1
|
Hong R, Lai J, Mai D, Li L, Dai L, Lu Y, Lin J. Construction of chitosan/carboxylated polyvinyl alcohol/poly(N-isopropylacrylamide) composite antibacterial hydrogel for rapid wound healing. BIOMATERIALS ADVANCES 2025; 166:214041. [PMID: 39278037 DOI: 10.1016/j.bioadv.2024.214041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
In the realm of skin injury management, the expedited closure of wounds, prevention of scar formation, and enhancement of the healing process are of critical significance. The creation of economical dressings that effectively facilitate swift wound sealing in the initial phase of skin trauma while curbing scar development represents a promising avenue for clinical utility. Within the context of this investigation, we synthesized a novel hydrogel composed of chitosan (CS), carboxylated poly(vinyl alcohol) (PVA-COOH) via a Schiff base reaction between carboxylated PVA and chitosan, yielding networks abundant in amide bonds. Following this, a chitosan/carboxylated PVA/poly(N-isopropylacrylamide) hydrogel (CNP) was engineered by incorporating poly-N-isopropylacrylamide chains for interpenetration at ambient temperature. Our findings indicate that the CNP hydrogel exhibits favorable degradability and swelling characteristics. Moreover, it possesses favorable antimicrobial efficacy and biocompatibility. In a murine full-thickness skin injury model, the hydrogel was found to expedite wound healing by augmenting granulation tissue formation, mitigating wound inflammation, and promoting angiogenesis.
Collapse
Affiliation(s)
- RuChen Hong
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jun Lai
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - DongYi Mai
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; College of Optoelectronics and Electronic Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Lan Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - LiJun Dai
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - YanJin Lu
- College of Optoelectronics and Electronic Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China.
| | - JinXin Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.
| |
Collapse
|
2
|
Pletts MW, Burrell RE. Clinically relevant evaluation of the antimicrobial and anti-inflammatory properties of nanocrystalline and nanomolecular silver. Wound Repair Regen 2025; 33:e13249. [PMID: 39707715 DOI: 10.1111/wrr.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/06/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Burns and chronic wounds present significant challenges in wound management due to risks of infection, excessive inflammation, and prolonged healing. Silver-based treatments have long been central to burn care, but limitations have prompted the exploration of nanocrystalline silver as an alternative, with its nanoscale properties offering distinct benefits. This paper reviews the structure, properties, mechanisms of action, and clinical applications of nanocrystalline silver in burn and general wound management, with particular emphasis on how wound healing processes inform the application of these dressings. Nanocrystalline silver's high surface area-to-volume ratio and crystal structure enhance its antimicrobial and anti-inflammatory efficacy. Nanocrystalline silver's mechanisms of action are disrupting cellular functions, inducing DNA damage, and inhibiting biofilms. Clinical studies demonstrate accelerated healing and reduced inflammation compared to traditional treatments. Whilst nanocrystalline silver dressings are costly, their effectiveness in lowering drug-resistant infections and minimising complications supports a financial case for their use, potentially reducing overall wound care expenses. Considerations of cytotoxicity, allergic reactions, and accessibility underscore the importance of individualised treatment selection based on wound and patient factors. In conclusion, nanocrystalline silver holds substantial promise in burn wound management, and further research is warranted to optimise its therapeutic potential and economic benefits in clinical practice.
Collapse
Affiliation(s)
- Matthew W Pletts
- Department of Biomedical Engineering, University of Alberta, Research Transition Facility, Edmonton, Alberta, Canada
| | - Robert E Burrell
- Department of Biomedical Engineering, University of Alberta, Canada
| |
Collapse
|
3
|
Abid F, Virgo E, Kennewell TL, Khetan R, Haidari H, Kopecki Z, Song Y, Garg S. The Acid-Buffered Engineered Gel Promotes In Vitro Cutaneous Healing and Fights Resistant Bacteria in Wounds. Pharmaceutics 2024; 16:1484. [PMID: 39598606 PMCID: PMC11597482 DOI: 10.3390/pharmaceutics16111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Treatment of cutaneous wound infections is becoming a major clinical challenge due to the growing problem of antimicrobial resistance associated with existing wound treatments. Two prevalent pathogens in wound infections, Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), continue to present a serious challenge, underscoring the critical need for new therapeutic alternatives. Methods: Novel alginate acid-buffered gels (ABF-1, ABF-2, and ABF-3) were developed using a combination of organic acids in various concentrations and buffered at a pH of 4.5. The acid-buffering capacity of the gels was evaluated against sodium hydroxide solution and simulated wound fluid (SWF) at different wound pHs, mimicking infected and non-infected wound environments. The in vitro antibacterial activity was assessed against resistant bacterial strains (Gram-positive and Gram-negative) using a microdilution method and wound biofilm assay. The rheological properties and cell viability of the gels were evaluated and the gel showing positive cell viability was further investigated for healing ability using an in vitro wound scratch assay. Results: The gels showed promising in vitro antibacterial activity against Staphylococcus epidermidis, S. aureus, and P. aeruginosa. Gels with higher acid concentrations (ABF-1 and ABF-2) were highly effective in reducing the bacterial load in chronic biofilms of S. aureus and P. aeruginosa, while the gel with a lower acid concentration (ABF-3) showed positive effects on the viability of skin cells (over 80% cells viable) and for promoting wound closure. All three gels demonstrated excellent acid-buffering capabilities. Conclusions: The acid-buffered gels demonstrate promising in vitro antibacterial effects, indicating their potential for enhancing wound healing.
