1
|
Lan X, Du T, Zhuo J, Wang T, Shu R, Li Y, Zhang W, Ji Y, Wang Y, Yue X, Wang J. Advances of biomacromolecule-based antibacterial hydrogels and their performance evaluation for wound healing: A review. Int J Biol Macromol 2024; 279:135577. [PMID: 39270907 DOI: 10.1016/j.ijbiomac.2024.135577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Biomacromolecule hydrogels possess excellent mechanical properties and biocompatibility, but their inability to combat bacteria restricts their application in the biomedical field. With the increasing requirements and demands for hydrogel dressings, wound dressings with antibacterial properties of biomacromolecule hydrogels reinforced by adding antibacterial agents have attracted much attention, and related reviews are emerging. In this paper, the advances of biomacromolecule antibacterial hydrogels (including chitosan, sodium alginate, Hyaluronic acid, cellulose and gelatin) were first overviewed, and the antibacterial agents incorporated into hydrogels were classified (including metals and their derivatives, carbon-based materials, and native compounds). A series of performance evaluations of antibacterial hydrogels in the process of promoting wound healing were then reviewed, including basic properties (mechanical, rheological, injectable and self-healing, etc.), in vitro experiments (hemostasis, antibacterial, anti-inflammatory, anti-oxidation, biocompatibility) and in vivo experiments (in vivo model, histomorphology analysis, cytokines). Finally, the future development of biomacromolecule-based antibacterial hydrogels for wound healing is prospected. This work can provide a useful reference for researchers to prepare practical new wound hydrogel dressings.
Collapse
Affiliation(s)
- Xi Lan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Tianyu Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Shu Y, Zhao P, Li X, Shi X, Fu Q. Counter-intuitive discovery in the formulation of poorly water-soluble drugs: Amorphous small-molecule gels. Med Res Rev 2024; 44:2624-2639. [PMID: 38807483 DOI: 10.1002/med.22060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Amorphous strategies have been extensively used in improving the dissolution of insoluble drugs for decades due to their high free energy. However, the formation of amorphous small-molecule gels (ASMGs) presents a counter-intuitive discovery that significantly limits their practical application. Recently, ASMGs have garnered attention because of their noncovalent structures, excellent biodegradability, and significant potential in various drug delivery systems in the pharmaceutical field. Hence, a comprehensive review is necessary to contribute to a better understanding of recent advances in ASMGs. This review aimed to introduce the main formation mechanisms, summarize possible influencing factors, generalize unique properties, outline elimination strategies, and discuss clinical application potential with preclinical cases of ASMGs. Moreover, few ASMGs are advanced to clinical stages. Intensive clinical research is needed for further development. We hope that this review can provide more efficient and rational guidance for exploring further clinical applications of ASMGs.
Collapse
Affiliation(s)
- Yecheng Shu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Shenyang, China
| |
Collapse
|
3
|
Zhao L, Dou D, Zhang D, Deng X, Ding N, Ma Y, Ji X, Zhang S, Li C. ROS/pH dual-responsive quercetin-loaded guanosine borate supramolecular hydrogel enema in dextran sulfate sodium-induced colitis in mice. J Mater Chem B 2024; 12:10861-10876. [PMID: 39359122 DOI: 10.1039/d4tb01659a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that predominantly impacts the colon, typically starting in the rectum. A significant characteristic of UC is its propensity to affect the distal colon, which is particularly beneficial for targeted treatments such as enemas. This localized approach ensures that the medication is delivered directly to the affected areas, resulting in minimal systemic absorption. In this research, we have formulated a novel stimuli-responsive quercetin-loaded guanosine borate supramolecular hydrogel (named GBQ hydrogel), designed to prolong the residence time of the drug and protect the ulcerated intestinal tissues. The GBQ hydrogel has exhibited excellent injectability, self-healing capabilities, and biocompatibility, rendering it an ideal candidate for enema administration. In vitro studies have highlighted its ROS/pH dual-responsive release profile, which mimics the microenvironment of intestinal inflammation. Furthermore, we assessed the efficacy of the GBQ hydrogel on dextran sulfate sodium (DSS)-induced colitis, a common animal model for UC. Our findings indicate that the GBQ hydrogel significantly reduces disease activity, mitigates oxidative stress, restores the intestinal mucosal barrier, and prevents colonic cell apoptosis. Collectively, this study underscores the therapeutic potential of the GBQ hydrogel in managing inflammatory bowel conditions and paves the way for a novel hydrogel enema-based treatment strategy for UC.
Collapse
Affiliation(s)
- Luqing Zhao
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23, Back Street, Art Museum, Dongcheng District, Beijing 100010, China.
| | - Dan Dou
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23, Back Street, Art Museum, Dongcheng District, Beijing 100010, China.
| | - Di Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 Beisanhuan Road East, Chaoyang District, Beijing 100029, China.
| | - Xin Deng
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23, Back Street, Art Museum, Dongcheng District, Beijing 100010, China.
| | - Ning Ding
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23, Back Street, Art Museum, Dongcheng District, Beijing 100010, China.
| | - Yun Ma
- Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xingyu Ji
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23, Back Street, Art Museum, Dongcheng District, Beijing 100010, China.
| | - Shengsheng Zhang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23, Back Street, Art Museum, Dongcheng District, Beijing 100010, China.
