1
|
Ding S, Zhang X, Wang G, Shi J, Zhu J, Yan J, Wang J, Wu J. Promoting diabetic oral mucosa wound healing with a light-responsive hydrogel adaptive to the microenvironment. Heliyon 2024; 10:e38599. [PMID: 39435107 PMCID: PMC11492349 DOI: 10.1016/j.heliyon.2024.e38599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
In diabetic patients, compromised angiogenesis due to endothelial dysfunction leads to delayed intraoral wound healing. However, the moist and dynamic environment of the oral cavity impedes the use of normal wound dressings. Sulfated chitosan (SCS) is a promising biomaterial that promoting angiogenesis. Here, a light-responsive hydrogel combined with SCS explored intraoral wound healing. We designed a SCS-modified hydrogel combined with alginate Methacryloyl (AlgMA) and acrylamide (AM) and demonstrated efficient wet adhesion and mechanical properties suitable for the wet and dynamic oral environment. In vitro, the SAA hydrogel improved the tube formation of human umbilical vein endothelial cells (HUVECs) under high-glucose conditions. Further investigations revealed that the SAA hydrogel can regulate HUVEC-macrophage interactions, leading to a shift in macrophage polarization from M1 to M2, thereby fostering an environment conducive to angiogenesis under high-glucose condition. The results demonstrated the substantial therapeutic impact of the SAA hydrogel on diabetic oral defect repair by effectively enhancing the local blood supply and angiogenesis.
Collapse
Affiliation(s)
- Shuwen Ding
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, PR China
| | - Xiaohui Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Gaopeng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jiaying Shi
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, PR China
| | - Jiayu Zhu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, PR China
| | - Jiayu Yan
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, PR China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Junhua Wu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, PR China
| |
Collapse
|
2
|
Chang Y, Zhao W, Li W, Zhang Q, Wang G. Bioadhesive and drug-loaded cellulose nanofiber/alginate film for healing oral mucosal wounds. Int J Biol Macromol 2024; 276:133858. [PMID: 39009262 DOI: 10.1016/j.ijbiomac.2024.133858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/25/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Recurrent oral ulcers are common oral mucosal lesions that severely reduce patients' quality of life. Commercial mucoadhesive films are easily disrupted due to oral movement and complex wet environments, thus reducing drug utilization and even causing toxic side effects. Herein, we report a mucoadhesive film composed of Ca2+-crosslinked carboxymethylated cellulose nanofibers and alginate, in which two drugs of dexamethasone (DXM) and dyclonine hydrochloride (DYC) are loaded for the treatment of oral ulcers. The wet films have a high Young's modulus of 7.1 ± 2.6 MPa and a large strain of 53.6 ± 9.8 % and adhere to tissue strongly, which allows them to resist the deformation caused by frequent oral movement. The films also have nice durability against water and excellent biocompatibility. Moreover, the drug release was controlled at different rates. The fast release of DYC facilitates the quick relief of pain, while the slow release of DXM benefits the long-term treatment of wounds. Finally, the animal experiment demonstrates the films displayed excellent therapeutic efficacy in healing oral ulcers.
Collapse
Affiliation(s)
- Yuqing Chang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wei Zhao
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Wei Li
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China.
| | - Guodong Wang
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| |
Collapse
|
3
|
Ding Y, Zhu Z, Zhang X, Wang J. Novel Functional Dressing Materials for Intraoral Wound Care. Adv Healthc Mater 2024; 13:e2400912. [PMID: 38716872 DOI: 10.1002/adhm.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Intraoral wounds represent a particularly challenging category of mucosal and hard tissue injuries, characterized by the unique structures, complex environment, and distinctive healing processes within the oral cavity. They have a common occurrence yet frequently inflict significant inconvenience and pain on patients, causing a serious decline in the quality of life. A variety of novel functional dressings specifically designed for the moist and dynamic oral environment have been developed and realized accelerated and improved wound healing. Thoroughly analyzing and summarizing these materials is of paramount importance in enhancing the understanding and proficiently managing intraoral wounds. In this review, the particular processes and unique characteristics of intraoral wound healing are firstly described. Up-to-date knowledge of various forms, properties, and applications of existing products are then intensively discussed, which are categorized into animal products, plant extracts, natural polymers, and synthetic products. To conclude, this review presents a comprehensive framework of currently available functional intraoral wound dressings, with an aim to provoke inspiration of future studies to design more convenient and versatile materials.
