1
|
Hu Z, Zhou X, Liao Y, Liu Z, Lai X, Peng C, Zhao F, Liu H, Zhang Y, Du W, Liang Y, Chai L. Suppressing Oxygen Adsorption on Bulk Arsenic and 2D Arsenic Nanoflake Surfaces: The Role of Sb Doping. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39565894 DOI: 10.1021/acsami.4c13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The susceptibility of bulk and exfoliated nanolayered arsenic to oxidation has been a significant obstacle limiting their widespread application and safe disposal. Here we report a controllable antimony-doped (Sb-doped) method via chemical vapor transport (CVT) with SnI4 as a transport agent to prepare the bulk arsenic. After 96 h of exposure to air, the oxygen content on the surface of Sb-doped arsenic with SnI4 is 67% lower compared to the undoped arsenic with SnI4, and 89% lower than the control group (undoped arsenic without SnI4). Notably, Sb-doped arsenic is found to be easier and better exfoliated into two-dimensional (2D) nanoflakes with an average diameter of approximately 180 nm and a thickness of 4-5 nm. Sb doping reduces the surface oxygen content of exfoliated arsenic nanoflakes by 48% after 48 h of oxidation. Comprehensive experimental investigations combined with first-principles calculations demonstrate that the antioxidation improvements resulting from Sb-doping are due to the decreased adsorption energies of I2 on the (012) and (003) surfaces of Sb-doped arsenic, while the adsorption energies of O2 increased compared to the corresponding surfaces of undoped arsenic. The enhanced long-term stability in both bulk and layered Sb-doped arsenic presents a promising avenue for further advanced applications.
Collapse
Affiliation(s)
- Zhan Hu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiyi Zhou
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhenxing Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xinting Lai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Cong Peng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Hui Liu
- SDIC JinCheng Metallurgical Co., Ltd., Sanmenxia 472500, China
| | - Yexin Zhang
- SDIC JinCheng Metallurgical Co., Ltd., Sanmenxia 472500, China
| | - Wuzhao Du
- SDIC JinCheng Metallurgical Co., Ltd., Sanmenxia 472500, China
| | - Yanjie Liang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
2
|
Salehirozveh M, Dehghani P, Mijakovic I. Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs). J Funct Biomater 2024; 15:340. [PMID: 39590545 PMCID: PMC11595413 DOI: 10.3390/jfb15110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Iron oxide nanoparticles (IONPs) have garnered significant attention in biomedical applications due to their unique magnetic properties, biocompatibility, and versatility. This review comprehensively examines the synthesis methods, surface functionalization techniques, and diverse biomedical applications of IONPs. Various chemical and physical synthesis techniques, including coprecipitation, sol-gel processes, thermal decomposition, hydrothermal synthesis, and sonochemical routes, are discussed in detail, highlighting their advantages and limitations. Surface functionalization strategies, such as ligand exchange, encapsulation, and silanization, are explored to enhance the biocompatibility and functionality of IONPs. Special emphasis is placed on the role of IONPs in biosensing technologies, where their magnetic and optical properties enable significant advancements, including in surface-enhanced Raman scattering (SERS)-based biosensors, fluorescence biosensors, and field-effect transistor (FET) biosensors. The review explores how IONPs enhance sensitivity and selectivity in detecting biomolecules, demonstrating their potential for point-of-care diagnostics. Additionally, biomedical applications such as magnetic resonance imaging (MRI), targeted drug delivery, tissue engineering, and stem cell tracking are discussed. The challenges and future perspectives in the clinical translation of IONPs are also addressed, emphasizing the need for further research to optimize their properties and ensure safety and efficacy in medical applications. This review aims to provide a comprehensive understanding of the current state and future potential of IONPs in both biosensing and broader biomedical fields.