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 Beisanhuan Road East, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
4
|
Zeng A, Wang B, Yiasmin MN, Yang R, Tong Y, Zhao W. Next-generation photodynamic antimicrobial materials made by direct synthesis of functional bacterial cellulose. Int J Biol Macromol 2024; 282:136897. [PMID: 39461645 DOI: 10.1016/j.ijbiomac.2024.136897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Bacterial cellulose (BC) regularly uses chemical or physical modifications to produce antimicrobial wound dressings. However, there is a risk of loss of functional components during application. Moreover, a significant hurdle lies in successfully integrating durable and highly effective bactericidal entities with BC. Herein, we successfully synthesized a photodynamic antibacterial cellulose through direct in situ microbial fermentation, incorporating the photosensitizer protoporphyrin IX-modified glucosamine (PPIX-GlcN) into cellulose to form PIXX-BC biopolymers. Excitingly, the PPIX-BC membrane exhibited robust and uniform red fluorescence, which is crucial for monitoring the bacterial fermentation process. Our results demonstrated that the biocompatibility PPIX-BC membrane possessed potent light-triggered photodynamic bactericidal activity, effectively suppressing the growth of E. coli and S. aureus while also promoting skin wounds repair. Consequently, this research validated the possibility of leveraging microorganisms to bio-functionalize BC, conferring it with photocatalytic antibacterial properties. Furthermore, successfully modification of the microorganisms' glucose carbon source offers valuable insights into biosynthesis of other living materials through microbial metabolism.
Collapse
Affiliation(s)
- Aoqiong Zeng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; Department of Food Science, Shanghai Business School, Shanghai 200235, PR China
| | - Biebei Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Mst Nushrat Yiasmin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
5
|
Zhang Q, Feng Y, Zhao J, Sun S, Zheng T, Wang J, Chen H, Ye H, Lv S, Zhang Y, Wang S, Li Y, Dong Z. Caffeic acid-mediated photodynamic multifunctional hyaluronic acid-gallic acid hydrogels with instant and enduring bactericidal potency accelerate bacterial infected wound healing. Int J Biol Macromol 2024:136877. [PMID: 39461641 DOI: 10.1016/j.ijbiomac.2024.136877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
The emergence of drug-resistant bacteria poses significant challenges in wound treatment. Antimicrobial photodynamic therapy has emerged as an effective approach to eliminating bacteria by inducing oxidative stress without causing drug resistance. Here, we developed a natural hyaluronic acid (HA)-gallic acid (GA) conjugation-based hydrogel combined with herbal photosensitizer-caffeic acid (CA), which exhibits self-healing ability, shape adaptability, biodegradability, and robust tissue adhesion. Under exposure to 400 nm light, caffeic acid acts as a photosensitizer, generating reactive oxygen species and oxidative damage to bacterial cell membranes. Furthermore, the presence of GA and CA displayed a continuous inhibitory effect on bacterial growth, along with antioxidant properties that promote wound healing even after the cessation of light exposure. The antibacterial mechanism of the HA-GA/CA hydrogel against MRSA, S. aureus, and E. coli was investigated through various assays measuring ATP levels, Zeta potential, hydroxyl radicals (·OH) generated by light irradiation, and biofilm clearance rate. Additionally, hydrogel's application in treating MRSA-infected wounds in mice under light irradiation demonstrated rapid wound-healing effects and biocompatibility. Overall, HA-GA/CA hydrogel provides a sustainable, antibiotic-free alternative for treating MRSA-infected wounds.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, PR China; College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Yifan Feng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, PR China
| | - Jixiang Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, PR China
| | - Shuhui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, PR China
| | - Tingting Zheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, PR China
| | - Jinrui Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, PR China
| | - Huan Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, PR China
| | - Hanyi Ye
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, PR China
| | - Shun Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, PR China
| | - Yinghua Zhang
- Jilin Provincial Academy of Chinese Medicine, Changchun 130012, PR China
| | - Siming Wang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Ying Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, PR China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, PR China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, PR China.
| | - Zhengqi Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, PR China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, PR China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, PR China.