Collapse
Affiliation(s)
- Yutang Ding
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
4
|
Zhang W, Zhao J, Zou X, Yu J, Liao J, Huang F. Multifunctional hydrogels for the healing of oral ulcers. J Biomed Mater Res A 2024. [PMID: 39210659 DOI: 10.1002/jbm.a.37776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Oral ulcers are one of the most common oral diseases in clinical practice. Its etiology is complex and varied. Due to the dynamic nature of the oral environment, the wound surface is painful due to contact and wear, which seriously affects the quality of life of patients. Oral ulcers are often treated with topical drug therapy. Studies have shown that functional hydrogels play a positive role in promoting wound healing, showing unique advantages in wound dressings. In this paper, the causes and healing characteristics of oral ulcers are discussed in depth, and then the common treatment methods for oral ulcers are summarized and compared. Finally, the potential of functional hydrogels in the treatment of oral ulcers is discussed and projected through a review of the literature in recent years.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jie Zhao
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xinxin Zou
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jingrong Yu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jinlong Liao
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fengjie Huang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Li H, Zhang D, Bao P, Li Y, Liu C, Meng T, Wang C, Wu H, Pan K. Recent Advances in Functional Hydrogels for Treating Dental Hard Tissue and Endodontic Diseases. ACS NANO 2024; 18:16395-16412. [PMID: 38874120 DOI: 10.1021/acsnano.4c02754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Oral health is the basis of human health, and almost everyone has been affected by oral diseases. Among them, endodontic disease is one of the most common oral diseases. Limited by the characteristics of oral biomaterials, clinical methods for endodontic disease treatment still face large challenges in terms of reliability and stability. The hydrogel is a kind of good biomaterial with an adjustable 3D network structure, excellent mechanical properties, and biocompatibility and is widely used in the basic and clinical research of endodontic disease. This Review discusses the recent advances in functional hydrogels for dental hard tissue and endodontic disease treatment. The emphasis is on the working principles and therapeutic effects of treating different diseases with functional hydrogels. Finally, the challenges and opportunities of hydrogels in oral clinical applications are discussed and proposed. Some viewpoints about the possible development direction of functional hydrogels for oral health in the future are also put forward. Through systematic analysis and conclusion of the recent advances in functional hydrogels for dental hard tissue and endodontic disease treatment, this Review may provide significant guidance and inspiration for oral disease and health in the future.
Collapse
Affiliation(s)
- Huixu Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, P. R. China
- School of Stomatology, Qingdao University, Qingdao 266003, P. R. China
- Department of Endodontics in the first clinical division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Ding Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Pingping Bao
- Department of Endodontics in the first clinical division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Ying Li
- Department of Endodontics in the first clinical division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Chaoge Liu
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
- Department of Oramaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
| | - Tingting Meng
- Department of Endodontics in the first clinical division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Chao Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, P. R. China
| | - Heting Wu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, P. R. China
| | - Keqing Pan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, P. R. China
- School of Stomatology, Qingdao University, Qingdao 266003, P. R. China
| |
Collapse
|
6
|
Zhou Q, Dai H, Yan Y, Qin Z, Zhou M, Zhang W, Zhang G, Guo R, Wei X. From Short Circuit to Completed Circuit: Conductive Hydrogel Facilitating Oral Wound Healing. Adv Healthc Mater 2024; 13:e2303143. [PMID: 38306368 DOI: 10.1002/adhm.202303143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/09/2024] [Indexed: 02/04/2024]
Abstract
The primary challenges posed by oral mucosal diseases are their high incidence and the difficulty in managing symptoms. Inspired by the ability of bioelectricity to activate cells, accelerate metabolism, and enhance immunity, a conductive polyacrylamide/sodium alginate crosslinked hydrogel composite containing reduced graphene oxide (PAA-SA@rGO) is developed. This composite possesses antibacterial, anti-inflammatory, and antioxidant properties, serving as a bridge to turn the "short circuit" of the injured site into a "completed circuit," thereby prompting fibroblasts in proximity to the wound site to secrete growth factors and expedite tissue regeneration. Simultaneously, the PAA-SA@rGO hydrogel effectively seals wounds to form a barrier, exhibits antibacterial and anti-inflammatory properties, and prevents foreign bacterial invasion. As the electric field of the wound is rebuilt and repaired by the PAA-SA@rGO hydrogel, a 5 × 5 mm2 wound in the full-thickness buccal mucosa of rats can be expeditiously mended within mere 7 days. The theoretical calculations indicate that the PAA-SA@rGO hydrogel can aggregate and express SOX2, PITX1, and PITX2 at the wound site, which has a promoting effect on rapid wound healing. Importantly, this PAA-SA@rGO hydrogel has a fast curative effect and only needs to be applied for the first three days, which significantly improves patient satisfaction during treatment.