Collapse
Affiliation(s)
- Mostafa Salehirozveh
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
| | - Parisa Dehghani
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Zhao Y, Wang Q, Zhu J, Cai J, Feng X, Song Q, Jiang H, Ren W, He Y, Wang P, Feng D, Yu J, Liu Y, Wu Q, Siriporn J, Cai Z. Identification of KW-2449 as a dual inhibitor of ferroptosis and necroptosis reveals that autophagy is a targetable pathway for necroptosis inhibitors to prevent ferroptosis. Cell Death Dis 2024; 15:764. [PMID: 39433736 PMCID: PMC11493980 DOI: 10.1038/s41419-024-07157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
Necroptosis and ferroptosis are two distinct forms of necrotic-like cell death in terms of their morphological features and regulatory mechanisms. These two types of cell death can coexist in disease and contribute to pathological processes. Inhibition of both necroptosis and ferroptosis has been shown to enhance therapeutic effects in treating complex necrosis-related diseases. However, targeting both necroptosis and ferroptosis by a single compound can be challenging, as these two forms of cell death involve distinct molecular pathways. In this study, we discovered that KW-2449, a previously described necroptosis inhibitor, also prevented ferroptosis both in vitro and in vivo. Mechanistically, KW-2449 inhibited ferroptosis by targeting the autophagy pathway. We further identified that KW-2449 functioned as a ULK1 (Unc-51-like kinase 1) inhibitor to block ULK1 kinase activity in autophagy. Remarkably, we found that Necrostatin-1, a classic necroptosis inhibitor that has been shown to prevent ferroptosis, also targets the autophagy pathway to suppress ferroptosis. This study provides the first understanding of how necroptosis inhibitors can prevent ferroptosis and suggests that autophagy is a targetable pathway for necroptosis inhibitors to prevent ferroptosis. Therefore, the identification and design of pharmaceutical molecules that target the autophagy pathway from necroptosis inhibitors is a promising strategy to develop dual inhibitors of necroptosis and ferroptosis in clinical application.
Collapse
Affiliation(s)
- Yaxing Zhao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qingsong Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jing Zhu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Jin Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Xiaona Feng
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qianqian Song
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Hui Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Wenqing Ren
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan He
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Du Feng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qihui Wu
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jitkaew Siriporn
- Center of Excellence for Cancer and Inflammation, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Zhenyu Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, China.
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Wang S, Su Y, Li J, Wang T, Pan H, Pan W. Membrane-camouflaged biomimetic nanoplatform with arsenic complex for synergistic reinforcement of liver cancer therapy. Nanomedicine (Lond) 2024; 19:2187-2210. [PMID: 39229815 PMCID: PMC11485747 DOI: 10.1080/17435889.2024.2393076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Aim: Arsenic has excellent anti-advanced liver cancer effects through a variety of pathways, but its severe systemic toxicity forces the need for a safe and effective delivery strategy.Methods: Based on the chelating metal ion properties of polydopamine (PDA), arsenic was immobilized on an organic carrier, and a M1-like macrophage cell membrane (MM)-camouflaged manganese-arsenic complex mesoporous polydopamine (MnAsOx@MP@M) nanoplatform was successfully constructed. MnAsOx@MP@M was evaluated at the cellular level for tumor inhibition and tumor localization, and in vivo for its anti-liver cancer effect in a Hepa1-6 tumor-bearing mouse model.Results: The nanoplatform targeted the tumor site through the natural homing property of MM, completely degraded and released drugs to kill tumor cells in an acidic environment, while playing an immunomodulatory role in promoting tumor-associated macrophages (TAMs) repolarization.Conclusion: MnAsOx@MP@M has synergistically enhanced the targeted therapeutics against liver cancer via nanotechnology and immunotherapy, and it is expected to become a safe and multifunctional treatment platform in clinical oncology.
Collapse
Affiliation(s)
- Shu Wang
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yupei Su
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiayang Li
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tianyi Wang
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hao Pan
- Liaoning University, Shenyang, 110036, China
- Key Laboratory of Key Technology Research & Evaluation of Chemical Drug Quality Control, Shenyang, Liaoning, China
| | - Weisan Pan
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
5
|
Yang S, Raza F, Li K, Qiu Y, Su J, Qiu M. Maximizing arsenic trioxide's anticancer potential: Targeted nanocarriers for solid tumor therapy. Colloids Surf B Biointerfaces 2024; 241:114014. [PMID: 38850742 DOI: 10.1016/j.colsurfb.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Arsenic trioxide (ATO) has gained significant attention due to its promising therapeutic effects in treating different diseases, particularly acute promyelocytic leukemia (APL). Its potent anticancer mechanisms have been extensively studied. Despite the great efficacy ATO shows in fighting cancers, drawbacks in the clinical use are obvious, especially for solid tumors, which include rapid renal clearance and short half-life, severe adverse effects, and high toxicity to normal cells. Recently, the emergence of nanomedicine offers a potential solution to these limitations. The enhanced biocompatibility, excellent targeting capability, and desirable effectiveness have attracted much interest. Therefore, we summarized various nanocarriers for targeted delivery of ATO to solid tumors. We also provided detailed anticancer mechanisms of ATO in treating cancers, its clinical trials and shortcomings as well as the combination therapy of ATO and other chemotherapeutic agents for reduced drug resistance and synergistic effects. Finally, the future study direction and prospects were also presented.