| |
Collapse
|
6
|
Pu C, Wang Y, Xiang H, He J, Sun Q, Yong Y, Chen L, Jiang K, Yang H, Li Y. Zinc-based Polyoxometalate Nanozyme Functionalized Hydrogels for optimizing the Hyperglycemic-Immune Microenvironment to Promote Diabetic Wound Regeneration. J Nanobiotechnology 2024; 22:611. [PMID: 39380018 PMCID: PMC11462698 DOI: 10.1186/s12951-024-02840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/07/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND In diabetic wounds, hyperglycemia-induced cytotoxicity and impaired immune microenvironment plasticity directly hinder the wound healing process. Regulation of the hyperglycemic microenvironment and remodeling of the immune microenvironment are crucial. RESULTS Here, we developed a nanozymatic functionalized regenerative microenvironmental regulator (AHAMA/CS-GOx@Zn-POM) for the effective repair of diabetic wounds. This novel construct integrated an aldehyde and methacrylic anhydride-modified hyaluronic acid hydrogel (AHAMA) and chitosan nanoparticles (CS NPs) encapsulating zinc-based polymetallic oxonate nanozyme (Zn-POM) and glucose oxidase (GOx), facilitating a sustained release of release of both enzymes. The GOx catalyzed glucose to gluconic acid and (H₂O₂), thereby alleviating the effects of the hyperglycemic microenvironment on wound healing. Zn-POM exhibited catalase and superoxide dismutase activities to scavenge reactive oxygen species and H₂O₂, a by-product of glucose degradation. Additionally, Zn-POM induced M1 macrophage reprogramming to the M2 phenotype by inhibiting the MAPK/IL-17 signaling diminishing pro-inflammatory cytokines, and upregulating the expression of anti-inflammatory mediators, thus remodeling the immune microenvironment and enhancing angiogenesis and collagen regeneration within wounds. In a rat diabetic wound model, the application of AHAMA/CS-GOx@Zn-POM enhanced neovascularization and collagen deposition, accelerating the wound healing process. CONCLUSIONS Therefore, the regenerative microenvironment regulator AHAMA/CS-GOx@Zn-POM can achieve the effective conversion of a pathological microenvironment to regenerative microenvironment through integrated control of the hyperglycemic-immune microenvironment, offering a novel strategy for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Chaoyu Pu
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
- Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Yong Wang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Honglin Xiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Jiangtao He
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Qiyuan Sun
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Yuan Yong
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P.R. China
| | - Lu Chen
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Ke Jiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
| | - Hanfeng Yang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
- Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
| | - Yuling Li
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
- Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
| |
Collapse
|
7
|
Fan Y, Wang H, Wang C, Xing Y, Liu S, Feng L, Zhang X, Chen J. Advances in Smart-Response Hydrogels for Skin Wound Repair. Polymers (Basel) 2024; 16:2818. [PMID: 39408528 PMCID: PMC11479249 DOI: 10.3390/polym16192818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Hydrogels have emerged as promising candidates for biomedical applications, especially in the treatment of skin wounds, as a result of their unique structural properties, highly tunable physicochemical properties, and excellent biocompatibility. The integration of smart-response features into hydrogels allows for dynamic responses to different external or internal stimuli. Therefore, this paper reviews the design of different smart-responsive hydrogels for different microenvironments in the field of skin wound therapy. First, the unique microenvironments of three typical chronic difficult-to-heal wounds and the key mechanisms affecting wound healing therapeutic measures are outlined. Strategies for the construction of internal stimulus-responsive hydrogels (e.g., pH, ROS, enzymes, and glucose) and external stimulus-responsive hydrogels (e.g., temperature, light, electricity, and magnetic fields) are highlighted from the perspective of the wound microenvironment and the in vitro environment, and the constitutive relationships between material design, intelligent response, and wound healing are revealed. Finally, this paper discusses the severe challenges faced by smart-responsive hydrogels during skin wound repair and provides an outlook on the combination of smart-responsive hydrogels and artificial intelligence to give scientific direction for creating and using hydrogel dressings that respond to stimuli in the clinic.
Collapse
Affiliation(s)
- Yinuo Fan
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Han Wang
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Yuanhao Xing
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Shuying Liu
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Linhan Feng
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Xinyu Zhang
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
- State Key Laboratory of Mineral Processing, Beijing 100160, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 265599, China
| |
Collapse
|
8
|
Zhang Y, Xiong Y, Wu X, Huang M, Li Z, Zhao T, Peng P. Injectable Hydrogel With Glycyrrhizic Acid and Asiaticoside-Loaded Liposomes for Wound Healing. J Cosmet Dermatol 2024. [PMID: 39359135 DOI: 10.1111/jocd.16606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Open skin wounds increase the risk of infections and can compromise health. Therefore, applying medications to promote healing at the injury site is crucial. In practice, direct drug delivery is often difficult to maintain for a long time due to rapid absorption or wiping off, which reduces the efficiency of wound healing. Consequently, the development of bioactive materials with both antibacterial and wound-healing properties is highly desirable. METHODS This study synthesized liposomes loaded with glycyrrhizic acid (GA) and asiaticoside (AS) by film dispersion-ultrasonication method, which were then incorporated into a GelMA solution and cross-linked by ultraviolet light to form a bioactive composite hydrogel for wound dressings. RESULTS This hydrogel is conducive to the transport of nutrients and gas exchange. Compared with GelMA hydrogel (swelling rate 69.8% ± 5.7%), the swelling rate of GelMA/Lip@GA@AS is lower, at 52.1% ± 1.0%. GelMA/Lip@GA@AS also has better compression and rheological properties, and the in vitro biodegradability is not significantly different from that of the collagenase-treated group. In addition, the hydrogel polymer has a stable drug release rate, good biocompatibility, and an angiogenic promoting effect. In vitro experiments prove that, at concentrations of 0.5, 1, 2, and 3 mg/mL, GelMA/Lip@GA@AS can inhibit the growth of Staphylococcus aureus. CONCLUSION We synthesized GelMA/Lip@GA@AS hydrogel and found it possesses advantageous mechanical properties, rheology, and biodegradability. Experimental results in vitro showed that the bioactive hydrogel could efficiently release drugs, exhibit biocompatibility, and enhance angiogenesis and antimicrobial effects. These results suggest the promising application of GelMA/Lip@GA@AS hydrogel in wound-dressing materials.