Collapse
Affiliation(s)
- Qiangqiang Zhou
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Hanqing Dai
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Yukun Yan
- Institute for Electric Light Sources, Fudan University, Shanghai, 200433, China
| | - Zhiming Qin
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Mengqi Zhou
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Wanlu Zhang
- Institute for Electric Light Sources, Fudan University, Shanghai, 200433, China
| | - Guoqi Zhang
- Electronic Components Technology and Materials, Delft University of Technology, Delft, 2628 CD, The Netherlands
| | - Ruiqian Guo
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- Institute for Electric Light Sources, Fudan University, Shanghai, 200433, China
| | - Xiaoling Wei
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| |
Collapse
|
7
|
Zhao Q, Leng C, Lau M, Choi K, Wang R, Zeng Y, Chen T, Zhang C, Li Z. Precise healing of oral and maxillofacial wounds: tissue engineering strategies and their associated mechanisms. Front Bioeng Biotechnol 2024; 12:1375784. [PMID: 38699431 PMCID: PMC11063293 DOI: 10.3389/fbioe.2024.1375784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Precise healing of wounds in the oral and maxillofacial regions is usually achieved by targeting the entire healing process. The rich blood circulation in the oral and maxillofacial regions promotes the rapid healing of wounds through the action of various growth factors. Correspondingly, their tissue engineering can aid in preventing wound infections, accelerate angiogenesis, and enhance the proliferation and migration of tissue cells during wound healing. Recent years, have witnessed an increase in the number of researchers focusing on tissue engineering, particularly for precise wound healing. In this context, hydrogels, which possess a soft viscoelastic nature and demonstrate exceptional biocompatibility and biodegradability, have emerged as the current research hotspot. Additionally, nanofibers, films, and foam sponges have been explored as some of the most viable materials for wound healing, with noted advantages and drawbacks. Accordingly, future research is highly likely to explore the application of these materials harboring enhanced mechanical properties, reduced susceptibility to external mechanical disturbances, and commendable water absorption and non-expansion attributes, for superior wound healing.
Collapse
Affiliation(s)
- Qingtong Zhao
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Stomatology, The Sixth Affiliated Hospital of Jinan University, Dongguan, China
| | - Changyun Leng
- School of stomatology, Jinan University, Guangzhou, China
| | - Manting Lau
- Department of Stomatology, Baoan Central Hospital of Shenzhen, Shenzhen, China
| | - Kawai Choi
- School of stomatology, Jinan University, Guangzhou, China
| | - Ruimin Wang
- School of stomatology, Jinan University, Guangzhou, China
| | - Yuyu Zeng
- School of stomatology, Jinan University, Guangzhou, China
| | - Taiying Chen
- School of stomatology, Jinan University, Guangzhou, China
| | - Canyu Zhang
- School of stomatology, Jinan University, Guangzhou, China
| | - Zejian Li
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of stomatology, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Su K, Li J, Wu X, Deng D, Gu H, Sun Y, Wang X, Huang W, Wang Y, Shang X, Xue C, Liang L, Li X, Li D, Ang S, Zhang K, Wu P, Wu K. One-Step Synthesis of Hydrogel Adhesive with Acid-Responsive Tannin Release for Diabetic Oral Mucosa Defects Healing. Adv Healthc Mater 2024; 13:e2303252. [PMID: 38245866 DOI: 10.1002/adhm.202303252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/12/2024] [Indexed: 01/22/2024]
Abstract
The complex preparation, weak wet tissue adhesion, and limited biological activity of traditional oral wound dressings usually impede their efficient treatment and healing for diabetic oral mucosal defects. To overcome these problems, a novel hydrogel adhesive (named CFT hydrogel) is rapidly constructed using a one-step method based on dual-dynamic covalent cross-linking. Compared with the commercial oral patches, the CFT hydrogel shows superior in vivo (rat tongue) wet tissue adhesion performance. Additionally, the CFT hydrogel exhibits unique acid-responsive properties, thereby facilitating the release of bioactive molecule tannic acid in the acidic diabetic wound microenvironment. And a series of in vitro experiments substantiate the favorable biocompatibility and bioactivity properties (including antibacterial, antioxidative, anti-inflammatory, and angiogenetic effects) exhibited by CFT hydrogel. Moreover, in vivo experiments conducted on a diabetic rat model with oral mucosal defects demonstrate that the CFT hydrogel exhibits significant efficacy in protecting against mucosal wounds, alleviating inflammatory reactions, thereby facilitating the wound-healing process. Taken together, this study provides a promising and comprehensive therapeutic option with great potential for the clinical management of oral mucosa defects in diabetic patients.