Collapse
Affiliation(s)
- Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kunwei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujiao Qiu
- The Wharton School and School of Nursing, University of Pennsylvania, Philadelphia 19104, USA
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Komorowicz I, Hanć A. Can arsenic do anything good? Arsenic nanodrugs in the fight against cancer - last decade review. Talanta 2024; 276:126240. [PMID: 38754186 DOI: 10.1016/j.talanta.2024.126240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Arsenic has been an element of great interest among scientists for many years as it is a widespread metalloid in our ecosystem. Arsenic is mostly recognized with negative connotations due to its toxicity. Surely, most of us know that a long time ago, arsenic trioxide was used in medicine to treat, mainly, skin diseases. However, not everyone knows about its very wide and promising use in the treatment of cancer. Initially, in the seventies, it was used to treat leukemia, but new technological possibilities and the development of nanotechnology have made it possible to use arsenic trioxide for the treatment of solid tumours. The most toxic arsenic compound - arsenic trioxide - as the basis of anticancer drugs in which they function as a component of nanoparticles is used in the fight against various types of cancer. This review aims to present the current solutions in various cancer treatment using arsenic compounds with different binding motifs and methods of preparation to create targeted nanoparticles, nanodiamonds, nanohybrids, nanodrugs, or nanovehicles.
Collapse
Affiliation(s)
- Izabela Komorowicz
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 8 Uniwersytetu Poznańskiego Street, 61-614, Poznań, Poland.
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 8 Uniwersytetu Poznańskiego Street, 61-614, Poznań, Poland
| |
Collapse
|
7
|
Sui Y, Geng X, Wang Z, Zhang J, Yang Y, Meng Z. Targeting the regulation of iron homeostasis as a potential therapeutic strategy for nonalcoholic fatty liver disease. Metabolism 2024; 157:155953. [PMID: 38885833 DOI: 10.1016/j.metabol.2024.155953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/09/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
With aging and the increasing incidence of obesity, nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. NAFLD mainly includes simple hepatic steatosis, nonalcoholic steatohepatitis (NASH), liver fibrosis and hepatocellular carcinoma (HCC). An imbalance in hepatic iron homeostasis is usually associated with the progression of NAFLD and induces iron overload, reactive oxygen species (ROS) production, and lipid peroxide accumulation, which leads to ferroptosis. Ferroptosis is a unique type of programmed cell death (PCD) that is characterized by iron dependence, ROS production and lipid peroxidation. The ferroptosis inhibition systems involved in NAFLD include the solute carrier family 7 member 11 (SLC7A11)/glutathione (GSH)/glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1)/coenzyme Q10 (CoQ10)/nicotinamide adenine dinucleotide phosphate (NADPH) regulatory axes. The main promotion system involved is the acyl-CoA synthetase long-chain family (ACSL4)/arachidonic lipoxygenase 15 (ALOX15) axis. In recent years, an increasing number of studies have focused on the multiple roles of iron homeostasis imbalance and ferroptosis in the progression of NAFLD. This review highlights the latest studies about iron homeostasis imbalance- and ferroptosis-associated NAFLD, mainly including the physiology and pathophysiology of hepatic iron metabolism, hepatic iron homeostasis imbalance during the development of NAFLD, and key regulatory molecules and roles of hepatic ferroptosis in NAFLD. This review aims to provide innovative therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Yutong Sui
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Xue Geng
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Ziwei Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Jing Zhang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Yanqun Yang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China.
