1
|
Chen H, Liu L, Gu Y, Cai Z, Xu F, Liang W, Hou X, Chen F. The Construction and Mechanism Study of High-Speed Carrier Transport Channel in Gallium Arsenide Homojunction Toward High-Performance Photoelectrochemical Photodetector. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403791. [PMID: 39434487 DOI: 10.1002/smll.202403791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/06/2024] [Indexed: 10/23/2024]
Abstract
The energy band structure and surface/interface properties are prerequisite for not only preserving the intrinsic material quality but also manipulating carrier transport behavior for photoelectrochemical (PEC) photodetection. How to precisely design/regulate the band structure and surface/interface properties of semiconductor materials is the key to improving the performance of PEC photodetection. Herein, the quintuple heterotypic homojunction (QH) GaAs film is fabricated with a gradient energy band via plasma-assisted molecular beam epitaxy for constructing a high-speed carrier transport channel in PEC photodetection, which can efficiently drive the separation and transport of photogenerated electron-hole pairs. The designed QH-GaAs-based PEC photodetector exhibits excellent performances, compared with bare i-GaAs, delivering an ultrashort rise/decay times of only 1.1/1.1 ms and a high responsivity of 20.4 mA W-1 at 0 V under 850 nm illumination. Strikingly, an ultrahigh detectivity with 1.46 × 1012 Jones is achieved. More importantly, the QH-GaAs device can stably operate underwater seawater environment. This study provides a novel strategy for designing and fabricating multiple heterotypic homojunction with gradient energy band to boost charge transport dynamics for PEC fields.
Collapse
Affiliation(s)
- Hedong Chen
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronics and Information Engineering, South China Normal University, Foshan, 528225, P. R. China
| | - Lin Liu
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronics and Information Engineering, South China Normal University, Foshan, 528225, P. R. China
| | - Yuehao Gu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhiyuan Cai
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Fan Xu
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronics and Information Engineering, South China Normal University, Foshan, 528225, P. R. China
| | - Wenhao Liang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Mechanical Engineering, Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Xianhua Hou
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronics and Information Engineering, South China Normal University, Foshan, 528225, P. R. China
| | - Fuming Chen
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronics and Information Engineering, South China Normal University, Foshan, 528225, P. R. China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
2
|
Roy PK, Mosina K, Hengtakaeh S, Sarkar KJ, Mazánek V, Luxa J, Sofer Z. Next-Generation Self-Powered Photodetectors using 2D Bismuth Oxide Selenide Crystals. ACS APPLIED NANO MATERIALS 2024; 7:24377-24387. [PMID: 39539807 PMCID: PMC11555640 DOI: 10.1021/acsanm.4c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
The concept of self-powered photodetectors has attracted significant attention due to their versatile applications in areas such as intelligent systems and hazardous substance detection. Among these, p-n junction and Schottky junction photodetectors are the most widely studied types; however, their fabrication processes are often complex and costly. To overcome these challenges, we focused on the emerging self-powered, ultrasensitive photodetector platform based on photoelectrochemical (PEC) principles. This platform leverages the unique properties of the emerging material bismuth oxide selenide (Bi2O2Se), which features a wide bandgap (∼2 eV) and a high absorption coefficient. We utilized chemical exfoliation to obtain thin layers of Bi2O2Se, enabling highly efficient photodetection. The device characterization demonstrated impressive performance metrics, including a responsivity of 97.1 μA W-1 and a specific detectivity of 2 × 108 cm Hz 1/2 W-1. The PEC photodetector also exhibits broad-spectrum sensitivity, from blue to infrared wavelengths, and features an ultrafast response time of ∼82 ms and a recovery time of ∼86 ms, highlighting its practical potential. Moreover, these self-powered photodetectors show excellent stability in electrochemical environments, positioning them promising candidates for integration into future high-efficiency devices.