Collapse
Affiliation(s)
- Yunqi Zhang
- Department of Pharmacy, Guangzhou Dermatology Hospital, Guangzhou, China
| | - Yu Xiong
- Department of Pharmacy, Guangzhou Dermatology Hospital, Guangzhou, China
| | - Xiaochun Wu
- Department of Pharmacy, Guangzhou Dermatology Hospital, Guangzhou, China
| | - Maofang Huang
- Department of Pharmacy, Guangzhou Dermatology Hospital, Guangzhou, China
| | - Zhengjie Li
- Department of Pharmacy, Guangzhou Dermatology Hospital, Guangzhou, China
| | - Tie Zhao
- Department of Pharmacy, Guangzhou Dermatology Hospital, Guangzhou, China
| | - Peng Peng
- Orthopedics Department, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Li J, Guo P, Gao S, Wang J, Cheng J, Fan W, Liu X, Zhang X, Lei K. Cu 2O-SnO 2-PDA heterozygous nanozyme doped hydrogel mediated conglutinant microenvironment regulation for wound healing therapy. Int J Biol Macromol 2024; 280:135852. [PMID: 39307489 DOI: 10.1016/j.ijbiomac.2024.135852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
Bacterial infection significantly hinders the wound healing process. Overuse of antibiotics has led to the rise of drug resistance in bacteria, making the development of smart medical dressings that promote wound healing without antibiotics, a critical need. In this study, Cu₂O-SnO₂-PDA (PCS) nanoenzymes with Fenton-like activity and high photothermal conversion efficiency were developed. These nanoenzymes were then incorporated into a hydrogel through cross-linking of acrylamide (AM) and N-[Tris-(hydroxymethyl)methyl] acrylamide (THMA), forming a tough, highly-adhesive, and self-healing composite hydrogel (AT/PCS) with antimicrobial properties. The AT/PCS hydrogel exhibits excellent mechanical strength and adhesion, facilitating increased oxygen levels and strong adherence to the wound site. Moreover, it effectively regulates the wound microenvironment by combining synergistic chemodynamic therapy (CDT) and photothermal therapy (PTT) for antibacterial treatment. The AT/PCS hydrogel enhances collagen deposition and expedites wound healing in a rat model, largely due to its potent antibacterial properties.
Collapse
Affiliation(s)
- Jinghua Li
- The 1st Affiliated Hospital, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China; Department of Wound Repair, the First Affiliated Hospital, College of Emergency and Trauma, Hainan Medical University, Haikou 570100, China; Department of Radiation Oncology, The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China.
| | - Pengshan Guo
- The 1st Affiliated Hospital, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Shegan Gao
- The 1st Affiliated Hospital, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Jianping Wang
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Ji Cheng
- Department of Wound Repair, the First Affiliated Hospital, College of Emergency and Trauma, Hainan Medical University, Haikou 570100, China
| | - Wenxuan Fan
- Department of Wound Repair, the First Affiliated Hospital, College of Emergency and Trauma, Hainan Medical University, Haikou 570100, China
| | - Xiaoran Liu
- Department of Wound Repair, the First Affiliated Hospital, College of Emergency and Trauma, Hainan Medical University, Haikou 570100, China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China
| | - Kun Lei
- The 1st Affiliated Hospital, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
10
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
11
|
Zhou R, Zhang W, Zhang Y, Wu X, Huang J, Bo R, Liu M, Yu J, Li J. Laponite/lactoferrin hydrogel loaded with eugenol for methicillin-resistant Staphylococcus aureus-infected chronic skin wound healing. J Tissue Viability 2024; 33:487-503. [PMID: 38769034 DOI: 10.1016/j.jtv.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Severe bacterial infections can give rise to protracted wound healing processes, thereby posing a significant risk to a patient's well-being. Consequently, the development of a versatile hydrogel dressing possessing robust bioactivity becomes imperative, as it holds the potential to expedite wound healing and yield enhanced clinical therapeutic outcomes. In this context, the present study involves the formulation of an injectable multifunctional hydrogel utilizing laponite (LAP) and lactoferrin (LF) as foundational components and loaded with eugenol (EG). This hydrogel is fabricated employing a straightforward one-pot mixing approach that leverages the principle of electrostatic interaction. The resulting LAP/LF/EG2% composite hydrogel can be conveniently injected to address irregular wound geometries effectively. Once administered, the hydrogel continually releases lactoferrin and eugenol, mitigating unwarranted oxidative stress and eradicating bacterial infections. This orchestrated action culminates in the acceleration of wound healing specifically in the context of MRSA-infected wounds. Importantly, the LAP/LF/EG2% hydrogel exhibits commendable qualities including exceptional injectability, potent antioxidant attributes, and proficient hemostatic functionality. Furthermore, the hydrogel composition notably encourages cellular migration while maintaining favorable cytocompatibility. Additionally, the hydrogel manifests noteworthy bactericidal efficacy against the formidable multidrug-resistant MRSA bacterium. Most significantly, this hydrogel formulation distinctly expedites the healing of MRSA-infected wounds by promptly inducing hemostasis, curbing bacterial proliferation, and fostering angiogenesis, collagen deposition, and re-epithelialization processes. As such, the innovative hydrogel material introduced in this investigation emerges as a promising dressing for the facilitation of bacterial-infected wound healing and consequent tissue regeneration.