| | - Ziyu Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
8
|
Luo Y, Bai XY, Zhang L, Hu QQ, Zhang N, Cheng JZ, Hou MZ, Liu XL. Ferroptosis in Cancer Therapy: Mechanisms, Small Molecule Inducers, and Novel Approaches. Drug Des Devel Ther 2024; 18:2485-2529. [PMID: 38919962 PMCID: PMC11198730 DOI: 10.2147/dddt.s472178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Ferroptosis, a unique form of programmed cell death, is initiated by an excess of iron accumulation and lipid peroxidation-induced damage. There is a growing body of evidence indicating that ferroptosis plays a critical role in the advancement of tumors. The increased metabolic activity and higher iron levels in tumor cells make them particularly vulnerable to ferroptosis. As a result, the targeted induction of ferroptosis is becoming an increasingly promising approach for cancer treatment. This review offers an overview of the regulatory mechanisms of ferroptosis, delves into the mechanism of action of traditional small molecule ferroptosis inducers and their effects on various tumors. In addition, the latest progress in inducing ferroptosis using new means such as proteolysis-targeting chimeras (PROTACs), photodynamic therapy (PDT), sonodynamic therapy (SDT) and nanomaterials is summarized. Finally, this review discusses the challenges and opportunities in the development of ferroptosis-inducing agents, focusing on discovering new targets, improving selectivity, and reducing toxic and side effects.
Collapse
Affiliation(s)
- YiLin Luo
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Xin Yue Bai
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Lei Zhang
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Qian Qian Hu
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Ning Zhang
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Jun Zhi Cheng
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Ming Zheng Hou
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Xiao Long Liu
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| |
Collapse
|
9
|
Pandey P, Elsori D, Kumar R, Lakhanpal S, Rautela I, Alqahtani TM, Ahmad F, Iqbal D, Khan F. Ferroptosis targeting natural compounds as a promising approach for developing potent liver cancer agents. Front Pharmacol 2024; 15:1399677. [PMID: 38738178 PMCID: PMC11082342 DOI: 10.3389/fphar.2024.1399677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/04/2024] [Indexed: 05/14/2024] Open
Abstract
Liver cancer is the second leading cause of cancer-related death worldwide. However, treatment options, including surgical resection, transplantation, and molecular drug therapies, are of limited effectiveness. Recent studies have demonstrated that suppressing ferroptosis might be a pivotal signal for liver cancer initiation, thus providing a new way to combat liver cancer. Ferroptosis is a distinct form of controlled cell death that differs from conventional cell death routes like apoptosis, necrosis, and pyroptosis. It results from intracellular iron overload, which raises iron-dependent reactive oxygen species. This, in turn, leads to the accumulation of lipid peroxides that further result in oxidative damage to cell membranes, disrupt normal functioning, and ultimately speed up the ferroptosis phenomenon. Ferroptosis regulation is intricately linked to cellular physiological processes, encompassing iron metabolism, lipid metabolism, and the equilibrium between oxygen-free radical reactions and lipid peroxidation. This review intends to summarize the natural compounds targeting ferroptosis in liver cancer to offer new therapeutic ideas for liver cancer. Furthermore, it serves as the foundation for identifying and applying chemical medicines and natural chemicals that target ferroptosis to treat liver cancer efficiently.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Rahul Kumar
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Indra Rautela
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Tariq Mohammed Alqahtani
- Department of Radiology and Medical Imaging, College of Applied Medical Sciences, Majmaah university, Al Majma’ah, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Riyadh, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Zhang S, Wu X, Liao X, Zhang S. Nanodrug Hijacking Blood Transferrin for Ferroptosis-Mediated Cancer Treatment. J Am Chem Soc 2024; 146:8567-8575. [PMID: 38489761 DOI: 10.1021/jacs.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Ferroptosis as a promising method of cancer treatment heavily relies on the intracellular iron ion level. Herein, a new iron-supplement nanodrug was developed by conjugating transferrin-homing peptide T10 on the surface of cross-linked lipoic acid vesicles (T10@cLAV), which could hijack blood transferrin (Tf) and specifically deliver it to tumor cells to elevate the Fe2+ level. Meanwhile, the intracellular degradation product of cLAV, dihydrolipoic acid, could regenerate Fe2+ to further boost the ferroptosis. The results disclosed that T10@cLAV achieved tumor inhibition comparable to that of cisplatin at a dose as low as 5 mg/kg in the HeLa tumor-bearing nude mice model and caused no toxicity at the dose up to 300 mg/kg. This tactful iron-supplement strategy of hijacking blood Tf is superior to the current strategies: one is the induction of intracellular ferritin degradation, which is limited by the low content of ferritin, and the other is the delivery of iron-based materials, which easily causes adverse effects.