Collapse
Affiliation(s)
- Fatima Abid
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (F.A.); (R.K.); (Y.S.)
| | - Emmeline Virgo
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (E.V.); (T.L.K.); (H.H.); (Z.K.)
| | - Tahlia Louise Kennewell
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (E.V.); (T.L.K.); (H.H.); (Z.K.)
| | - Riya Khetan
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (F.A.); (R.K.); (Y.S.)
| | - Hanif Haidari
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (E.V.); (T.L.K.); (H.H.); (Z.K.)
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (E.V.); (T.L.K.); (H.H.); (Z.K.)
| | - Yunmei Song
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (F.A.); (R.K.); (Y.S.)
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (F.A.); (R.K.); (Y.S.)
| |
Collapse
|
4
|
Kumi M, Chen T, Zhang Z, Wang A, Li G, Hou Z, Cheng T, Wang J, Wang T, Li P. Integration of Hydrogels and 3D Bioprinting Technologies for Chronic Wound Healing Management. ACS Biomater Sci Eng 2024; 10:5995-6016. [PMID: 39228365 DOI: 10.1021/acsbiomaterials.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The integration of hydrogel-based bioinks with 3D bioprinting technologies presents an innovative approach to chronic wound management, which is particularly challenging to treat because of its multifactorial nature and high risk of complications. Using precise deposition techniques, 3D bioprinting significantly alters traditional wound care paradigms by enabling the fabrication of patient-specific wound dressings that imitate natural tissue properties. Hydrogels are notably beneficial for these applications because of their abundant water content and mechanical properties, which promote cell viability and pathophysiological processes of wound healing, such as re-epithelialization and angiogenesis. This article reviews key 3D printing technologies and their significance in enhancing the structural and functional outcomes of wound-care solutions. Challenges in bioink viscosity, cell viability, and printability are addressed, along with discussions on the cross-linking and mechanical stability of the constructs. The potential of 3D bioprinting to revolutionize chronic wound management rests on its capacity to generate remedies that expedite healing and minimize infection risks. Nevertheless, further studies and clinical trials are necessary to advance these therapies from laboratory to clinical use.
Collapse
Affiliation(s)
- Moses Kumi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tianyi Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Zhengheng Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - An Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Gangfeng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Zishuo Hou
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tian Cheng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| |
Collapse
|
5
|
Liang X, Ding L, Ma J, Li J, Cao L, Liu H, Teng M, Li Z, Peng Y, Chen H, Zheng Y, Cheng H, Liu G. Enhanced Mechanical Strength and Sustained Drug Release in Carrier-Free Silver-Coordinated Anthraquinone Natural Antibacterial Anti-Inflammatory Hydrogel for Infectious Wound Healing. Adv Healthc Mater 2024; 13:e2400841. [PMID: 38725393 DOI: 10.1002/adhm.202400841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Indexed: 05/16/2024]
Abstract
The persistent challenge of healing infectious wounds and the rise of bacterial resistance represent significant hurdles in contemporary medicine. In this study, based on the natural small molecule drug Rhein self-assembly to form hydrogels and coordinate assembly with silver ions (Ag+), a sustained-release carrier-free hydrogel with compact structure is constructed to promote the repair of bacterial-infected wounds. As a broad-spectrum antimicrobial agent, Ag+ can avoid the problem of bacterial resistance caused by the abuse of traditional antibiotics. In addition, due to the slow-release properties of Rhein hydrogel, continuous effective concentration of Ag+ at the wound site can be ensured. The assembly of Ag+ and Rhein makes the hydrogel system with enhanced mechanical stability. More importantly, it is found that Rhein effectively promotes skin tissue regeneration and wound healing by reprogramming M1 macrophages into M2 macrophages. Further mechanism studies show that Rhein realizes its powerful anti-inflammatory activity through NRF2/HO-1 activation and NF-κB inhibition. Thus, the hydrogel system combines the excellent antibacterial properties of Ag+ with the excellent anti-inflammatory and tissue regeneration ability of Rhein, providing a new strategy for wound management with dual roles.
Collapse
Affiliation(s)
- Xiaoliu Liang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Linyu Ding
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jiaxin Ma
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiwei Li
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Lei Cao
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Hui Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Minglei Teng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhenjie Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yisheng Peng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hu Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Zhuhai UM Science & Technology Research Institute, University of Macau, Macau SAR, 999078, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
6
|
Punnoy P, Siripongpreda T, Henry CS, Rodthongkum N, Potiyaraj P. Novel theranostic wounds dressing based on pH responsive alginate hydrogel/graphene oxide/levofloxacin modified silk. Int J Pharm 2024; 661:124406. [PMID: 38955240 DOI: 10.1016/j.ijpharm.2024.124406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 07/04/2024]
Abstract
Integrating pH sensor with controlled antibiotic release is fabricated on silk to create a theranostic wound dressing. Alginate (ALG) hydrogel and graphene oxide (GO) loaded with levofloxacin (LVX) and a pH indicator are applied to fabricate a pH-responsive theranostic wound dressing. The modified silk color changes from yellow to green in response to elevated skin pH, indicating the skin infection. The semi-quantitative analysis was conducted using ImageJ, revealing significant color changes across the wide range. At elevated pH levels, the ionization of the COOH bonds within ALG induces repulsion among the COO- groups, thereby accelerating the release of the incorporated drug compared to release under lower pH. At an infected pH of 8, ALG hydrogel triggers LVX releasing up to 135.86 ± 0.3 µg, while at a normal pH of 7, theranostic silk releases 123.13 ± 0.26 µg. Incorporating GO onto silk fibers enhances LVX loading and sustains LVX release. Furthermore, these modified silks possess antimicrobial abilities without causing irritation or allergies on the human skin. This theranostic silks represents a major step forward in smart wound care, introducing a versatile platform of smart wound care.
