1
|
Dos Reis RA, Sarkar I, Rodrigues MG, Matson JB, Seabra AB, Kashfi K. NO- and H 2S- releasing nanomaterials: A crosstalk signaling pathway in cancer. Nitric Oxide 2024; 151:17-30. [PMID: 39179197 PMCID: PMC11424202 DOI: 10.1016/j.niox.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
The gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S) play important roles not only in maintaining physiological functions, but also in pathological conditions and events. Importantly, these molecules show a complex interplay in cancer biology, demonstrating both tumor-promoting and anti-tumor activities depending on their concentration, flux, and the environmental redox state. Additionally, various cell types respond differently to NO and H2S. These gasotransmitters can be synergistically combined with traditional anticancer treatments such as radiotherapy, immunotherapy, chemotherapy, and phototherapy. Notably, NO, and more recently H2S, have been shown to reverse multidrug resistance. Nanomaterials to deliver NO donors and, to a lesser extent, H2S donors, have emerged as a promising approach for targeted delivery of these gasotransmitters. Nanotechnology has advanced the delivery of anticancer drugs, enhancing efficiency and reducing side effects on non-cancerous cells. This review highlights recent progress in the design of NO and H2S-releasing nanomaterials for anticancer effects. It also explores the interactions between NO and H2S, which are crucial for developing combined therapies and nanomedicines with minimal side effects.
Collapse
Affiliation(s)
- Roberta Albino Dos Reis
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580, SP, Brazil
| | - Ishani Sarkar
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580, SP, Brazil
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
2
|
Liang S, Wang J, Zhu W, Zhang L. Glutathione-responsive biodegradable nanohybrid for cancer photoacoustic imaging and gas-assisted photothermal therapy. Colloids Surf B Biointerfaces 2024; 245:114205. [PMID: 39241634 DOI: 10.1016/j.colsurfb.2024.114205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Photothermal therapy (PTT), particularly in the near-infrared-II (NIR-II) range, has attracted widespread attention over the past years. However, the accompanied inflammatory responses can result in undesirable side effects and contribute to treatment ineffectiveness. Herein, we introduced a novel biodegradable nanoplatform (CuS/HMON-PEG) capable of PTT and hydrogen sulfide (H2S) generation, aimed at modulating inflammation for improved cancer treatment outcomes. The embedded ultrasmall copper sulphide (CuS) nanodots (1-2 nm) possessed favorable photoacoustic imaging (PAI) and NIR-II photothermal capabilities, rendering CuS/HMON-PEG an ideal phototheranostic agent. Upon internalization by 4T1 cancer cells, the hollow mesoporous organosilica nanoparticle (HMON) component could react with the overproduced glutathione (GSH) to produce H2S. In addition to the anticipated photothermal tumor ablation and H2S-induced mitochondrial dysfunction, the anti-inflammatory regulation was also been demonstrated by the downregulation of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1beta (IL-1β). More importantly, the modulation of inflammation also promoted wound healing mediated by PTT. This work not only presents a H2S-based nanomodulator to boost NIR-II PTT but also provides insights into the construction of novel organic/inorganic hybrid nanosystems.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingjing Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Li Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
3
|
Wang Y, Meng L, Zhao F, Zhao L, Gao W, Yu Q, Chen P, Sun Y. Harnessing External Irradiation for Precise Activation of Metal-Based Agents in Cancer Therapy. Chembiochem 2024; 25:e202400305. [PMID: 38825577 DOI: 10.1002/cbic.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/04/2024]
Abstract
Cancer is a significant global health issue. Platinum-based chemotherapy drugs, including cisplatin, are crucial in clinical anti-cancer treatment. However, these drugs have limitations such as drug resistance, non-specific distribution, and irreversible toxic and side effects. In recent years, the development of metal-based agents has led to the discovery of other anti-cancer effects beyond chemotherapy. Precise spatiotemporal controlled external irradiation can activate metal-based agents at specific sites and play a different role from traditional chemotherapy. These strategies can not only enhance the anti-cancer efficiency, but also show fewer side effects and non-cross-drug resistance, which are ideal approaches to solve the problems caused by traditional platinum-based chemotherapy drugs. In this review, we focus on various metal-based agent-mediated cancer therapies that are activated by three types of external irradiation: near-infrared (NIR) light, ultrasound (US), and X-ray, and give some prospects. We hope that this review will promote the generation of new kinds of metal-based anti-cancer agents.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Liling Meng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Fang Zhao
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, China
| | - Limei Zhao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Wei Gao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Qi Yu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Peiyao Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
4
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
5
|
Sharma A, Verwilst P, Li M, Ma D, Singh N, Yoo J, Kim Y, Yang Y, Zhu JH, Huang H, Hu XL, He XP, Zeng L, James TD, Peng X, Sessler JL, Kim JS. Theranostic Fluorescent Probes. Chem Rev 2024; 124:2699-2804. [PMID: 38422393 PMCID: PMC11132561 DOI: 10.1021/acs.chemrev.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.