Collapse
Affiliation(s)
- Shuyue Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China
| | - Xiao Wu
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China
| | - Xiaoming Liao
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China
| |
Collapse
|
11
|
Yan M, Wang H, Wei R, Li W. Arsenic trioxide: applications, mechanisms of action, toxicity and rescue strategies to date. Arch Pharm Res 2024; 47:249-271. [PMID: 38147202 DOI: 10.1007/s12272-023-01481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023]
Abstract
Arsenical medicine has obtained its status in traditional Chinese medicine for more than 2,000 years. In the 1970s, arsenic trioxide was identified to have high efficacy and potency for the treatment of acute promyelocytic leukemia, which promoted many studies on the therapeutic effects of arsenic trioxide. Currently, arsenic trioxide is widely used to treat acute promyelocytic leukemia and various solid tumors through various mechanisms of action in clinical practice; however, it is accompanied by a series of adverse reactions, especially cardiac toxicity. This review presents a comprehensive overview of arsenic trioxide from preclinical and clinical efficacy, potential mechanisms of action, toxicities, and rescue strategies for toxicities to provide guidance or assistance for the clinical application of arsenic trioxide.
Collapse
Affiliation(s)
- Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Hao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Rui Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Pharmacy Department, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenwen Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
12
|
Zhang J, Yu H, Li G. Engineered cell membrane-coated nanoparticles based cancer therapy: A robust weapon against the lethal and challenging hepatocellular carcinoma. Biointerphases 2024; 19:020801. [PMID: 38607255 DOI: 10.1116/6.0003204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/05/2024] [Indexed: 04/13/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has become an important public health problem, and there are still challenges to overcome in clinical treatment. The nanodrug delivery system (NDDS) has developed tremendously in recent years, and many researchers have explored NDDS for the treatment of HCC. Engineered cell membrane-coated nanoparticles (ECNPs) have emerged, combining the unique functions of cell membranes with the engineering versatility of synthetic nanoparticles (NPs) to effectively deliver therapeutic drugs. It is designed to have the capabilities: specific active targeting, immune evasion, prolonging the circulation blood time, controlled drug release delivery, and reducing drugs systematic toxicity. Thus, ECNPs are a promising bionic tool in the treatment of HCC and have operability to achieve combination and integrated therapy. This review focuses on the mechanism and strategy of ECNPs for the treatment of HCC and summarizes its research progress in the treatment of HCC in recent years.
Collapse
Affiliation(s)
- Jiachen Zhang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Hongjuan Yu
- Shanghai Pudong New Area Caolu Community Health Service Center, Shanghai 201209, China
| | - Gang Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
13
|
Lu Y, Fan L, Wang J, Hu M, Wei B, Shi P, Li J, Feng J, Zheng Y. Cancer Cell Membrane-Based Materials for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306540. [PMID: 37814370 DOI: 10.1002/smll.202306540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Indexed: 10/11/2023]
Abstract
The nanodelivery system provides a novel direction for disease diagnosis and treatment; however, its delivery effectiveness is restricted by the short biological half-life and inadequate tumor targeting. The immune evasion properties and homologous targeting capabilities of natural cell membranes, particularly those of cancer cell membranes (CCM), have gained significant interest. The integration of CCM and nanoparticles has resulted in the emergence of CCM-based nanoplatforms (CCM-NPs), which have gained significant attention due to their unique properties. CCM-NPs not only prolong the blood circulation time of core nanoparticles, but also direct them for homologous tumor targeting. Herein, the history and development of CCM-NPs as well as how these platforms have been used for biomedical applications are discussed. The application of CCM-NPs for cancer therapy will be described in detail. Translational efforts are currently under way and further research to address key areas of need will ultimately be required to facilitate the successful clinical adoption of CCM-NPs.