Collapse
Affiliation(s)
- Pornchanok Punnoy
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Soi Chula12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Tatiya Siripongpreda
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Thailand.
| | - Pranut Potiyaraj
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Soi Chula12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Thailand.
| |
Collapse
|
7
|
Chen T, Yan Y, Zhou X, Liu W, Tan R, Wei D, Feng Y, Cui Q, Wang W, Zhang R, Wu N, Xu H, Qu D, Zhang H, Wu G, Zhao Y. An antioxidant hydrogel dressing with wound pH indication function prepared based on silanized bacterial nanocellulose crosslinked with beet red pigment extract. Int J Biol Macromol 2024; 269:131824. [PMID: 38697411 DOI: 10.1016/j.ijbiomac.2024.131824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Maintaining wound moisture and monitoring of infection are crucial aspects of chronic wound treatment. The development of a pH-sensitive functional hydrogel dressing is an effective approach to monitor, protect, and facilitate wound healing. In this study, beet red pigment extract (BRPE) served as a native and efficient pH indicator by being grafted into silane-modified bacterial nanocellulose (BNC) to prepare a pH-sensitive wound hydrogel dressing (S-g-BNC/BRPE). FTIR confirmed the successful grafting of BRPE into the BNC matrix. The S-g-BNC/BRPE showed superior mechanical properties (0.25 MPa), swelling rate (1251 % on average), and hydrophilic properties (contact angle 21.83°). The composite exhibited a notable color change as the pH changed between 4.0 and 9.0. It appeared purple-red when the pH ranged from 4.0 to 6.0, and appeared light pink at pH 7.0 and 7.4, and appeared ginger-yellow at pH 8.0 and 9.0. Subsequently, the antioxidant activity and cytotoxicity of the composite was evaluated, its DPPH·, ABTS+, ·OH scavenging rates were 32.33 %, 19.31 %, and 30.06 %, respectively, and the cytotoxicity test clearly demonstrated the safety of the dressing. The antioxidant hydrogel dressing, fabricated with a cost-effective and easy method, not only showed excellent biocompatibility and dressing performance but could also indicated the wound state based on pH changes.
Collapse
Affiliation(s)
- Tao Chen
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Yiran Yan
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaoshuang Zhou
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Wanli Liu
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Ran Tan
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Dingkang Wei
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Yetong Feng
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Qi Cui
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 26003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 26003, China
| | - Rui Zhang
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Nan Wu
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Hailong Xu
- Institute of blue economic Research, Weihai 264200, China
| | - Dehui Qu
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Hongyuan Zhang
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Guochao Wu
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai 264025, China.
| | - Ying Zhao
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China.
| |
Collapse
|
8
|
Jiang Z, Li J, Wang J, Pan Y, Liang S, Hu Y, Wang L. Multifunctional fucoidan-loaded Zn-MOF-encapsulated microneedles for MRSA-infected wound healing. J Nanobiotechnology 2024; 22:152. [PMID: 38575979 PMCID: PMC10996189 DOI: 10.1186/s12951-024-02398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Infected wound healing remains a challenging task in clinical practice due to several factors: (I) drug-resistant infections caused by various pathogens, (II) persistent inflammation that hinders tissue regeneration and (III) the ability of pathogens to persist intracellularly and evade antibiotic treatment. Microneedle patches (MNs), recognized for their effecacious and painless subcutaneous drug delivery, could greatly enhance wound healing if integrated with antibacterial functionality and tissue regenerative potential. A multifunctional agent with subcellular targeting capability and contained novel antibacterial components, upon loading onto MNs, could yield excellent therapeutic effects on wound infections. In this study, we sythesised a zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs) loaded with low molecular weight fucoidan (Fu) and further coating by hyaluronic acid (HA), obtained a multifunctional HAZ@Fu NPs, which could hinders Methicillin-resistant Staphylococcus aureus (MRSA) growth and promotes M2 polarization in macrophages. We mixed HAZ@Fu NPs with photocrosslinked gelatin methacryloyl (GelMA) and loaded it into the tips of the MNs (HAZ@Fu MNs), administered to mice model with MRSA-infected full-thickness cutaneous wounds. MNs are able to penetrate the skin barrier, delivering HAZ@Fu NPs into the dermal layer. Since cells within infected tissues extensively express the HA receptor CD44, we also confirmed the HA endows the nanoparticles with the ability to target MRSA in subcellular level. In vitro and in vivo murine studies have demonstrated that MNs are capable of delivering HAZ@Fu NPs deep into the dermal layers. And facilitated by the HA coating, HAZ@Fu NPs could target MRSA surviving at the subcellular level. The effective components, such as zinc ions, Fu, and hyaluronic acid could sustainably released, which contributes to antibacterial activity, mitigates inflammation, promotes epithelial regeneration and fosters neovascularization. Through the RNA sequencing of macrophages post co-culture with HAZ@Fu, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis reveals that the biological functionalities associated with wound healing could potentially be facilitated through the PI3K-Akt pathway. The results indicate that the synergistic application of HAZ@Fu NPs with biodegradable MNs may serve as a significant adjunct in the treatment of infected wounds. The intricate mechanisms driving its biological effects merit further investigation.