Collapse
Affiliation(s)
- Pradip Kumar Roy
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Kseniia Mosina
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Sofia Hengtakaeh
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Kalyan Jyoti Sarkar
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Vlastimil Mazánek
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jan Luxa
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Zdenek Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
3
|
Ge R, Liu B, Sui F, Zheng Y, Yu Y, Wang K, Qi R, Huang R, Yue F, Chu J, Duan CG. In Situ Formation of SnSe 2/SnSe Vertical Heterostructures toward Polarization Selectable Band Alignments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404965. [PMID: 39155421 DOI: 10.1002/smll.202404965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/01/2024] [Indexed: 08/20/2024]
Abstract
2D van der Waals (vdW) layered semiconductor vertical heterostructures with controllable band alignment are highly desired for nanodevice applications including photodetection and photovoltaics. However, current 2D vdW heterostructures are mainly obtained via mechanical exfoliation and stacking process, intrinsically limiting the yield and reproducibility, hardly achieving large-area with specific orientation. Here, large-area vdW-epitaxial SnSe2/SnSe heterostructures are obtained by annealing layered SnSe. These in situ Raman analyses reveal the optimized annealing conditions for the phase transition of SnSe to SnSe2. The spherical aberration-corrected transmission electron microscopy investigations demonstrate that layered SnSe2 epitaxially forms on SnSe surface with atomically sharp interface and specific orientation. Optical characterizations and theoretical calculations reveal valley polarization of the heterostructures that originate from SnSe, suggesting a naturally adjustable band alignment between type-II and type-III, only relying on the polarization angle of incident lights. This work not only offers a unique and accessible approach to obtaining large-area SnSe2/SnSe heterostructures with new insight into the formation mechanism of vdW heterostructures, but also opens the intriguing optical applications based on valleytronic nanoheterostructures.
Collapse
Affiliation(s)
- Rui Ge
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Beituo Liu
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Fengrui Sui
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Yufan Zheng
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Yilun Yu
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Kaiqi Wang
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Ruijuan Qi
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| | - Rong Huang
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
- Shanghai Center of Brain-Inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| | - Fangyu Yue
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
- Shanghai Center of Brain-Inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| | - Junhao Chu
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
- National Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Shanghai, 200083, China
| | - Chun-Gang Duan
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
- Shanghai Center of Brain-Inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
4
|
Ding K, Zhang H, Jiang J, Luo J, Wu R, Ye L, Tang Y, Pang D, Li H, Li W. Balancing Carrier Dynamics in Oxygen-Vacancy-Tuned Amorphous Ga 2O 3 Thin-Film Self-Powered Photoelectrochemical-Type Solar-Blind Photodetector Arrays for Underwater Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407822. [PMID: 39344716 DOI: 10.1002/advs.202407822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/01/2024] [Indexed: 10/01/2024]
Abstract
Underwater imaging technology plays a pivotal role in marine exploration and reconnaissance, necessitating photodetectors (PDs) with high responsivity, fast response speed, and low preparation costs. This study presents the synergistic optimization of responsivity and response speed in self-powered photoelectrochemical (PEC)-type photodetector arrays based on oxygen-vacancy-tuned amorphous gallium oxide (a-Ga2O3) thin films, specifically designed for solar-blind underwater detection. Utilizing a low-cost one-step sputtering process with controlled oxygen flow, a-Ga2O3 thin films with varying oxygen vacancy (VO) concentrations are fabricated. By balancing the trade-offs among electrocatalytic reactions, charge transfer, carrier recombination, and trapping, both the responsivity and response speed of a-Ga2O3-based self-powered PEC-PDs are simultaneously improved. Consequently, the optimized PEC-PDs demonstrated exceptional performance, achieving a responsivity of 33.75 mA W-1 and response times of 12.8 ms (rise) and 31.3 ms (decay), outperforming the vast majority of similar devices. Furthermore, a pronounced positive correlation between anomalous transient photocurrent spikes and the concentration of VO defects is observed, offering compelling evidence for VO-mediated indirect recombination. Finally, the proof-of-concept solar-blind underwater imaging system, utilizing an array of self-powered PEC-PDs, demonstrated clear imaging capabilities in seawater. This work provides valuable insight into the potential for developing cost-effective, high-performance a-Ga2O3 thin-film-based PEC-PDs for advanced underwater imaging technology.