Collapse
Affiliation(s)
- Ruigang Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Wenhai Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yufei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xiqian Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Junjie Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Ruonan Bo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Mingjiang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Jie Yu
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suzhi Road 120, Suqian 223800, PR China.
| | - Jingui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
12
|
Wang P, You Q, Liu Y, Miao H, Dong WF, Li L. Combating infections from drug-resistant bacteria: Unleashing synergistic broad-spectrum antibacterial power with high-entropy MXene/CDs. Colloids Surf B Biointerfaces 2024; 238:113874. [PMID: 38581833 DOI: 10.1016/j.colsurfb.2024.113874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
The growing resistance of bacteria to antibiotics has posed challenges in treating associated bacterial infections, while the development of multi-model antibacterial strategies could efficient sterilization to prevent drug resistance. High-entropy MXene has emerged as a promising candidate for antibacterial synergy with inherent photothermal and photodynamic properties. Herein, a high-entropy nanomaterial of MXene/CDs was synthesized to amplify oxidative stress under near-infrared laser irradiation. Well-exfoliated MXene nanosheets have proven to show an excellent photothermal effect for sterilization. The incorporation of CDs could provide photo-generated electrons for MXene nanosheets to generate ROS, meanwhile reducing the recombination of electron-hole pairs to further accelerate the generation of photo-generated electrons. The MXene/CDs material demonstrates outstanding synergistic photothermal and photodynamic effects, possesses excellent biocompatibility and successfully eliminates drug-resistant bacteria as well as inhibits biofilm formation. While attaining a remarkable killing efficiency of up to 99.99% against drug-resistant Escherichia coli and Staphylococcus aureus, it also demonstrates outstanding antibacterial effects against four additional bacterial strains. This work not only establishes a synthesis precedent for preparing high-entropy MXene materials with CDs but also provides a potential approach for addressing the issue of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Panyong Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Qiannan You
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| | - Yulu Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Huimin Miao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| |
Collapse
|
13
|
Wu H, Wang T, Liang Y, Chen L, Li Z. Self-assembled and dynamic bond crosslinked herb-polysaccharide hydrogel with anti-inflammation and pro-angiogenesis effects for burn wound healing. Colloids Surf B Biointerfaces 2024; 233:113639. [PMID: 37951186 DOI: 10.1016/j.colsurfb.2023.113639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Excessive inflammation and defective angiogenesis can affect burn wound healing. Recently, naturally derived substances with anti-inflammatory and proangiogenic properties have attracted public attention. The design and fabrication of naturally derived substance-based bioactive hydrogels as wound dressings are of interest and important for regulating the complex microenvironment of the wound bed. Herein, we developed a hydrogel by self-assembling a natural herb (glycyrrhizic acid, GA) dynamic Schiff base crosslinking of hyaluronic acid derivatives and integrating deferoxamine (DFO). The naturally derived herbal GA endowed the bioactive hydrogel with a native anti-inflammatory capability. The introduction of dynamic bond crosslinking improved the hydrogel stability. In addition, dynamic crosslinking is conducive for integrating the naturally-derived DFO, delivering it to the wound site, and promoting angiogenesis. Rheological tests, injectability, degradation behavior, and drug release performance demonstrated the enhanced stability of the hydrogel and sustained release of DFO. Cytotoxicity, cell proliferation, and cell migration tests suggested that the hydrogel was biocompatible. Further, the hydrogel exerted anti-inflammatory and angiogenic effects and accelerated burn wound healing in rats. Therefore, the proposed hydrogel has the potential to be a natural, herb-based, bioactive dressing for burn wound management.
Collapse
Affiliation(s)
- Hongfu Wu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Tao Wang
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan 528318, China
| | - Yinru Liang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Liji Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Ziyi Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; The Second Clinical Medical College, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
14
|
Shi Z, Huang X, Zhao Y, Li J, Tian YQ, Zhang PP, Zhu M, Zhao M. Construction of a novel ursolic acid-based supramolecular gel for efficient removal of iodine from solution. ENVIRONMENTAL RESEARCH 2023; 235:116617. [PMID: 37437868 DOI: 10.1016/j.envres.2023.116617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Pentacyclic triterpenes is a natural amphipathic product which possess a rigid backbone and several polar functional groups such as hydroxyl, carbonyl and carboxyl groups. The amphipathic character makes it easy to realize self-assemble into complex nano structure and therefore attract extensive attention due to the simple synthetic processes and renewable raw materials. Hence, a novel Ursolic acid-based hydrogel was prepared successfully via a simple self-assembly of triterpenoid derivative in methanol by capture water molecule in air. The resulting hydrogel show a porous morphology and good elasticity including strong heat resistance. Based on the characteristic above, the hydrogel showed a good iodine adsorption capacity and can removal 75.0% of the iodine from cyclohexane solution and 66.3% from aqueous solution within 36 h. Data analysis indicate that all the iodine adsorption process are dominated by chemisorption and belongs to the multi-site adsorption on heterogenous surfaces. In addition, the obtained hydrogel also possesses a good recyclability which can maintain more than 82% of its capacity after 5 cycles. The simple preparation method and easily available raw materials endow it a great potential in future pollutant treatment.