Collapse
Affiliation(s)
- Yongping Lu
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
- Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Linming Fan
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jun Wang
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Mingxiang Hu
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Baogang Wei
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Ping Shi
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Jinyan Feng
- Science and Technologv Innovation Center, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Yu Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
14
|
Zhang Y, Song Q, Zhang Y, Xiao J, Deng X, Xing X, Hu H, Zhang Y. Iron-Based Nanovehicle Delivering Fin56 for Hyperthermia-Boosted Ferroptosis Therapy Against Osteosarcoma. Int J Nanomedicine 2024; 19:91-107. [PMID: 38192634 PMCID: PMC10773462 DOI: 10.2147/ijn.s441112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Background Although systemic chemotherapy is a standard approach for osteosarcoma (OS) treatment, its efficacy is limited by the inherent or acquired resistance to apoptosis of tumor cells. Ferroptosis is considered as an effective strategy capable of stimulating alternative pathways of cancer cell demise. The purpose of this study is to develop a novel strategy boosting ferroptotic cascade for synergistic cancer therapy. Methods and Results A novel nanovehicle composed of arginine-glycine-aspartate (RGD) modified mesoporous silica-coated iron oxide loading Fin56 was rationally prepared (FSR-Fin56). With the RGD-mediated targeting affinity, FSR-Fin56 could achieve selective accumulation and accurate delivery of cargos into cancer cells. Upon exposure to NIR light, the nanovehicle could generate localized hyperthermia and disintegrate to liberate the therapeutic payload. The released Fin56 triggered the degradation of GPX4, while Fe3+ depleted the intracellular GSH pool, producing Fe2+ as a Fenton agent. The local rise in temperature, in conjunction with Fe2+-mediated Fenton reaction, led to a rapid and significant accumulation of ROS, culminating in LPOs and ferroptotic death. The outstanding therapeutic efficacy and safety of the nanovehicle were validated both in vitro and in vivo. Conclusion The Fin56-loaded FSR nanovehicle could effectively disturb the redox balance in cancer cells. Coupled with NIR laser irradiation, the cooperative CDT and PTT achieved a boosted ferroptosis-inducing therapy. Taken together, this study offers a compelling strategy for cancer treatment, particularly for ferroptosis-sensitive tumors like osteosarcoma.
Collapse
Affiliation(s)
- Yiran Zhang
- School of Medicine, Nankai University, Tianjin, 300071, People’s Republic of China
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- HeBei Ex&Invivo Biotechnology Co. Ltd, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Qingcheng Song
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Yueyao Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Jiheng Xiao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Xiangtian Deng
- Orthopaedics Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Xin Xing
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Hongzhi Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Yingze Zhang
- School of Medicine, Nankai University, Tianjin, 300071, People’s Republic of China
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
15
|
Zhang Z, Xie B, Lu X, Xiong L, Li X, Zhang Y, Li C, Wang C. Intracellular self-aggregation of biomimetic Fe 3O 4 nanoparticles for enhanced ferroptosis-inducing therapy of breast cancer. NANOSCALE 2024; 16:903-912. [PMID: 38108145 DOI: 10.1039/d3nr04305c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Nanomedicines based on ferroptosis may be effective strategies for cancer therapy due to their unique inducing mechanism. However, the challenges, including non-target distribution, poor accumulation and retention of nanomedicine, have a profound impact on the effectiveness of drug delivery. Here, we developed cancer cell membrane (CCM)-coated Fe3O4 nanoparticles (NPs) modified with supramolecular precursors and loaded with sulfasalazine (SAS) for breast cancer therapy. Benefiting from the coating of the CCM, these NPs can be specifically recognized and internalized by tumor cells rapidly after being administered and form aggregates via the host-guest interaction between adamantane (ADA) and cyclodextrins (CD), which in turn effectively reduces the exocytosis of tumor cells and prolongs the retention time. In vitro and in vivo studies showed that Fe3O4 NPs possessed effective cellular uptake and precise specific accumulation in tumor cells and tissues through CCM-targeted supramolecular in situ aggregation, demonstrating enhanced ferroptosis-inducing therapy of breast cancer. Overall, this work provided a supramolecular biomimetic platform to achieve targeted delivery of Fe3O4 NPs with high efficiency and precise self-assembly for improved cancer therapy.