Collapse
Affiliation(s)
- Ke Ding
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Hong Zhang
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Jili Jiang
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Jiangshuai Luo
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Rouling Wu
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Lijuan Ye
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Yan Tang
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Di Pang
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Honglin Li
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Wanjun Li
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| |
Collapse
|
5
|
Li W, Qin Q, Li X, Huangfu Y, Shen D, Liu J, Li J, Li B, Wu R, Duan X. Robust Growth of 2D Transition Metal Dichalcogenide Vertical Heterostructures via Ammonium-Assisted CVD Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408367. [PMID: 39300853 DOI: 10.1002/adma.202408367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Two dimension (2D) transition metal dichalcogenides (TMD) heterostructures have opened unparalleled prospects for next-generation electronic and optoelectronic applications due to their atomic-scale thickness and distinct physical properties. The chemical vapor deposition (CVD) method is the most feasible approach to prepare 2D TMD heterostructures. However, the synthesis of 2D vertical heterostructures faces competition between in-plane and out-of-plane growth, which makes it difficult to precisely control the growth of vertical heterostructures. Here, a universal and controllable strategy is reported to grow various 2D TMD vertical heterostructures through an ammonium-assisted CVD process. The ammonium-assisted strategy shows excellent controllability and operational simplicity to prevent interlayer diffusion/alloying and thermal decomposition of the existed TMD templates. Ab initio simulations demonstrate that the reaction between NH4Cl and MoS2 leads to the formation of MoS3 clusters, promoting the nucleation and growth of 2D MoS2 on existed 2D WS2 layer, thereby leading to the growth of vertical heterostructure. The resulting 2D WSe2/WS2 vertical heterostructure photodetectors demonstrate an outstanding optoelectronic performance, which are comparable to the performances of photodetectors fabricated from mechanically exfoliated and stacked vertical heterostructures. The ammonium-assisted strategy for robust growth of high-quality vertical van der Waals heterostructures will facilitate fundamental physics investigations and device applications in electronics and optoelectronics.
Collapse
Affiliation(s)
- Wei Li
- College of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Qiuyin Qin
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xin Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ying Huangfu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Dingyi Shen
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, China
| | - Jialing Liu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jia Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bo Li
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Ruixia Wu
- College of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Xidong Duan
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
6
|
Su W, Kuklin A, Jin LH, Engelgardt D, Zhang H, Ågren H, Zhang Y. Liquid Phase Exfoliation of Few-Layer Non-Van der Waals Chromium Sulfide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402875. [PMID: 38828875 PMCID: PMC11336913 DOI: 10.1002/advs.202402875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Exfoliation of 2D non-Van der Waals (non-vdW) semiconductor nanoplates (NPs) from inorganic analogs presents many challenges ahead for further exploring of their advanced applications on account of the strong bonding energies. In this study, the exfoliation of ultrathin 2D non-vdW chromium sulfide (2D Cr2S3) by means of a combined facile liquid-phase exfoliation (LPE) method is successfully demonstrated. The morphology and structure of the 2D Cr2S3 material are systematically examined. Magnetic studies show an obvious temperature-dependent uncompensated antiferromagnetic behavior of 2D Cr2S3. The material is further loaded on TiO2 nanorod arrays to form an S-scheme heterojunction. Experimental measurements and density functional theory (DFT) calculations confirm that the formed TiO2@Cr2S3 S-scheme heterojunction facilitates the separation and transmission of photo-induced electron/hole pairs, resulting in a significantly enhanced photocatalytic activity in the visible region.
Collapse
Affiliation(s)
- Wenjie Su
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
| | - Artem Kuklin
- Department of Physics and Astronomy Uppsala UniversityBox 516UppsalaSE‐751 20Sweden
| | - Ling hua Jin
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
| | - Dana Engelgardt
- Department of ChemistryCollege of Natural SciencesKyungpook National University80 Daehakro, BukguDaegu41556South Korea
- International Research Center of Spectroscopy and Quantum Chemistry – IRC SQCSiberian Federal University79 Svobodny pr.Krasnoyarsk660041Russia
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060China
| | - Hans Ågren
- Department of Physics and Astronomy Uppsala UniversityBox 516UppsalaSE‐751 20Sweden
| | - Ye Zhang
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
| |
Collapse
|
7
|
Wang H, Li W, Gloginjić M, Petrović S, Krupska TV, Turov VV, Zhao J, Yang W, Du Z, Chen S. High-Sensitivity Photoelectrochemical Ultraviolet Photodetector with Stable pH-Universal Adaptability Based on Whole Single-Crystal Integrated Self-Supporting 4H-SiC Nanoarrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400045. [PMID: 38453678 DOI: 10.1002/smll.202400045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Emerging photoelectrochemical (PEC) photodetectors (PDs) have notable advantages over conventional PDs and have attracted extensive attention. However, harsh liquid environments, such as those with high corrosivity and attenuation, substantially restrict their widespread application. Moreover, most PEC PDs are constructed by assembling numerous nanostructures on current collector substrates, which inevitably contain abundant interfaces and defects, thus greatly weakening the properties of PDs. To address these challenges, a high-performance pH-universal PEC ultraviolet (UV) PD based on a whole single-crystal integrated self-supporting 4H-SiC nanopore array photoelectrode is constructed, which is fabricated using a two-step anodic oxidation approach. The PD exhibits excellent photodetection behavior, with high responsivity (218.77 mA W-1), detectivity (6.64 × 1013 Jones), external quantum efficiency (72.47%), and rapid rise/decay times (17/48 ms) under 375 nm light illumination with a low intensity of 0.15 mW cm-2 and a bias voltage of 0.6 V, which is fall in the state-of-the-art of the wide-bandgap semiconductor-based PDs reported thus far. Furthermore, the SiC PEC PD exhibits excellent photoresponse and long-term operational stability in pH-universal liquid environments. The improved photodetection performance of the SiC PEC PD is primarily attributed to the synergistic effect of the nanopore array structure, integrated self-supporting configuration, and single-crystal structure of the whole photoelectrode.