Collapse
Affiliation(s)
- Zichao Jiang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yixiao Pan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuailong Liang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yihe Hu
- Department of Orthopedics, First Affiliated Hospital, School of Medicine, Zhejiang, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Farasati Far B, Naimi-Jamal MR, Jahanbakhshi M, Hadizadeh A, Dehghan S, Hadizadeh S. Enhanced antibacterial activity of porous chitosan-based hydrogels crosslinked with gelatin and metal ions. Sci Rep 2024; 14:7505. [PMID: 38553565 PMCID: PMC10980704 DOI: 10.1038/s41598-024-58174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Addressing the increasing drug resistance in pathogenic microbes, a significant threat to public health, calls for the development of innovative antibacterial agents with versatile capabilities. To enhance the antimicrobial activity of non-toxic biomaterials in this regard, this study focuses on novel, cost-effective chitosan (CS)-based hydrogels, crosslinked using gelatin (GEL), formaldehyde, and metallic salts (Ag+, Cu2+, and Zn2+). These hydrogels are formed by mixing CS and GEL with formaldehyde, creating iminium ion crosslinks with metallic salts without hazardous crosslinkers. Characterization techniques like FTIR, XRD, FESEM, EDX, and rheological tests were employed. FTIR analysis showed metal ions binding to amino and hydroxyl groups on CS, enhancing hydrogelation. FESEM revealed that freeze-dried hydrogels possess a crosslinked, porous structure influenced by various metal ions. Antibacterial testing against gram-negative and gram-positive bacteria demonstrated significant bacterial growth inhibition. CS-based hydrogels containing metal ions showed reduced MIC and MBC values against Staphylococcus aureus (0.5, 8, 16 µg/mL) and Escherichia coli (1, 16, 8 µg/mL) for CS-g-GEL-Ag+, CS-g-GEL-Cu2+, and CS-g-GEL-Zn2+. MTT assay results confirmed high biocompatibility (84.27%, 85.24%, 84.96% viability at 10 µg/mL) for CS-based hydrogels towards HFF-1 cells over 48 h. Therefore, due to their non-toxic nature, these CS hydrogels are promising for antibacterial applications.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran.
| | - Mehdi Jahanbakhshi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Hadizadeh
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Dehghan
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hadizadeh
- Women Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Yang N, Sun M, Wang H, Hu D, Zhang A, Khan S, Chen Z, Chen D, Xie S. Progress of stimulus responsive nanosystems for targeting treatment of bacterial infectious diseases. Adv Colloid Interface Sci 2024; 324:103078. [PMID: 38215562 DOI: 10.1016/j.cis.2024.103078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
In recent decades, due to insufficient concentration at the lesion site, low bioavailability and increasingly serious resistance, antibiotics have become less and less dominant in the treatment of bacterial infectious diseases. It promotes the development of efficient drug delivery systems, and is expected to achieve high absorption, targeted drug release and satisfactory therapy effects. A variety of endogenous stimulation-responsive nanosystems have been constructed by using special infection microenvironments (pH, enzymes, temperature, etc.). In this review, we firstly provide an extensive review of the current research progress in antibiotic treatment dilemmas and drug delivery systems. Then, the mechanism of microenvironment characteristics of bacterial infected lesions was elucidated to provide a strong theoretical basis for bacteria-targeting nanosystems design. In particular, the discussion focuses on the design principles of single-stimulus and dual-stimulus responsive nanosystems, as well as the use of endogenous stimulus-responsive nanosystems to deliver antimicrobial agents to target locations for combating bacterial infectious diseases. Finally, the challenges and prospects of endogenous stimulus-responsive nanosystems were summarized.
Collapse
Affiliation(s)
- Niuniu Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health,Huazhong Agricultural University, Shenzhen, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mengyuan Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Huixin Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Danlei Hu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Aoxue Zhang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Suliman Khan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Zhen Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health,Huazhong Agricultural University, Shenzhen, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
11
|
Michalicha A, Belcarz A, Giannakoudakis DA, Staniszewska M, Barczak M. Designing Composite Stimuli-Responsive Hydrogels for Wound Healing Applications: The State-of-the-Art and Recent Discoveries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:278. [PMID: 38255446 PMCID: PMC10817689 DOI: 10.3390/ma17020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Effective wound treatment has become one of the most important challenges for healthcare as it continues to be one of the leading causes of death worldwide. Therefore, wound care technologies significantly evolved in order to provide a holistic approach based on various designs of functional wound dressings. Among them, hydrogels have been widely used for wound treatment due to their biocompatibility and similarity to the extracellular matrix. The hydrogel formula offers the control of an optimal wound moisture level due to its ability to absorb excess fluid from the wound or release moisture as needed. Additionally, hydrogels can be successfully integrated with a plethora of biologically active components (e.g., nanoparticles, pharmaceuticals, natural extracts, peptides), thus enhancing the performance of resulting composite hydrogels in wound healing applications. In this review, the-state-of-the-art discoveries related to stimuli-responsive hydrogel-based dressings have been summarized, taking into account their antimicrobial, anti-inflammatory, antioxidant, and hemostatic properties, as well as other effects (e.g., re-epithelialization, vascularization, and restoration of the tissue) resulting from their use.