Collapse
Affiliation(s)
- Zhendong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China.
| | - Beibei Xie
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China.
| | - Xiaojie Lu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China.
| | - Lishan Xiong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China.
| | - Xinyuan Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China.
| | - Yan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China.
| | - Chunlai Li
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China.
| | - Chenhui Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, P. R. China.
| |
Collapse
|
16
|
Zhang X, Li X, Xia R, Zhang HS. Ferroptosis resistance in cancer: recent advances and future perspectives. Biochem Pharmacol 2024; 219:115933. [PMID: 37995980 DOI: 10.1016/j.bcp.2023.115933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Ferroptosis is an iron-dependent, non-apoptotic form of regulated cell death and has been implicated in the occurrence and development of various diseases, including heart disease, nervous system diseases and cancer. Ferroptosis induction recently emerged as an attractive strategy for cancer therapy. Ferroptosis has become a potential target for intervention in these diseases or injuries in relevant preclinical models. This review summarizes recent progress on the mechanisms of ferroptosis resistance in cancer, highlights redox status and metabolism's role in it. Combination therapy for ferroptosis has great potential in cancer treatment, especially malignant tumors that are resistant to conventional therapies. This review will lead us to have a comprehensive understanding of the future exploration of ferroptosis and cancer therapy. A deeper understanding of the relationship between ferroptosis resistance and metabolism reprogramming may provide new strategies for tumor treatment and drug development based on ferroptosis.
Collapse
Affiliation(s)
- Xing Zhang
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Xiang Li
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Ran Xia
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hong-Sheng Zhang
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China.
| |
Collapse
|
17
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y, Dong J. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother 2024; 170:116021. [PMID: 38128187 DOI: 10.1016/j.biopha.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a heavy burden on human health with high morbidity and mortality rates. Systematic therapy is crucial for advanced and mid-term HCC, but faces a significant challenge from therapeutic resistance, weakening drug effectiveness. Metabolic reprogramming has gained attention as a key contributor to therapeutic resistance. Cells change their metabolism to meet energy demands, adapt to growth needs, or resist environmental pressures. Understanding key enzyme expression patterns and metabolic pathway interactions is vital to comprehend HCC occurrence, development, and treatment resistance. Exploring metabolic enzyme reprogramming and pathways is essential to identify breakthrough points for HCC treatment. Targeting metabolic enzymes with inhibitors is key to addressing these points. Inhibitors, combined with systemic therapeutic drugs, can alleviate resistance, prolong overall survival for advanced HCC, and offer mid-term HCC patients a chance for radical resection. Advances in metabolic research methods, from genomics to metabolomics and cells to organoids, help build the HCC metabolic reprogramming network. Recent progress in biomaterials and nanotechnology impacts drug targeting and effectiveness, providing new solutions for systemic therapeutic drug resistance. This review focuses on metabolic enzyme changes, pathway interactions, enzyme inhibitors, research methods, and drug delivery targeting metabolic reprogramming, offering valuable references for metabolic approaches to HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Ziye Chen
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Jingjing Zheng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
18
|
Jiang Y, Li J, Liu Y, Shen X, Li J, Zhi F, Xu J, Li X, Shao T, Xu Y. Open a new epoch of arsenic trioxide investigation: ATOdb. Comput Biol Med 2023; 165:107465. [PMID: 37699323 DOI: 10.1016/j.compbiomed.2023.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
Arsenic trioxide (ATO) is a great discovery in the treatment of acute promyelocytic leukemia (APL), which has been used in an increasing number of malignant diseases. Systematic integrative analysis will help to precisely understand the mechanism of ATO and find new combined drugs. Therefore, we developed a one-stop comprehensive database of ATO named ATOdb by manually compiling a wealth of experimentally supported ATO-related data from 3479 articles, and integrated analysis tools. The current version of ATOdb contains 8373 associations among 2300 ATO targets, 80 conditions and 262 combined drugs. Each entry in ATOdb contains detailed information on ATO targets, therapeutic/side effects, systems, cell names, cell types, regulations, detection methods, brief descriptions, references, etc. Furthermore, ATOdb also provides data visualization and analysis results such as the drug similarities, protein-protein interactions, and miRNA-mRNA relationships. An easy-to-use web interface was deployed in ATOdb for users to easily browse, search and download the data. In conclusion, ATOdb will serve as a valuable resource for in-depth study of the mechanism of ATO, discovery of new drug combination strategies, promotion of rational drug use and individualized treatments. ATOdb is freely available at http://bio-bigdata.hrbmu.edu.cn/ATOdb/index.jsp.