Collapse
Affiliation(s)
- Zhichun Shi
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar, Heilongjiang, 161006, China.
| | - Xiuqi Huang
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China
| | - Yingnan Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar, Heilongjiang, 161006, China
| | - Jun Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar, Heilongjiang, 161006, China
| | - Yan Qing Tian
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China
| | - Piao Piao Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China
| | - Min Zhu
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar, Heilongjiang, 161006, China
| | - Ming Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar, Heilongjiang, 161006, China
| |
Collapse
|
15
|
Wang H, Sun D, Lin W, Fang C, Cheng K, Pan Z, Wang D, Song Z, Long X. One-step fabrication of cell sheet-laden hydrogel for accelerated wound healing. Bioact Mater 2023; 28:420-431. [PMID: 37519924 PMCID: PMC10382966 DOI: 10.1016/j.bioactmat.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/12/2023] [Accepted: 06/07/2023] [Indexed: 08/01/2023] Open
Abstract
Full-thickness skin wounds are have continued to be reconstructive challenges in dermal and skin appendage regeneration, and skin substitutes are promising tools for addressing these reconstructive procedures. Herein, the one-step fabrication of a cell sheet integrated with a biomimetic hydrogel as a tissue engineered skin for skin wound healing generated in one step is introduced. Briefly, cell sheets with rich extracellular matrix, high cell density, and good cell connections were integrated with biomimetic hydrogel to fabricate gel + human skin fibroblasts (HSFs) sheets and gel + human umbilical vein endothelial cells (HUVECs) sheets in one step for assembly as a cell sheet-laden hydrogel (CSH). The designed biomimetic hydrogel formed with UV crosslinking and ionic crosslinking exhibited unique properties due to the photo-generated aldehyde groups, which were suitable for integrating into the cell sheet, and ionic crosslinking reduced the adhesive force toward the substrate. These properties allowed the gel + cell sheet film to be easily released from the substrate. The cells in the harvested cell sheet maintained excellent viability, proliferation, and definite migration abilities inside the hydrogel. Moreover, the CSH was implanted into a full-thickness skin defects to construct a required dermal matrix and cell microenvironment. The wound closure rate reached 60.00 ± 6.26% on the 2nd day, accelerating mature granulation and dermis formation with skin appendages after 14 days. This project can provide distinct guidance and strategies for the complete repair and regeneration of full-thickness skin defects, and provides a material with great potential for tissue regeneration in clinical applications.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Colorectal Surgery, Key Laboratory of Biological Treatment of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Deshun Sun
- Southern University of Science and Technology Hospital, Intelligent Medical Innovation Center, Shenzhen, 518035, China
| | - Weiming Lin
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
| | - Chao Fang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
| | - Zhengzhou Pan
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, Shenzhen, 518035, China
| | - Daping Wang
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Zhangfa Song
- Department of Colorectal Surgery, Key Laboratory of Biological Treatment of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Xiaojun Long
- Department of Colorectal Surgery, Key Laboratory of Biological Treatment of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| |
Collapse
|
16
|
Cheng J, Wang H, Gao J, Liu X, Li M, Wu D, Liu J, Wang X, Wang Z, Tang P. First-Aid Hydrogel Wound Dressing with Reliable Hemostatic and Antibacterial Capability for Traumatic Injuries. Adv Healthc Mater 2023; 12:e2300312. [PMID: 37335228 DOI: 10.1002/adhm.202300312] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/17/2023] [Indexed: 06/21/2023]
Abstract
First-aid for severe traumatic injuries in the battlefield or pre-hospital environment, especially for skin defects or visceral rupture, remains a substantial medical challenge even in the context of the rapidly evolving modern medical technology. Hydrogel-based biomaterials are highly anticipated for excellent biocompatibility and bio-functional designability. Yet, inadequate mechanical and bio-adhesion properties limit their clinical application. To address these challenges, a kind of multifunctional hydrogel wound dressing is developed with the collective multi-crosslinking advantages of dynamic covalent bonds, metal-catechol chelation, and hydrogen bonds. The mussel-inspired design and zinc oxide-enhanced cohesion strategy collaboratively reinforce the hydrogel's bio-adhesion in bloody or humoral environments. The pH-sensitive coordinate Zn2+ -catechol bond and dynamic Schiff base with reversible breakage and reformation equip the hydrogel dressing with excellent self-healing and on-demand removal properties. In vivo evaluation in a rat ventricular perforation model and Methicillin-resistant Staphylococcus aureus (MRSA)-infected full-thickness skin defect model reveal excellent hemostatic, antibacterial and pro-healing effectiveness of the hydrogel dressing, demonstrating its great potential in dealing with severe bleeding and infected full-thickness skin wounds.