Collapse
Affiliation(s)
- Anna Michalicha
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | | | - Magdalena Staniszewska
- Institute of Health Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| | - Mariusz Barczak
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20031 Lublin, Poland
| |
Collapse
|
12
|
Zhang Y, Gao X, Tang X, Peng L, Zhang H, Zhang S, Hu Q, Li J. A dual pH- and temperature-responsive hydrogel produced in situ crosslinking of cyclodextrin-cellulose for wound healing. Int J Biol Macromol 2023; 253:126693. [PMID: 37703977 DOI: 10.1016/j.ijbiomac.2023.126693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Cellulose hydrogels have gained attention in the field of wound healing due to their biodegradability, biocompatibility, and the capacity to sustain a humid environment that promotes healing. Conventional cellulose hydrogels were usually lacked responsiveness to changing wound conditions, and limited capacity for controlled release of active substances. The composite hydrogels with Berberine (BBR) loading were prepared from bamboo parenchymal cellulose and in situ crosslinking carboxylated-β-cyclodextrin (BPCH-B) via dissolution. The inclusion of BBR enhanced the antibacterial properties of cellulose hydrogel while maintaining biocompatibility and drug delivery capabilities. The dual-responsive dressing was demonstrated to modulate drug release kinetics in accordance with the pH and temperature conditions prevailing within the wound site. Specifically, study exhibited a significant increase in drug release (over 70 %) under alkaline pH (7.6) and temperature (40 °C) conditions. Full-thickness wound healing experiments indicated that BPCH-B had better healing ability, and the wound healing area of BPCH-B treated was 80 % within 12 days, while the control group was only 50 %. This strategy for generating functional wound healing can be further control release of drug compounds for treatment of wounds, enabling development of practical wound care materials.
Collapse
Affiliation(s)
- Yuting Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xin Gao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China.
| | - Xiaoning Tang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Lincai Peng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Heng Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Shumei Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Qiuyue Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Jiaqi Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
13
|
Jia X, Dou Z, Zhang Y, Li F, Xing B, Hu Z, Li X, Liu Z, Yang W, Liu Z. Smart Responsive and Controlled-Release Hydrogels for Chronic Wound Treatment. Pharmaceutics 2023; 15:2735. [PMID: 38140076 PMCID: PMC10747460 DOI: 10.3390/pharmaceutics15122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic wounds are a major health challenge that require new treatment strategies. Hydrogels are promising drug delivery systems for chronic wound healing because of their biocompatibility, hydration, and flexibility. However, conventional hydrogels cannot adapt to the dynamic and complex wound environment, which involves low pH, high levels of reactive oxygen species, and specific enzyme expression. Therefore, smart responsive hydrogels that can sense and respond to these stimuli are needed. Crucially, smart responsive hydrogels can modulate drug release and eliminate pathological factors by changing their properties or structures in response to internal or external stimuli, such as pH, enzymes, light, and electricity. These stimuli can also be used to trigger antibacterial responses, angiogenesis, and cell proliferation to enhance wound healing. In this review, we introduce the synthesis and principles of smart responsive hydrogels, describe their design and applications for chronic wound healing, and discuss their future development directions. We hope that this review will inspire the development of smart responsive hydrogels for chronic wound healing.
Collapse
Affiliation(s)
- Xintao Jia
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zixuan Dou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Fanqin Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Bin Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zheming Hu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xin Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhongyan Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Wenzhuo Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
14
|
Gao Q, Chen Z, Yang X. A Temperature and pH Dual-Sensitive Multifunctional Polyurethane with Bacteria-Triggered Antibacterial Activity. Macromol Rapid Commun 2023; 44:e2300453. [PMID: 37800610 DOI: 10.1002/marc.202300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/23/2023] [Indexed: 10/07/2023]
Abstract
An effective and practical antibacterial strategy is to design multifunctional and stimuli-responsive materials that exhibit antibacterial activity in response to bacterial triggers. In this study, because the metabolism of Staphylococcus aureus (S. aureus) can acidify the surrounding environment and pH level can affect the lower critical solution temperature of temperature/pH dual-sensitive polymers, a monomer containing a temperature-sensitive N-isopropyl amide derivative and pH-sensitive tertiary amine groups is first synthesized. Then, the monomer is copolymerized with a polyurethane chain, and partial tertiary amine groups are quaternized to obtain bactericidal activity. The modified polyurethane exhibits temperature/pH sensitivity, antibacterial adhesion activity, bactericidal activity, and good cytocompatibility. An in situ investigation of bacterial behavior and pH changes in the bacterial suspension during the process confirms that the temperature/pH dual-sensitive polyurethane successfully achieves antibacterial activity though the metabolic activity of S. aureus without external intervention. This design concept provides a new perspective for antibacterial material design.