Collapse
Affiliation(s)
- Yanan Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Jianing Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yujie Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiuyun Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Junyi Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Fengnan Zhi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Tingting Shao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yingqi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; Hohhot Mongolian Medicine of Traditional Chinese Medicine Hospital, Hohhot, 010110, China.
| |
Collapse
|
19
|
Nikolaev B, Yakovleva L, Fedorov V, Yudintceva N, Ryzhov V, Marchenko Y, Ischenko A, Zhakhov A, Dobrodumov A, Combs SE, Gao H, Shevtsov M. Magnetic Relaxation Switching Assay Using IFNα-2b-Conjugated Superparamagnetic Nanoparticles for Anti-Interferon Antibody Detection. BIOSENSORS 2023; 13:624. [PMID: 37366989 DOI: 10.3390/bios13060624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Type I interferons, particularly IFNα-2b, play essential roles in eliciting adaptive and innate immune responses, being implicated in the pathogenesis of various diseases, including cancer, and autoimmune and infectious diseases. Therefore, the development of a highly sensitive platform for analysis of either IFNα-2b or anti-IFNα-2b antibodies is of high importance to improve the diagnosis of various pathologies associated with the IFNα-2b disbalance. For evaluation of the anti-IFNα-2b antibody level, we have synthesized superparamagnetic iron oxide nanoparticles (SPIONs) coupled with the recombinant human IFNα-2b protein (SPIONs@IFNα-2b). Employing a magnetic relaxation switching assay (MRSw)-based nanosensor, we detected picomolar concentrations (0.36 pg/mL) of anti-INFα-2b antibodies. The high sensitivity of the real-time antibodies' detection was ensured by the specificity of immune responses and the maintenance of resonance conditions for water spins by choosing a high-frequency filling of short radio-frequency pulses of the generator. The formation of a complex of the SPIONs@IFNα-2b nanoparticles with the anti-INFα-2b antibodies led to a cascade process of the formation of nanoparticle clusters, which was further enhanced by exposure to a strong (7.1 T) homogenous magnetic field. Obtained magnetic conjugates exhibited high negative MR contrast-enhancing properties (as shown by NMR studies) that were also preserved when particles were administered in vivo. Thus, we observed a 1.2-fold decrease of the T2 relaxation time in the liver following administration of magnetic conjugates as compared to the control. In conclusion, the developed MRSw assay based on SPIONs@IFNα-2b nanoparticles represents an alternative immunological probe for the estimation of anti-IFNα-2b antibodies that could be further employed in clinical studies.
Collapse
Affiliation(s)
- Boris Nikolaev
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
| | - Ludmila Yakovleva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia
- Department of Inorganic Chemistry and Biophysics, Saint-Petersburg State University of Veterinary Medicine, Chernigovskaya Str. 5, 196084 St. Petersburg, Russia
| | - Natalia Yudintceva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia
| | - Vyacheslav Ryzhov
- Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
| | - Yaroslav Marchenko
- Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
| | - Alexander Ischenko
- Laboratory of Hybridoma Technologies, Saint-Petersburg Pasteur Institute, Mira Str. 14, 197101 St. Petersburg, Russia
| | - Alexander Zhakhov
- Laboratory of Hybridoma Technologies, Saint-Petersburg Pasteur Institute, Mira Str. 14, 197101 St. Petersburg, Russia
| | - Anatoliy Dobrodumov
- Department of Nuclear Magnetic Resonance, Institute of Macromolecular Compounds of the Russian Academy of Sciences (RAS), Bolshoi pr. 31, 199004 St. Petersburg, Russia
| | - Stephanie E Combs
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
- Laboratory of Biomedical Cell Technologies, Far Eastern Federal University, 690091 Vladivostok, Russia
| |
Collapse
|