Collapse
Affiliation(s)
- Hulin Wang
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, P. R. China
- School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Weijun Li
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Marko Gloginjić
- Laboratory of Physics, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11351, Serbia
| | - Srdjan Petrović
- Laboratory of Physics, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11351, Serbia
| | - Tetyana V Krupska
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
- Department of Nanoporous and Nanosized Carbon Materials, O. Chuiko Institute of Surface Chemistry, NASU, Kyiv, 03164, Ukraine
| | - Vladimir V Turov
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
- Department of Nanoporous and Nanosized Carbon Materials, O. Chuiko Institute of Surface Chemistry, NASU, Kyiv, 03164, Ukraine
| | - Jialong Zhao
- School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Weiyou Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Zhentao Du
- School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, P. R. China
| | - Shanliang Chen
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| |
Collapse
|
8
|
Xu X, Wang Y, Ji Y, Chen Z, Lu C, Xu X, Hua D. High-Performance Flexible Broadband Photoelectrochemical Photodetector Based on Molybdenum Telluride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308590. [PMID: 38295096 DOI: 10.1002/smll.202308590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Indexed: 02/02/2024]
Abstract
Flexible broadband photodetectors are desired but challenging to be fabricated for next-generation wearable intelligent optoelectronic devices. Considering the narrow bandgap and strong light absorption, molybdenum telluride (MoTe2) based photoelectrochemical photodetectors are successfully assembled by liquid phase exfoliation accompanied with the electrophoretic deposited method. This MoTe2-based photodetector shows a broadband detection in ultraviolet-near-infrared band, long-term stability within 18000 s, and fast response in millisecond-level (response time≈19 ms, recovery time≈26 ms). More importantly, even though the MoTe2 photodetector is bent and twisted at a high degree for several hundred times, it still shows excellent flexibility with stable on-off switching characteristics. Additionally, this photodetector displays a good response for rotation angles in the range from 0° to 360°, and the extracted Iph maintain almost the same value approximately 0.97 µA cm-2, suggesting an omnidirectional detection capability. This work demonstrates the proposed flexible photoanode shows a great potential in future broadband omnidirectional detection systems.
Collapse
Affiliation(s)
- Xiang Xu
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Ying Wang
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Yeqin Ji
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Zhijian Chen
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Chunhui Lu
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon Technology, Northwest University, Xi'an, 710069, China
| | - Xinlong Xu
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon Technology, Northwest University, Xi'an, 710069, China
| | - Dengxin Hua
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
9
|
Kim S, Lee W, Ko K, Cho H, Cho H, Jeon S, Jeong C, Kim S, Ding F, Suh J. Phase-Centric MOCVD Enabled Synthetic Approaches for Wafer-Scale 2D Tin Selenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400800. [PMID: 38593471 DOI: 10.1002/adma.202400800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Following an initial nucleation stage at the flake level, atomically thin film growth of a van der Waals material is promoted by ultrafast lateral growth and prohibited vertical growth. To produce these highly anisotropic films, synthetic or post-synthetic modifications are required, or even a combination of both, to ensure large-area, pure-phase, and low-temperature deposition. A set of synthetic strategies is hereby presented to selectively produce wafer-scale tin selenides, SnSex (both x = 1 and 2), in the 2D forms. The 2D-SnSe2 films with tuneable thicknesses are directly grown via metal-organic chemical vapor deposition (MOCVD) at 200 °C, and they exhibit outstanding crystallinities and phase homogeneities and consistent film thickness across the entire wafer. This is enabled by excellent control of the volatile metal-organic precursors and decoupled dual-temperature regimes for high-temperature ligand cracking and low-temperature growth. In contrast, SnSe, which intrinsically inhibited from 2D growth, is indirectly prepared by a thermally driven phase transition of an as-grown 2D-SnSe2 film with all the benefits of the MOCVD technique. It is accompanied by the electronic n-type to p-type crossover at the wafer scale. These tailor-made synthetic routes will accelerate the low-thermal-budget production of multiphase 2D materials in a reliable and scalable fashion.
