches with an unconventional hexagonal close-packed (hcp) phase toward NO3RR. In particular, the obtained hcp IrNiCu nanobranches favor the ammonia production and suppress byproduct formation in a neutral electrolyte indicated by in situ differential electrochemical mass spectrometry, with a high Faradaic efficiency (FE) of 85.6% and a large yield rate of 1253 μg cm-2 h-1 at -0.4 and -0.6 V (vs reversible hydrogen electrode (RHE)), respectively. In contrast, the resultant hcp IrNiCo nanobranches promote the formation of nitrite, with a peak FE of 33.1% at -0.1 V (vs RHE). Furthermore, a hybrid electrolysis cell consisting of NO3RR and formaldehyde oxidation is constructed, which are both catalyzed by hcp IrNiCu nanobranches. This electrolyzer exhibits lower overpotential and holds the potential to treat polluted air and wastewater simultaneously, shedding light on green chemical production based on contaminate degradation.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Chi Ching Tsang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Juan Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore 627833, Singapore
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
8
|
Kou M, Yuan Y, Zhao R, Wang Y, Zhao J, Yuan Q, Zhao J. Insights into the Origin of Activity Enhancement via Tuning Electronic Structure of Cu 2O towards Electrocatalytic Ammonia Synthesis. Molecules 2024; 29:2261. [PMID: 38792124 PMCID: PMC11124335 DOI: 10.3390/molecules29102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The insight of the activity phase and reaction mechanism is vital for developing high-performance ammonia synthesis electrocatalysts. In this study, the origin of the electronic-dependent activity for the model Cu2O catalyst toward ammonia electrosynthesis with nitrate was probed. The modulation of the electronic state and oxygen vacancy content of Cu2O was realized by doping with halogen elements (Cl, Br, I). The electrocatalytic experiments showed that the activity of the ammonia production depends strongly on the electronic states in Cu2O. With increased electronic state defects in Cu2O, the ammonia synthesis performance increased first and then decreased. The Cu2O/Br with electronic defects in the middle showed the highest ammonia yield of 11.4 g h-1 g-1 at -1.0 V (vs. RHE), indicating that the pattern of change in optimal ammonia activity is consistent with the phenomenon of volcano curves in reaction chemistry. This work highlights a promising route for designing NO3-RR to NH3 catalysts.
Collapse
Affiliation(s)
| | | | | | | | - Jiamin Zhao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (M.K.); (Y.Y.); (R.Z.); (Y.W.)
| | - Qing Yuan
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (M.K.); (Y.Y.); (R.Z.); (Y.W.)
| | - Jinsheng Zhao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (M.K.); (Y.Y.); (R.Z.); (Y.W.)
| |
Collapse
|
9
|
Xiong Y, Wang Y, Zhou J, Liu F, Hao F, Fan Z. Electrochemical Nitrate Reduction: Ammonia Synthesis and the Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304021. [PMID: 37294062 DOI: 10.1002/adma.202304021] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Natural nitrogen cycle has been severely disrupted by anthropogenic activities. The overuse of N-containing fertilizers induces the increase of nitrate level in surface and ground waters, and substantial emission of nitrogen oxides causes heavy air pollution. Nitrogen gas, as the main component of air, has been used for mass ammonia production for over a century, providing enough nutrition for agriculture to support world population increase. In the last decade, researchers have made great efforts to develop ammonia processes under ambient conditions to combat the intensive energy consumption and high carbon emission associated with the Haber-Bosch process. Among different techniques, electrochemical nitrate reduction reaction (NO3RR) can achieve nitrate removal and ammonia generation simultaneously using renewable electricity as the power, and there is an exponential growth of studies in this research direction. Here, a timely and comprehensive review on the important progresses of electrochemical NO3RR, covering the rational design of electrocatalysts, emerging CN coupling reactions, and advanced energy conversion and storage systems is provided. Moreover, future perspectives are proposed to accelerate the industrialized NH3 production and green synthesis of chemicals, leading to a sustainable nitrogen cycle via prosperous N-based electrochemistry.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