Collapse
Affiliation(s)
- Kaize Su
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
| | - Jinxuan Li
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
| | - Xiaoxian Wu
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Duanyu Deng
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
| | - Han Gu
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
| | - Ying Sun
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
| | - Xu Wang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
| | - Wenhuan Huang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
| | - Yan Wang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
| | - Xiangcun Shang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
| | - Cuiyu Xue
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
| | - Lihua Liang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
| | - Xiaofang Li
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
| | - Dongli Li
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
| | - Song Ang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
| | - Kun Zhang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
| | - Panpan Wu
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
| | - Keke Wu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, P. R. China
| |
Collapse
|
9
|
Zhu Y, Yang D, Liu J, Zheng C, Li N, Yang D, Zhang X, Jin C. Doping proanthocyanidins into gel/zirconium hybrid hydrogel to reshape the microenvironment of diabetic wounds for healing acceleration. Int J Biol Macromol 2024; 260:129353. [PMID: 38242386 DOI: 10.1016/j.ijbiomac.2024.129353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Infection and chronic inflammation caused by oxidative stress are major challenges in chronic wound healing. Preparing a simple, efficient hydrogel with reactive oxygen-scavenging properties for chronic wound repair is a promising strategy. Herein, we report an injectable, self-repairing hydrogel with antioxidant and antibacterial properties that can be used to regenerate diabetic wounds. Hydrogels are prepared by coordination crosslinking of gelatin (Gel), a natural biopolymer derived from collagen, with Zr4+. Because of the dynamic properties of metal ion coordination bonds and the bactericidal effect of Zr4+, the obtained coordination hydrogels exhibit self-healing, injectable, and antibacterial properties. The plant polyphenol "proanthocyanidins," which has reactive oxygen-scavenging and anti-inflammatory effects, was simultaneously loaded into the coordination hydrogel during cross-linking. We obtained a versatile hydrogel that is easy to prepare, resistant to mechanical irritation, and antioxidant, and antibacterial in vitro. We further demonstrated that the injectable self-healing hydrogels could effectively repair diabetic skin wounds and accelerate collagen deposition and wound healing. This study shows that the multifunctional antioxidant hydrogel has great potential in developing multifunctional biomaterials for chronic wound healing.
Collapse
Affiliation(s)
- Yaxin Zhu
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Dong Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Jieyu Liu
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chenguo Zheng
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Na Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Dejun Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
| | - Xingxing Zhang
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Chun Jin
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
10
|
Lin YC, Wang HY, Tang YC, Lin WR, Tseng CL, Hu CC, Chung RJ. Enhancing wound healing and adhesion through dopamine-assisted gelatin-silica hybrid dressings. Int J Biol Macromol 2024; 258:128845. [PMID: 38141693 DOI: 10.1016/j.ijbiomac.2023.128845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Gelatin, widely employed in hydrogel dressings, faces limitations when used in high fluid environments, hindering effective material adhesion to wound sites and subsequently reducing treatment efficacy. The rapid degradation of conventional hydrogels often results in breakdown before complete wound healing. Thus, there is a pressing need for the development of durable adhesive wound dressings. In this study, 3-glycidoxypropyltrimethoxysilane (GPTMS) was utilized as a coupling agent to create gelatin-silica hybrid (G-H) dressings through the sol-gel method. The coupling reaction established covalent bonds between gelatin and silica networks, enhancing structural stability. Dopamine (DP) was introduced to this hybrid (G-H-D) dressing to further boost adhesiveness. The efficacy of the dressings for wound management was assessed through in-vitro and in-vivo tests, along with ex-vivo bioadhesion testing on pig skin. Tensile bioadhesion tests demonstrated that the G-H-D material exhibited approximately 2.5 times greater adhesion to soft tissue in wet conditions compared to pure gelatin. Moreover, in-vitro and in-vivo wound healing experiments revealed a significant increase in wound healing rates. Consequently, this material shows promise as a viable option for use as a moist wound dressing.