Collapse
Affiliation(s)
- Qinwei Gao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Zhaobin Chen
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P.R. China
| |
Collapse
|
15
|
Tehrany PM, Rahmanian P, Rezaee A, Ranjbarpazuki G, Sohrabi Fard F, Asadollah Salmanpour Y, Zandieh MA, Ranjbarpazuki A, Asghari S, Javani N, Nabavi N, Aref AR, Hashemi M, Rashidi M, Taheriazam A, Motahari A, Hushmandi K. Multifunctional and theranostic hydrogels for wound healing acceleration: An emphasis on diabetic-related chronic wounds. ENVIRONMENTAL RESEARCH 2023; 238:117087. [PMID: 37716390 DOI: 10.1016/j.envres.2023.117087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Hydrogels represent intricate three-dimensional polymeric structures, renowned for their compatibility with living systems and their ability to naturally degrade. These networks stand as promising and viable foundations for a range of biomedical uses. The practical feasibility of employing hydrogels in clinical trials has been well-demonstrated. Among the prevalent biomedical uses of hydrogels, a significant application arises in the context of wound healing. This intricate progression involves distinct phases of inflammation, proliferation, and remodeling, often triggered by trauma, skin injuries, and various diseases. Metabolic conditions like diabetes have the potential to give rise to persistent wounds, leading to delayed healing processes. This current review consolidates a collection of experiments focused on the utilization of hydrogels to expedite the recovery of wounds. Hydrogels have the capacity to improve the inflammatory conditions at the wound site, and they achieve this by diminishing levels of reactive oxygen species (ROS), thereby exhibiting antioxidant effects. Hydrogels have the potential to enhance the growth of fibroblasts and keratinocytes at the wound site. They also possess the capability to inhibit both Gram-positive and Gram-negative bacteria, effectively managing wounds infected by drug-resistant bacteria. Hydrogels can trigger angiogenesis and neovascularization processes, while also promoting the M2 polarization of macrophages, which in turn mitigates inflammation at the wound site. Intelligent and versatile hydrogels, encompassing features such as pH sensitivity, reactivity to reactive oxygen species (ROS), and responsiveness to light and temperature, have proven advantageous in expediting wound healing. Furthermore, hydrogels synthesized using environmentally friendly methods, characterized by high levels of biocompatibility and biodegradability, hold the potential for enhancing the wound healing process. Hydrogels can facilitate the controlled discharge of bioactive substances. More recently, there has been progress in the creation of conductive hydrogels, which, when subjected to electrical stimulation, contribute to the enhancement of wound healing. Diabetes mellitus, a metabolic disorder, leads to a slowdown in the wound healing process, often resulting in the formation of persistent wounds. Hydrogels have the capability to expedite the healing of diabetic wounds, facilitating the transition from the inflammatory phase to the proliferative stage. The current review sheds light on the biological functionalities of hydrogels, encompassing their role in modulating diverse mechanisms and cell types, including inflammation, oxidative stress, macrophages, and bacteriology. Additionally, this review emphasizes the significance of smart hydrogels with responsiveness to external stimuli, as well as conductive hydrogels for promoting wound healing. Lastly, the discussion delves into the advancement of environmentally friendly hydrogels with high biocompatibility, aimed at accelerating the wound healing process.
Collapse
Affiliation(s)
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Golnaz Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farima Sohrabi Fard
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajedeh Asghari
- Faculty of Veterinary Medicine, Islamic Azad University, Babol Branch, Babol, Iran
| | - Nazanin Javani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alireza Motahari
- Board-Certified in Veterinary Surgery, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
16
|
Sun Y, Liu M, Tang X, Zhou Y, Zhang J, Yang B. Culture-Delivery Live Probiotics Dressing for Accelerated Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53283-53296. [PMID: 37948751 DOI: 10.1021/acsami.3c12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Probiotic therapy in infected wound healing is hindered by its low viability and colonization efficiency during treatments. Developing dressings that maintain metabolic activity and prevent the potential leakage of probiotics is imperative. Herein, a culture-delivery live probiotics hydrogel dressing is designed and synthesized, formed by gelatin modified with norbornene (GelNB) and sulfhydryl (GelSH), distributing Lactobacillus reuteri (L. reuteri)-laden alginate microspheres (AlgMPs). GelNB-GelSH hydrogel (GelNBSH) incorporating AlgMPs embedding L. reuteri (GelNBSH-L) possesses bioprintability and efficient polymerization that can maintain the activity of L. reuteri in situ, promote its proliferation, and limit its leakage. Thereby, GelNBSH-L achieved a sustainable antimicrobial effect against both S. aureus and E. coli (>90%). Above all, the results show that GelNBSH-L could ensure propitious viability and efficient antibacterial properties of probiotics, effectively inhibit the further development of bacterial infectious wounds and shorten the repair cycle, aiding in ameliorating future clinical probiotic biotherapy.
Collapse
Affiliation(s)
- Yihan Sun
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xiaoduo Tang
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Junhu Zhang
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
17
|
Haidari H, Vasilev K. Novel Antibacterial Materials and Coatings-A Perspective by the Editors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6302. [PMID: 37763578 PMCID: PMC10533052 DOI: 10.3390/ma16186302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
The fight between humans and bacteria has escalated to a new level.
Collapse
Affiliation(s)
- Hanif Haidari
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
18
|
Zarur M, Seijo-Rabina A, Goyanes A, Concheiro A, Alvarez-Lorenzo C. pH-responsive scaffolds for tissue regeneration: In vivo performance. Acta Biomater 2023; 168:22-41. [PMID: 37482146 DOI: 10.1016/j.actbio.2023.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
A myriad of pH-sensitive scaffolds has been reported in recent decades. Information on their behaviour in vitro under conditions that mimic the pH changes that occur during tissue regeneration is abundant. Differently, the in vivo demonstration of the advantages of pH-responsive systems in comparison with non-responders is more limited. The in vivo scenario is very complex and the intricate relationship between the host response, the overall pathological conditions of the patient, and the risk of colonization by microorganisms is very difficult to imitate in in vitro tests. This review aims to shed light on how the changes in pH between healthy and damaged states and also during the healing process have been exploited so far to develop polymer-based scaffolds that actively contribute in vivo to the healing process avoiding chronification. The main strategies so far tested to prepare pH-responsive scaffolds rely on (i) changes in ionization of natural polymers, ionizable monomers and clays, (ii) reversible cross-linkers, (iii) coatings, and (iv) production of CO2 gas. These strategies are analysed in detail in this review with the description of relevant examples of their performance on specific animal models. The versatility of the techniques used to prepare biocompatible and environment-friendly pH-responsive scaffolds that have been implemented in the last decade may pave the way for a successful translation to the clinic. STATEMENT OF SIGNIFICANCE: We report here on the most recent advances in pH-responsive polymer-based scaffolds that have been demonstrated in vivo to be suitable for wound and bone healing. pH is a critical variable in the tissue regeneration process, and small changes can speed up or completely stop the process. Although there is still a paucity of information on the performance in the complex in vivo environment, recently reported achievements using scaffolds endowed with pH-responsiveness through ionic natural polymers, ionizable monomers and clays, reversible cross-linkers, coatings, or formation of CO2 ensure a promising future towards clinical translation.