10
|
Zhou J, Xiong Y, Sun M, Xu Z, Wang Y, Lu P, Liu F, Hao F, Feng T, Ma Y, Yin J, Ye C, Chen B, Xi S, Zhu Y, Huang B, Fan Z. Constructing molecule-metal relay catalysis over heterophase metallene for high-performance rechargeable zinc-nitrate/ethanol batteries. Proc Natl Acad Sci U S A 2023; 120:e2311149120. [PMID: 38064508 PMCID: PMC10723141 DOI: 10.1073/pnas.2311149120] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Zinc-nitrate batteries can integrate energy supply, ammonia electrosynthesis, and sewage disposal into one electrochemical device. However, current zinc-nitrate batteries still severely suffer from the limited energy density and poor rechargeability. Here, we report the synthesis of tetraphenylporphyrin (tpp)-modified heterophase (amorphous/crystalline) rhodium-copper alloy metallenes (RhCu M-tpp). Using RhCu M-tpp as a bifunctional catalyst for nitrate reduction reaction (NO3RR) and ethanol oxidation reaction in neutral solution, a highly rechargeable and low-overpotential zinc-nitrate/ethanol battery is successfully constructed, which exhibits outstanding energy density of 117364.6 Wh kg-1cat, superior rate capability, excellent cycling stability of ~400 cycles, and potential ammonium acetate production. Ex/in situ experimental studies and theoretical calculations reveal that there is a molecule-metal relay catalysis in NO3RR over RhCu M-tpp that significantly facilitates the ammonia selectivity and reaction kinetics via a low energy barrier pathway. This work provides an effective design strategy of multifunctional metal-based catalysts toward the high-performance zinc-based hybrid energy systems.
Collapse
Affiliation(s)
- Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang621900, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Zhihang Xu
- Department of Applied Physics Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Tianyi Feng
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Jinwen Yin
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Chenliang Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Biao Chen
- School of Material Science and Engineering, Tianjin University, Tianjin300350, China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore627833, Singapore
| | - Ye Zhu
- Department of Applied Physics Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China
| |
Collapse
|
11
|
Zhang R, Hong H, Liu X, Zhang S, Li C, Cui H, Wang Y, Liu J, Hou Y, Li P, Huang Z, Guo Y, Zhi C. Molecular Engineering of a Metal-Organic Polymer for Enhanced Electrochemical Nitrate-to-Ammonia Conversion and Zinc Nitrate Batteries. Angew Chem Int Ed Engl 2023; 62:e202309930. [PMID: 37828577 DOI: 10.1002/anie.202309930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
Metal-organic framework-based materials are promising single-site catalysts for electrocatalytic nitrate (NO3 - ) reduction to value-added ammonia (NH3 ) on account of well-defined structures and functional tunability but still lack a molecular-level understanding for designing the high-efficient catalysts. Here, we proposed a molecular engineering strategy to enhance electrochemical NO3 - -to-NH3 conversion by introducing the carbonyl groups into 1,2,4,5-tetraaminobenzene (BTA) based metal-organic polymer to precisely modulate the electronic state of metal centers. Due to the electron-withdrawing properties of the carbonyl group, metal centers can be converted to an electron-deficient state, fascinating the NO3 - adsorption and promoting continuous hydrogenation reactions to produce NH3 . Compared to CuBTA with a low NO3 - -to-NH3 conversion efficiency of 85.1 %, quinone group functionalization endows the resulting copper tetraminobenzoquinone (CuTABQ) distinguished performance with a much higher NH3 FE of 97.7 %. This molecular engineering strategy is also universal, as verified by the improved NO3 - -to-NH3 conversion performance on different metal centers, including Co and Ni. Furthermore, the assembled rechargeable Zn-NO3 - battery based on CuTABQ cathode can deliver a high power density of 12.3 mW cm-2 . This work provides advanced insights into the rational design of metal complex catalysts through the molecular-level regulation for NO3 - electroreduction to value-added NH3 .