Collapse
Affiliation(s)
- Amit Sharma
- Amity
School of Chemical Sciences, Amity University
Punjab, Sector 82A, Mohali 140 306, India
| | - Peter Verwilst
- Rega
Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Mingle Li
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Dandan Ma
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nem Singh
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiyoung Yoo
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Yujin Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Ying Yang
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Jing-Hui Zhu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haiqiao Huang
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi-Le Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Peng He
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- National
Center for Liver Cancer, the International Cooperation Laboratory
on Signal Transduction, Eastern Hepatobiliary
Surgery Hospital, Shanghai 200438, China
| | - Lintao Zeng
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaojun Peng
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, Texas 78712-1224, United
States
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
6
|
Zhang Y, Li S, Wang J, Zhang D, Lv M, Shen Y, Xu Z, Du J, Jiang XD. Monophenylboryl aza-BODIPY with free rotation of the B-phenyl group for enhanced photothermal conversion. J Mater Chem B 2024; 12:1372-1378. [PMID: 38240560 DOI: 10.1039/d3tb02623j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Owing to the efficient non-radiative relaxation by the free rotation of the B-phenyl moiety, monophenyl substituted aza-BODIPY on the boron centre with near-infrared absorption has high photothermal conversion efficiency, which is highly desirable for a photothermal therapy agent.
Collapse
Affiliation(s)
- Yiming Zhang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China.
| | - Sicheng Li
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China.
| | - Jie Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Dongxiang Zhang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China.
| | - Meiheng Lv
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China.
| | - Yue Shen
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China.
| | - Zhangrun Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China.
| | - Xin-Dong Jiang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China.
| |
Collapse
|
7
|
Liu Q, Wang X, Zhang Y, Fang Q, Du Y, Wei H. A metal-organic framework-derived ruthenium-nitrogen-carbon nanozyme for versatile hydrogen sulfide and cystathionine γ-lyase activity assay. Biosens Bioelectron 2024; 244:115785. [PMID: 37925941 DOI: 10.1016/j.bios.2023.115785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
In this study, a novel approach exploiting the interactions between hydrogen sulfide (H2S) and ruthenium-nitrogen-carbon (Ru-N-C) nanozymes is presented, advancing H2S and cystathionine γ-lyase (CSE) biosensing techniques. Utilizing the intrinsic peroxidase-like activity of Ru-N-C nanozymes and the noticeable inhibition effect caused by H2S, an efficient, simple, and economical assay has been developed. This innovative method allows for the versatile real-time monitoring of H2S from various sources, including specialized donors and native bacterial production. Furthermore, the assay has been applied to reveal the interactions within tumor cells and tissues ex vivo, providing a clearer and simpler view of CSE expression levels through an improved colorimetric method. This contribution enhances our understanding of the complex roles of H2S metabolism and represents a significant advancement in the versatile application of nanozymes in biomedical research.
Collapse
Affiliation(s)
- Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaoyu Wang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China.
| | - Yihong Zhang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Qi Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
8
|
Shao C, Gong X, Zhang D, Jiang XD, Du J, Wang G. Aza-BODIPY with two efficacious fragments for NIR light-driven photothermal therapy by triggering cancer cell apoptosis. J Mater Chem B 2023; 11:10625-10631. [PMID: 37920935 DOI: 10.1039/d3tb02132g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The reasonable structure of aza-BODIPY renders it as an efficient photothermal reagent for photothermal therapy. Herein, we describe the design and synthesis of aza-BODIPY NMeBu with the free rotating tert-butyl group and the dimethylamino-substituted segment to promote the photothermal conversion via the excited state non-radiative transition. NMeBu was found to be the π-π stacking form in the unit cell based on X-ray analysis. NMeBu-NPs by self-assembly possessed a near-infrared absorption (λabs = 772 nm), and once activated by near-infrared light, the photothermal efficiency in aqueous solution can reach 49.3%. NMeBu-NPs can penetrate the cell and trigger cell death via the apoptosis pathway under low concentration and low light power irradiation, thereby avoiding dark toxicity. Aza-BODIPY created using this procedure has excellent photothermal efficiency and could serve as a potential candidate for the treatment of cancer cells and tumors.
Collapse
Affiliation(s)
- Chunyu Shao
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China.
| | - Xiuyan Gong
- Department of Cell Biology, China Medical University, Shenyang, 110122, China.
| | - Dongxiang Zhang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China.
| | - Xin-Dong Jiang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China.
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China.
| | - Guiling Wang
- Department of Cell Biology, China Medical University, Shenyang, 110122, China.
| |
Collapse
|