Collapse
Affiliation(s)
- Mariana Zarur
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Alejandro Seijo-Rabina
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| |
Collapse
|
19
|
Chen Y, Wang X, Tao S, Wang Q, Ma PQ, Li ZB, Wu YL, Li DW. Research advances in smart responsive-hydrogel dressings with potential clinical diabetic wound healing properties. Mil Med Res 2023; 10:37. [PMID: 37608335 PMCID: PMC10463485 DOI: 10.1186/s40779-023-00473-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
The treatment of chronic and non-healing wounds in diabetic patients remains a major medical problem. Recent reports have shown that hydrogel wound dressings might be an effective strategy for treating diabetic wounds due to their excellent hydrophilicity, good drug-loading ability and sustained drug release properties. As a typical example, hyaluronic acid dressing (Healoderm) has been demonstrated in clinical trials to improve wound-healing efficiency and healing rates for diabetic foot ulcers. However, the drug release and degradation behavior of clinically-used hydrogel wound dressings cannot be adjusted according to the wound microenvironment. Due to the intricacy of diabetic wounds, antibiotics and other medications are frequently combined with hydrogel dressings in clinical practice, although these medications are easily hindered by the hostile environment. In this case, scientists have created responsive-hydrogel dressings based on the microenvironment features of diabetic wounds (such as high glucose and low pH) or combined with external stimuli (such as light or magnetic field) to achieve controllable drug release, gel degradation, and microenvironment improvements in order to overcome these clinical issues. These responsive-hydrogel dressings are anticipated to play a significant role in diabetic therapeutic wound dressings. Here, we review recent advances on responsive-hydrogel dressings towards diabetic wound healing, with focus on hydrogel structure design, the principle of responsiveness, and the behavior of degradation. Last but not least, the advantages and limitations of these responsive-hydrogels in clinical applications will also be discussed. We hope that this review will contribute to furthering progress on hydrogels as an improved dressing for diabetic wound healing and practical clinical application.
Collapse
Affiliation(s)
- Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100090, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Tao
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Qi Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Pan-Qin Ma
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zi-Biao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore.
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Da-Wei Li
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100091, China.
| |
Collapse
|
20
|
Cao J, Yuan P, Wu B, Liu Y, Hu C. Advances in the Research and Application of Smart-Responsive Hydrogels in Disease Treatment. Gels 2023; 9:662. [PMID: 37623116 PMCID: PMC10454421 DOI: 10.3390/gels9080662] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Smart-responsive hydrogels have been widely used in various fields, particularly in the biomedical field. Compared with traditional hydrogels, smart-responsive hydrogels not only facilitate the encapsulation and controlled release of drugs, active substances, and even cells but, more importantly, they enable the on-demand and controllable release of drugs and active substances at the disease site, significantly enhancing the efficacy of disease treatment. With the rapid advancement of biomaterials, smart-responsive hydrogels have received widespread attention, and a wide variety of smart-responsive hydrogels have been developed for the treatment of different diseases, thus presenting tremendous research prospects. This review summarizes the latest advancements in various smart-responsive hydrogels used for disease treatment. Additionally, some of the current shortcomings of smart-responsive hydrogels and the strategies to address them are discussed, as well as the future development directions and prospects of smart-responsive hydrogels.
Collapse
Affiliation(s)
- Juan Cao
- School of Fashion and Design Art, Sichuan Normal University, Chengdu 610066, China;
| | - Ping Yuan
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China;
| | - Bo Wu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Yeqi Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
21
|
He Y, Vasilev K, Zilm P. pH-Responsive Biomaterials for the Treatment of Dental Caries-A Focussed and Critical Review. Pharmaceutics 2023; 15:1837. [PMID: 37514024 PMCID: PMC10385394 DOI: 10.3390/pharmaceutics15071837] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Dental caries is a common and costly multifactorial biofilm disease caused by cariogenic bacteria that ferment carbohydrates to lactic acid, demineralizing the inorganic component of teeth. Therefore, low pH (pH 4.5) is a characteristic signal of the localised carious environment, compared to a healthy oral pH range (6.8 to 7.4). The development of pH-responsive delivery systems that release antibacterial agents in response to low pH has gained attention as a targeted therapy for dental caries. Release is triggered by high levels of acidogenic species and their reduction may select for the establishment of health-associated biofilm communities. Moreover, drug efficacy can be amplified by the modification of the delivery system to target adhesion to the plaque biofilm to extend the retention time of antimicrobial agents in the oral cavity. In this review, recent developments of different pH-responsive nanocarriers and their biofilm targeting mechanisms are discussed. This review critically discusses the current state of the art and innovations in the development and use of smart delivery materials for dental caries treatment. The authors' views for the future of the field are also presented.