Collapse
Affiliation(s)
- Rong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xinghui Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Shaoce Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Chuan Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Huilin Cui
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yanbo Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Jiahua Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yue Hou
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), 999077, Shatin, NT, HKSAR, China
| | - Ying Guo
- College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, Guangdong, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), 999077, Shatin, NT, HKSAR, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Functional Photonics, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
12
|
Feng D, Zhou L, White TJ, Cheetham AK, Ma T, Wei F. Nanoengineering Metal-Organic Frameworks and Derivatives for Electrosynthesis of Ammonia. NANO-MICRO LETTERS 2023; 15:203. [PMID: 37615796 PMCID: PMC10449763 DOI: 10.1007/s40820-023-01169-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/10/2023] [Indexed: 08/25/2023]
Abstract
Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications, especially for the green ammonia (NH3) industry. A properly engineered electrocatalyst plays a vital role in the realization of superior catalytic performance. Among various types of promising nanomaterials, metal-organic frameworks (MOFs) are competitive candidates for developing efficient electrocatalytic NH3 synthesis from simple nitrogen-containing molecules or ions, such as N2 and NO3-. In this review, recent advances in the development of electrocatalysts derived from MOFs for the electrosynthesis of NH3 are collected, categorized, and discussed, including their application in the N2 reduction reaction (NRR) and the NO3- reduction reaction (NO3RR). Firstly, the fundamental principles are illustrated, such as plausible mechanisms of NH3 generation from N2 and NO3-, the apparatus of corresponding electrocatalysis, parameters for evaluation of reaction efficiency, and detection methods of yielding NH3. Then, the electrocatalysts for NRR processes are discussed in detail, including pristine MOFs, MOF-hybrids, MOF-derived N-doped porous carbons, single atomic catalysts from pyrolysis of MOFs, and other MOF-related materials. Subsequently, MOF-related NO3RR processes are also listed and discussed. Finally, the existing challenges and prospects for the rational design and fabrication of electrocatalysts from MOFs for electrochemical NH3 synthesis are presented, such as the evolution of investigation methods with artificial intelligence, innovation in synthetic methods of MOF-related catalysts, advancement of characterization techniques, and extended electrocatalytic reactions.
Collapse
Affiliation(s)
- Daming Feng
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Lixue Zhou
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Timothy J White
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Anthony K Cheetham
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Fengxia Wei
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis 08-03, Singapore, 138634, Singapore.
| |
Collapse
|
13
|
Vig A, Doan E, Yang K. First-Principles Investigation of Size Effects on Cohesive Energies of Transition-Metal Nanoclusters. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2356. [PMID: 37630943 PMCID: PMC10458230 DOI: 10.3390/nano13162356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The cohesive energy of transition-metal nanoparticles is crucial to understanding their stability and fundamental properties, which are essential for developing new technologies and applications in fields such as catalysis, electronics, energy storage, and biomedical engineering. In this study, we systematically investigate the size-dependent cohesive energies of all the 3d, 4d, and 5d transition-metal nanoclusters (small nanoparticles) based on a plane-wave-based method within general gradient approximation using first-principles density functional theory calculations. Our results show that the cohesive energies of nanoclusters decrease with decreasing size due to the increased surface-to-volume ratio and quantum confinement effects. A comparison of nanoclusters with different geometries reveals that the cohesive energy decreases as the number of nanocluster layers decreases. Notably, monolayer nanoclusters exhibit the lowest cohesive energies. We also find that the size-dependent cohesive energy trends are different for different transition metals, with some metals exhibiting stronger size effects than others. Our findings provide insights into the fundamental properties of transition-metal nanoclusters and have potential implications for their applications in various fields, such as catalysis, electronics, and biomedical engineering.
Collapse
Affiliation(s)
- Amogh Vig
- Department of Nano and Chemical Engineering, University of California San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA; (A.V.); (E.D.)
- Data Science Institute, Vanderbilt University, 2201 West End Ave., Nashville, TN 37325-0001, USA
| | - Ethan Doan
- Department of Nano and Chemical Engineering, University of California San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA; (A.V.); (E.D.)
| | - Kesong Yang
- Department of Nano and Chemical Engineering, University of California San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA; (A.V.); (E.D.)