Collapse
Affiliation(s)
- Junyao Cheng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Hufei Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianpeng Gao
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Xiao Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Ming Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Decheng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jianheng Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zheng Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| |
Collapse
|
17
|
Lu J, Wang Z, Cai D, Lin X, Huang X, Yuan Z, Zhang Y, Lei H, Wang P. Carrier-Free Binary Self-Assembled Nanomedicines Originated from Traditional Herb Medicine with Multifunction to Accelerate MRSA-Infected Wound Healing by Antibacterial, Anti-Inflammation and Promoting Angiogenesis. Int J Nanomedicine 2023; 18:4885-4906. [PMID: 37667771 PMCID: PMC10475309 DOI: 10.2147/ijn.s422944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/04/2023] [Indexed: 09/06/2023] Open
Abstract
Background Deaths from bacterial infections have risen year by year. This trend is further aggravated as the overuse antibiotics and the bacterial resistance to all known antibacterial agents. Therefore, new therapeutic alternatives are urgently needed. Methods Enlightenment the combination usage of traditional herb medicine, one carrier-free binary nanoparticles (GA-BBR NPs) was discovered, which was self-assembled from gallic acid and berberine through electrostatic interaction, π-π stacking and hydrophobic interaction; and it could be successfully prepared by a green, cost-effective and "one-pot" preparation process. Results The nanoparticles exhibited strong antibacterial activity and biofilm removal ability against multidrug-resistant S. aureus (MRSA) by downregulating mRNA expression of rpsF, rplC, rplN, rplX, rpsC, rpmC and rpsH to block bacterial translation mechanisms in vitro and in vivo, and it had well anti-inflammatory activity and a promising role in promoting angiogenesis to accelerate the wound healing on MRSA-infected wounds model in vivo. Additionally, the nanoparticles displayed well biocompatibility without cytotoxicity, hemolytic activity, and tissue or organ toxicity. Conclusion GA-BBR NPs originated from the drug combination has potential clinical transformation value, and this study provides a new idea for the design of carrier-free nanomedicine derived from natural herbals.
Collapse
Affiliation(s)
- Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Zhijia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Desheng Cai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Xiaoyu Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Zhihua Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Yaozhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| |
Collapse
|
18
|
Fu X, Ni Y, Wang G, Nie R, Wang Y, Yao R, Yan D, Guo M, Li N. Synergistic and Long-Lasting Wound Dressings Promote Multidrug-Resistant Staphylococcus Aureus-Infected Wound Healing. Int J Nanomedicine 2023; 18:4663-4679. [PMID: 37605733 PMCID: PMC10440117 DOI: 10.2147/ijn.s418671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Background Multidrug-resistant staphylococcus aureus infected wounds can lead to nonhealing, systemic infections, and even death. Although advanced dressings are effective in protecting, disinfecting, and maintaining moist microenvironments, they often have limitations such as single functionality, inadequate drug release, poor biosafety, or high rates of drug resistance. Methods Here, a novel wound dressing comprising glycyrrhizic acid (GA) and tryptophan-sorbitol carbon quantum dots (WS-CQDs) was developed, which exhibit synergistic and long-lasting antibacterial and anti-inflammatory effects. We investigated the characterization, mechanical properties, synergistic antibacterial effects, sustained-release properties, and cytotoxicity of GA/WS-CQDs hydrogels in vitro. Additionally, we performed transcriptome sequence analysis to elucidate the antibacterial mechanism. Furthermore, we evaluated the biosafety, anti-inflammatory effects, and wound healing ability of GA/WS-CQDs dressings using an in vivo mouse model of methicillin-resistant staphylococcus aureus (MRSA)-infected wounds. Results The prepared GA/WS-CQDs hydrogels demonstrated superior anti-MRSA effects compared to common antibiotics in vitro. Furthermore, the sustained release of WS-CQDs from GA/WS-CQDs hydrogels lasted for up to 60 h, with a cumulative release of exceeding 90%. The sustained-released WS-CQDs exhibited excellent anti-MRSA effects, with low drug resistance attributed to DNA damage and inhibition of bacterial biofilm formation. Notably, in vivo experiments showed that GA/WS-CQDs dressings reduced the expression of inflammatory factors (TNF-α, IL-1β, and IL-6) and significantly promoted the healing of MRSA-infected wounds with almost no systemic toxicity. Importantly, the dressings did not require replacement during the treatment process. Conclusion These findings emphasize the high suitability of GA/WS-CQDs dressings for MRSA-infected wound healing and their potential for clinical translation.
Collapse
Affiliation(s)
- Xiangjie Fu
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro&Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People’s Republic of China
| | - Guanchen Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Runda Nie
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Yang Wang
- Institute of Integrative Medicine, Key Laboratory of Hunan Province for Liver Manifestation of Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Run Yao
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Danyang Yan
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Mingming Guo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Ning Li
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| |
Collapse
|
19
|
Cao Y, Guo Y, Yin Y, Qu X, Zhang X, Li S, Xu X, Zhou Z. Composite Hydrogel for the Targeted Capture and Photothermal Killing of Bacteria toward Facilitating Wound Healing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6413-6424. [PMID: 37126772 DOI: 10.1021/acs.langmuir.3c00218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pathogenic infections pose a significant risk to public health and are regarded as one of the most difficult clinical treatment obstacles. A reliable and safe photothermal antibacterial platform is a promising technique for the treatment of bacterial infections. Given the damage that high temperatures cause in normal tissues and cells, a multifunctional hydrogel driven by photothermal energy is created by trapping bacteria to reduce heat transfer loss and conduct low-temperature photothermal sterilization efficiently. The 3-aminobenzene boronic acid (ABA)-modified graphene oxide is combined with carboxymethyl chitosan (CMCS) and cellulose nanocrystalline (CNC) networks to create the ABA-GO/CNC/CMCS composite hydrogel (composite gel). The obtained composite gel displays a uniform three-dimensional network structure, which can be rapidly heated to 48 °C under infrared light irradiation and is beneficial for killing wound infection bacteria and promoting wound healing. The results of animal experiments show that the composite gel significantly reduces inflammation by killing >99.99% of bacteria under near-infrared light irradiation. The result also demonstrates that it increases the granulation tissue thickness and collagen distribution and promotes wound healing. After treatment for 14 days, compared with the remaining 27.73% of the remaining wound area in the control group, the wound area in the composite gel with NIR group is only 0.91%. It significantly accelerates the wound healing process of Staphylococcus aureus infection and shows great potential for clinical application.