Collapse
Affiliation(s)
- Yanping He
- Adelaide Dental School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Peter Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
22
|
Li T, Luo Y, Wu S, Xia X, Zhao H, Xu X, Luo X. Super-Rapid In Situ Formation of a Silver Ion-Induced Supramolecular Hydrogel with Efficient Antibacterial Activity for Root Canal Disinfection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37321566 DOI: 10.1021/acsami.3c03335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Supramolecular hydrogels prepared using low-molecular-weight gelators have attracted considerable attention for biomedical applications. However, in situ supramolecular hydrogels are limited in terms of their prolonged gelation time and/or unstable nature at high temperatures. In this study, we constructed a stable supramolecular Ag-isoG hydrogel through super-rapid in situ formation, wherein hydrogelation process occurred instantaneously upon mixing isoG and Ag+ within 1 s under ambient conditions. Interestingly, unlike most nucleoside-based supramolecular hydrogels, this Ag-isoG hydrogel remains stable even at a high temperature (100 °C). Moreover, the as-designed hydrogel demonstrated significant antibacterial activity against Staphylococcus aureus and the oral bacterium Streptococcus mutans owing to the strong chelating ability of Ag ions, and the hydrogel exhibited relatively low cytotoxicity in root canal and an easy removal feature by saline. The hydrogel was then applied to a root canal infection model, which demonstrated strong antibacterial activity against Enterococcus faecalis, with performance even better than that of the regular calcium hydroxide paste. This feature makes the Ag-isoG hydrogel a prospective alternative material as intracanal medicaments for root canal treatment.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yu Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Shihong Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xin Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xiaobo Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
23
|
Al-Sayed MF, Tarek El-Wakad M, Hassan MA, Soliman AM, Eldesoky AS. Optimal Concentration and Duration of Endotracheal Tube Coating to Achieve Optimal Antimicrobial Efficacy and Safety Balance: An In Vitro Study. Gels 2023; 9:gels9050414. [PMID: 37233005 DOI: 10.3390/gels9050414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Ventilator-associated pneumonia (VAP) is a common and genuine complication in fundamentally sick patients accepting mechanical ventilation. Silver nitrate sol-gel (SN) has been proposed as a potential preventative measure against VAP. Be that as it may, the arrangement of SN with distinctive concentrations and pH values remains a basic factor influencing its effectiveness. METHODS Silver nitrate sol-gel was arranged with distinctive concentrations (0.1852%, 0.03496%, 0.1852%, and 0.01968%) and pH values (8.5, 7.0, 8.0, and 5.0) separately. The antimicrobial action of the silver nitrate and NaOH arrangements were assessed against Escherichia coli as a reference strain. The thickness and pH of the arrangements were measured, and biocompatibility tests were performed on the coating tube. The auxiliary changes in the endotracheal tube (ETT) tests after treatment were analyzed utilizing electron microscopy (SEM) and transmission electron microscopy (TEM). RESULTS The pH estimations of the diverse arrangements showed that the pH values shifted depending on the test conditions, with pH values extending from 5.0 to 8.5. The consistency estimations of the arrangements showed that the thickness values expanded as the pH values drew closer to 7.5 and diminished when the pH values went over 7.5. The antimicrobial action of the silver nitrate and NaOH arrangements were successful against Escherichia coli, with microbial checks decreasing in concentration (0.03496%, 0.1852% (pH: 8), and 0.01968%). The biocompatibility tests revealed tall cell reasonability rates, demonstrating that the coating tube was secure for therapeutic utilization and did not hurt typical cells. The SEM and TEM investigation gave visual proof of the antibacterial impacts of the silver nitrate and NaOH arrangements on the bacterial surface or interior of the bacterial cells. Moreover, the investigation revealed that a concentration of 0.03496% was the foremost successful in hindering the development of ETT bacterial colonization at the nanoscale level. CONCLUSIONS We propose that cautious control and alteration of the pH and thickness of the arrangements are essential to guaranteeing the reproducibility and quality of the sol-gel materials. The silver nitrate and NaOH arrangements may serve as a potential preventative degree against VAP in sick patients, with a concentration of 0.03496% appearing to show the most elevated viability. The coating tube may serve as a secure and viable preventative measure against VAP in sick patients. Further investigation is required to optimize the concentration and introduction time of the arrangements to maximize their adequacy in avoiding VAP in real-world clinical settings.
Collapse
Affiliation(s)
- Manar Fathy Al-Sayed
- Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Cairo 11511, Egypt
- Department of Biomedical Engineering, Higher Technological Institute, Cairo 11511, Egypt
| | | | - Mohammed A Hassan
- Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Cairo 11511, Egypt
| | - Ahmed M Soliman
- Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Cairo 11511, Egypt
| | - Amal S Eldesoky
- Department of Biomedical Engineering, Higher Technological Institute, Cairo 11511, Egypt
| |
Collapse
|
24
|
Himel MH, Sikder B, Ahmed T, Choudhury SM. Biomimicry in nanotechnology: a comprehensive review. NANOSCALE ADVANCES 2023; 5:596-614. [PMID: 36756510 PMCID: PMC9890514 DOI: 10.1039/d2na00571a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Biomimicry has been utilized in many branches of science and engineering to develop devices for enhanced and better performance. The application of nanotechnology has made life easier in modern times. It has offered a way to manipulate matter and systems at the atomic level. As a result, the miniaturization of numerous devices has been possible. Of late, the integration of biomimicry with nanotechnology has shown promising results in the fields of medicine, robotics, sensors, photonics, etc. Biomimicry in nanotechnology has provided eco-friendly and green solutions to the energy problem and in textiles. This is a new research area that needs to be explored more thoroughly. This review illustrates the progress and innovations made in the field of nanotechnology with the integration of biomimicry.
Collapse
Affiliation(s)
- Mehedi Hasan Himel
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh
- Department of Computer Science and Engineering, Brac University 66 Mohakhali Dhaka 1212 Bangladesh
| | - Bejoy Sikder
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh
| | - Tanvir Ahmed
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh
- Department of Computer Science and Engineering, Brac University 66 Mohakhali Dhaka 1212 Bangladesh
| | - Sajid Muhaimin Choudhury
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh
| |
Collapse
|