| |
Collapse
|
14
|
He X. Fundamental Perspectives on the Electrochemical Water Applications of Metal-Organic Frameworks. NANO-MICRO LETTERS 2023; 15:148. [PMID: 37286907 PMCID: PMC10247659 DOI: 10.1007/s40820-023-01124-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023]
Abstract
HIGHLIGHTS The recent development and implementation of metal-organic frameworks (MOFs) and MOF-based materials in electrochemical water applications are reviewed. The critical factors that affect the performances of MOFs in the electrochemical reactions, sensing, and separations are highlighted. Advanced tools, such as pair distribution function analysis, are playing critical roles in unraveling the functioning mechanisms, including local structures and nanoconfined interactions. Metal-organic frameworks (MOFs), a family of highly porous materials possessing huge surface areas and feasible chemical tunability, are emerging as critical functional materials to solve the growing challenges associated with energy-water systems, such as water scarcity issues. In this contribution, the roles of MOFs are highlighted in electrochemical-based water applications (i.e., reactions, sensing, and separations), where MOF-based functional materials exhibit outstanding performances in detecting/removing pollutants, recovering resources, and harvesting energies from different water sources. Compared with the pristine MOFs, the efficiency and/or selectivity can be further enhanced via rational structural modulation of MOFs (e.g., partial metal substitution) or integration of MOFs with other functional materials (e.g., metal clusters and reduced graphene oxide). Several key factors/properties that affect the performances of MOF-based materials are also reviewed, including electronic structures, nanoconfined effects, stability, conductivity, and atomic structures. The advancement in the fundamental understanding of these key factors is expected to shed light on the functioning mechanisms of MOFs (e.g., charge transfer pathways and guest-host interactions), which will subsequently accelerate the integration of precisely designed MOFs into electrochemical architectures to achieve highly effective water remediation with optimized selectivity and long-term stability.
Collapse
Affiliation(s)
- Xiang He
- Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA.
| |
Collapse
|
15
|
Cedrún-Morales M, Ceballos M, Polo E, Del Pino P, Pelaz B. Nanosized metal-organic frameworks as unique platforms for bioapplications. Chem Commun (Camb) 2023; 59:2869-2887. [PMID: 36757184 PMCID: PMC9990148 DOI: 10.1039/d2cc05851k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 02/10/2023]
Abstract
Metal-organic frameworks (MOFs) are extremely versatile materials, which serve to create platforms with exceptional porosity and specific reactivities. The production of MOFs at the nanoscale (NMOFs) offers the possibility of creating innovative materials for bioapplications as long as they maintain the properties of their larger counterparts. Due to their inherent chemical versatility, synthetic methods to produce them at the nanoscale can be combined with inorganic nanoparticles (NPs) to create nanocomposites (NCs) with one-of-a-kind features. These systems can be remotely controlled and can catalyze abiotic reactions in living cells, which have the potential to stimulate further research on these nanocomposites as tools for advanced therapies.
Collapse
Affiliation(s)
- Manuela Cedrún-Morales
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Manuel Ceballos
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
16
|
One Bicopper Complex with Good Affinity to Nitrate for Highly Selective Electrocatalytic Nitrate Reduction to Ammonia. Catalysts 2022. [DOI: 10.3390/catal12121561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Ammonia (NH3) plays an irreplaceable role in human life as a promising energy carrier and indispensable chemical raw material. Nitrate electroreduction to ammonium (NRA) not only removes nitrate pollutants, but also can be used for efficient NH3 production under ambient conditions. However, achieving high efficiency and selectivity of electrocatalysts is still a great challenge. Herein, a complex Cu2(NO3)4(BMMB)·H2O with a bicopper core is assembled by Cu(NO3)2·3H2O and 1,4-bis{[2-(2’-pyridyl)benzimidazolyl]methyl}benzene (BMMB) for NRA under alkaline conditions. The optimal sample showed excellent nitrate reduction performance with the NO3− conversion rate of 70%, Faradaic efficiency of up to 90%, and NH3 selectivity of more than 95%. The high-catalytic activity is mainly due to the ingeniously designed copper cores with strong affinity for NO3−, which accelerates the transferring rate of adsorbed nitrate on the Cu surface and increases the efficiency of rate-determining step (NO3− → NO2−) in the whole catalytic process. Therefore, the transformation of surface-exposed nitrate can be rapidly catalyzed by the Cu active sites, facilitating the conversion efficiency of nitrate.
Collapse
|