Collapse
Affiliation(s)
- Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Huey-Yuan Wang
- Department of Stomatology, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Yao-Chun Tang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Wan-Rong Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; International Ph. D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan.
| |
Collapse
|
11
|
Novianti Y, Nur'aeny N. Exploring Interleukin-10 Levels in Diabetes Patients with and without Oral Diseases: A Systematic Review. J Inflamm Res 2024; 17:541-552. [PMID: 38313209 PMCID: PMC10838512 DOI: 10.2147/jir.s449546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/23/2024] [Indexed: 02/06/2024] Open
Abstract
Aim Interleukin-10 (IL-10) is a cytokine that plays an important role in the progression of diabetes mellitus (DM). Oral diseases were more common in diabetics than in non-diabetics. The aim of this review is to identify IL-10 levels in diabetic patients with and without oral diseases. Methods A systematic review was conducted based on the PRISMA guidelines. Three databases (PubMed, Cochrane Library, and Science Direct) were used to search for articles up to November 2023 for studies on the measurement of IL-10 in diabetics with and without oral disease. The criteria were limited to human studies and full-text in English only. The outcome was the value of IL-10. The study was quality-graded using the Risk of Bias Assessment Tool for Non-randomized Studies (RoBANS). Results There were eleven articles that met the eligibility criteria for analysis. Four articles discovered higher IL-10 levels, while seven articles discovered lower IL-10 levels in diabetes patients with oral diseases compared with each control group. Conclusion Most studies showed lower IL-10 levels in diabetic patients with oral diseases compared with the control group.
Collapse
Affiliation(s)
- Yessy Novianti
- Oral Medicine Residency Program, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Nanan Nur'aeny
- Oral Medicine Department, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
12
|
Wang X, Yang Y, Zhao W, Zhu Z, Pei X. Recent advances of hydrogels as smart dressings for diabetic wounds. J Mater Chem B 2024; 12:1126-1148. [PMID: 38205636 DOI: 10.1039/d3tb02355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Chronic diabetic wounds have been an urgent clinical problem, and wound dressings play an important role in their management. Due to the design of traditional dressings, it is difficult to achieve adaptive adhesion and on-demand removal of complex diabetic wounds, real-time monitoring of wound status, and dynamic adjustment of drug release behavior according to the wound microenvironment. Smart hydrogels, as smart dressings, can respond to environmental stimuli and achieve more precise local treatment. Here, we review the latest progress of smart hydrogels in wound bandaging, dynamic monitoring, and drug delivery for treatment of diabetic wounds. It is worth noting that we have summarized the most important properties of smart hydrogels for diabetic wound healing. In addition, we discuss the unresolved challenges and future prospects in this field. We hope that this review will contribute to furthering progress on smart hydrogels as improved dressing for diabetic wound healing and practical clinical application.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Weifeng Zhao
- College of Polymer Science and Engineering, The State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
13
|
Kováč J, Priščáková P, Gbelcová H, Heydari A, Žiaran S. Bioadhesive and Injectable Hydrogels and Their Correlation with Mesenchymal Stem Cells Differentiation for Cartilage Repair: A Mini-Review. Polymers (Basel) 2023; 15:4228. [PMID: 37959908 PMCID: PMC10648146 DOI: 10.3390/polym15214228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Injectable bioadhesive hydrogels, known for their capacity to carry substances and adaptability in processing, offer great potential across various biomedical applications. They are especially promising in minimally invasive stem cell-based therapies for treating cartilage damage. This approach harnesses readily available mesenchymal stem cells (MSCs) to differentiate into chondrocytes for cartilage regeneration. In this review, we investigate the relationship between bioadhesion and MSC differentiation. We summarize the fundamental principles of bioadhesion and discuss recent trends in bioadhesive hydrogels. Furthermore, we highlight their specific applications in conjunction with stem cells, particularly in the context of cartilage repair. The review also encompasses a discussion on testing methods for bioadhesive hydrogels and direct techniques for differentiating MSCs into hyaline cartilage chondrocytes. These approaches are explored within both clinical and laboratory settings, including the use of genetic tools. While this review offers valuable insights into the interconnected aspects of these topics, it underscores the need for further research to fully grasp the complexities of their relationship.