Collapse
Affiliation(s)
- Yue Cao
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, P. R. China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yifan Guo
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yingzheng Yin
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xi Qu
- Beijing Institute of Spacecraft System Engineering, China Academy of Space Technology, Beijing 100094, China
| | - Xinyuan Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Shaozhi Li
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xiaoling Xu
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Zuowan Zhou
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
20
|
Ma Y, Xu S, Yue P, Cao H, Zou Y, Wang L, Long H, Wu S, Ye Q. Synthesis and evaluation of water-soluble imidazolium salt chitin with broad-spectrum antimicrobial activity and excellent biocompatibility for infected wound healing. Carbohydr Polym 2023; 306:120575. [PMID: 36746566 DOI: 10.1016/j.carbpol.2023.120575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Infections caused by bacteria have long constituted a major threat to human health and the economy. Therefore, there is an urgent need to design broad-spectrum antibacterial materials possessing good biocompatibility to treat such infections. Herein, inspired by the good biocompatibility of chitin and antibacterial properties of imidazolium salts, a polysaccharide-based material, imidazolium salt chitin (IMSC), was homogeneously prepared using a facile method with epichlorohydrin as a chemical crosslinker to combine chitin with imidazole to enhance Staphylococcus aureus (S. aureus)-infected wound healing. The characteristics, antimicrobial properties, and biosafety of IMSC were evaluated. The results demonstrated successful grafting of imidazole onto chitin. Furthermore, IMSC exhibited good water solubility, broad-spectrum antimicrobial activity, hemocompatibility, and biocompatibility. Moreover, IMSC enabled complete healing of S. aureus-infected wound in Sprague-Dawley rats within 15 days of application, thus demonstrating that IMSC could reduce wound inflammation and remarkably accelerate wound healing owing to its efficient antibacterial activity and ability to promote collagen deposition in and around the wound area. Therefore, this study provides a promising and potential therapeutic strategy for infected wound healing by synthesizing a water-soluble and broad-spectrum antimicrobial material exhibiting good biocompatibility.
Collapse
Affiliation(s)
- Yongsheng Ma
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China
| | - Shuyi Xu
- Wuhan University School of Nursing, Wuhan 430071, Hubei, PR China
| | - Pengpeng Yue
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China
| | - Hankun Cao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China
| | - Yongkang Zou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China
| | - Lizhe Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China
| | - Haitao Long
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China.
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China; The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha 410013, Hunan, PR China.
| |
Collapse
|
21
|
Cai DS, Yang XY, Yang YQ, Gao F, Cheng XH, Zhao YJ, Qi R, Zhang YZ, Lu JH, Lin XY, Liu YJ, Xu B, Wang PL, Lei HM. Design and synthesis of novel anti-multidrug-resistant staphylococcus aureus derivatives of glycyrrhetinic acid by blocking arginine biosynthesis, metabolic and H 2S biogenesis. Bioorg Chem 2023; 131:106337. [PMID: 36603244 DOI: 10.1016/j.bioorg.2022.106337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
With the soaring number of multidrug-resistant bacteria, it is imperative to develop novel efficient antibacterial agents and discovery new antibacterial pathways. Herein, we designed and synthesized a series of structurally novel glycyrrhetinic acid (GA) derivatives against multidrug-resistant Staphylococcus aureus (MRSA). The in vitro antibacterial activity of these compounds was evaluated using the microbroth dilution method, agar plate coating experiments and real-time growth curves, respectively. Most of the target derivatives showed moderate antibacterial activity against Staphylococcus aureus (S. aureus) and MRSA (MIC = 3.125-25 μM), but inactivity against Escherichia coli (E. Coli) and Pseudomonas aeruginosa (P. aeruginosa) (MIC > 200 μM). Among them, compound 11 had the strongest antibacterial activity against MRSA, with an MIC value of 3.125 μM, which was 32 times and 64 times than the first-line antibiotics penicillin and norfloxacin, respectively. Additionally, transcriptomic (RNA-seq) and quantitative polymerase chain reaction (qPCR) analysis revealed that the antibacterial mechanism of compound 11 was through blocking the arginine biosynthesis and metabolic and the H2S biogenesis. Importantly, compound 11 was confirmed to have good biocompatibility through the in vitro hemolysis tests, cytotoxicity assays and the in vivo quail chicken chorioallantoic membrane (qCAM) experiments. Current study provided new potential antibacterial candidates from glycyrrhetinic acid derivatives for clinical treatment of MRSA infections.
Collapse
Affiliation(s)
- De-Sheng Cai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Xiao-Yun Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yu-Qin Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Xue-Hao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Ya-Juan Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Rui Qi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yao-Zhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Ji-Hui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Xiao-Yu Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yi-Jing Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Peng-Long Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Hai-Min Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| |
Collapse
|