Collapse
Affiliation(s)
- Ján Kováč
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Petra Priščáková
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Gbelcová
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Abolfazl Heydari
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia
| | - Stanislav Žiaran
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Department of Urology, Faculty of Medicine, Comenius University, Limbová 5, 833 05 Bratislava, Slovakia
| |
Collapse
|
14
|
Hao M, Wang D, Duan M, Kan S, Li S, Wu H, Xiang J, Liu W. Functional drug-delivery hydrogels for oral and maxillofacial wound healing. Front Bioeng Biotechnol 2023; 11:1241660. [PMID: 37600316 PMCID: PMC10434880 DOI: 10.3389/fbioe.2023.1241660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
The repair process for oral and maxillofacial injuries involves hemostasis, inflammation, proliferation, and remodeling. Injury repair involves a variety of cells, including platelets, immune cells, fibroblasts, and various cytokines. Rapid and adequate healing of oral and maxillofacial trauma is a major concern to patients. Functional drug-delivery hydrogels play an active role in promoting wound healing and have shown unique advantages in wound dressings. Functional hydrogels promote wound healing through their adhesive, anti-inflammatory, antioxidant, antibacterial, hemostatic, angiogenic, and re-epithelialization-promoting properties, effectively sealing wounds and reducing inflammation. In addition, functional hydrogels can respond to changes in temperature, light, magnetic fields, pH, and reactive oxygen species to release drugs, enabling precise treatment. Furthermore, hydrogels can deliver various cargos that promote healing, including nucleic acids, cytokines, small-molecule drugs, stem cells, exosomes, and nanomaterials. Therefore, functional drug-delivery hydrogels have a positive impact on the healing of oral and maxillofacial injuries. This review describes the oral mucosal structure and healing process and summarizes the currently available responsive hydrogels used to promote wound healing.
Collapse
Affiliation(s)
- Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Mengna Duan
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shuangji Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingcheng Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
15
|
Li Y, Bi D, Hu Z, Yang Y, Liu Y, Leung WK. Hydrogel-Forming Microneedles with Applications in Oral Diseases Management. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4805. [PMID: 37445119 DOI: 10.3390/ma16134805] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Controlled drug delivery in the oral cavity poses challenges such as bacterial contamination, saliva dilution, and inactivation by salivary enzymes upon ingestion. Microneedles offer a location-specific, minimally invasive, and retentive approach. Hydrogel-forming microneedles (HFMs) have emerged for dental diagnostics and therapeutics. HFMs penetrate the stratum corneum, undergo swelling upon contact, secure attachment, and enable sustained transdermal or transmucosal drug delivery. Commonly employed polymers such as polyvinyl alcohol (PVA) and polyvinyl pyrrolidone are crosslinked with tartaric acid or its derivatives while incorporating therapeutic agents. Microneedle patches provide suture-free and painless drug delivery to keratinized or non-keratinized mucosa, facilitating site-specific treatment and patient compliance. This review comprehensively discusses HFMs' applications in dentistry such as local anesthesia, oral ulcer management, periodontal treatment, etc., encompassing animal experiments, clinical trials, and their fundamental impact and limitations, for example, restricted drug carrying capacity and, until now, a low number of dental clinical trial reports. The review explores the advantages and future perspectives of HFMs for oral drug delivery.
Collapse
Affiliation(s)
- Yuqing Li
- Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Duohang Bi
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhekai Hu
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yanqi Yang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Zhang Z, Huang Q, Zhao D, Lian F, Li X, Qi W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Front Endocrinol (Lausanne) 2023; 14:1112363. [PMID: 36824356 PMCID: PMC9941188 DOI: 10.3389/fendo.2023.1112363] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycaemia, with absolute insulin deficiency or insulin resistance as the main cause, and causes damage to various target organs including the heart, kidney and neurovascular. In terms of the pathological and physiological mechanisms of DM, oxidative stress is one of the main mechanisms leading to DM and is an important link between DM and its complications. Oxidative stress is a pathological phenomenon resulting from an imbalance between the production of free radicals and the scavenging of antioxidant systems. The main site of reactive oxygen species (ROS) production is the mitochondria, which are also the main organelles damaged. In a chronic high glucose environment, impaired electron transport chain within the mitochondria leads to the production of ROS, prompts increased proton leakage and altered mitochondrial membrane potential (MMP), which in turn releases cytochrome c (cyt-c), leading to apoptosis. This subsequently leads to a vicious cycle of impaired clearance by the body's antioxidant system, impaired transcription and protein synthesis of mitochondrial DNA (mtDNA), which is responsible for encoding mitochondrial proteins, and impaired DNA repair systems, contributing to mitochondrial dysfunction. This paper reviews the dysfunction of mitochondria in the environment of high glucose induced oxidative stress in the DM model, and looks forward to providing a new treatment plan for oxidative stress based on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Fengmei Lian
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| | - Wenxiu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| |
Collapse
|