Collapse
Affiliation(s)
- Sungyeon Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Wookhee Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Kyungmin Ko
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Hanbin Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Hoyeon Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Seonhwa Jeon
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Changwook Jeong
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Sungkyu Kim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, South Korea
| | - Feng Ding
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China
| | - Joonki Suh
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| |
Collapse
|
10
|
Zhang N, Cui M, Zhou J, Shao Z, Gao X, Liu J, Sun R, Zhang Y, Li W, Li X, Yao J, Gao F, Feng W. High-Performance Self-Powered Photoelectrochemical Ultraviolet Photodetectors Based on an In 2O 3 Nanocube Film. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19167-19174. [PMID: 38569197 DOI: 10.1021/acsami.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Ultraviolet photodetectors (UV PDs) have attracted significant attention due to their wide range of applications, such as underwater communication, biological analysis, and early fire warning systems. Indium oxide (In2O3) is a candidate for developing high-performance photoelectrochemical (PEC)-type UV PDs owing to its high UV absorption and good stability. However, the self-powered photoresponse of the previously reported In2O3-based PEC UV PDs is unsatisfactory. In this work, high-performance self-powered PEC UV PDs were constructed by using an In2O3 nanocube film (NCF) as a photoanode. In2O3 NCF photoanodes were synthesized on FTO by using hydrothermal methods with a calcining process. The influence of the electrolyte concentration, bias potential, and irradiation light on the photoresponse properties was systematically studied. In2O3 NCF PEC UV PDs exhibit outstanding self-powered photoresponses to 365 nm UV light with a high responsivity of 44.43 mA/W and fast response speed (20/30 ms) under zero bias potential, these results are superior to those of previously reported In2O3-based PEC UV PDs. The improved self-powered photoresponse is attributed to the higher photogenerated carrier separation efficiency and faster charge transport of the in-situ grown In2O3 NCF. In addition, these PDs exhibit excellent multicycle stability, maintaining the photocurrent at 98.69% of the initial value after 700 optical switching cycles. Therefore, our results prove the great promise of In2O3 in self-powered PEC UV PDs.
Collapse
Affiliation(s)
- Nana Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Mengqi Cui
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Junxin Zhou
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Zhitao Shao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Xinyu Gao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jiaming Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ruyu Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Yuan Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Wenhui Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Xinghan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jing Yao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Feng Gao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Wei Feng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
11
|
Ma N, Lu C, Liu Y, Han T, Dong W, Wu D, Xu X. Direct Z-Scheme Heterostructure of Vertically Oriented SnS 2 Nanosheet on BiVO 4 Nanoflower for Self-Powered Photodetectors and Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304839. [PMID: 37702144 DOI: 10.1002/smll.202304839] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/21/2023] [Indexed: 09/14/2023]
Abstract
The construction of nanostructured Z-scheme heterostructure is a powerful strategy for realizing high-performance photoelectrochemical (PEC) devices such as self-powered photodetectors and water splitting. Considering the band structure and internal electric field direction, BiVO4 is a promising candidate to construct SnS2 -based heterostructure. Herein, the direct Z-scheme heterostructure of vertically oriented SnS2 nanosheet on BiVO4 nanoflower is rationally fabricated for efficient self-powered PEC photodetectors. The Z-scheme heterostructure is identified by ultraviolet photoelectron spectroscopy, photoluminescence spectroscopy, PEC measurement, and water splitting. The SnS2 /BiVO4 heterostructure shows a superior photodetection performance such as excellent photoresponsivity (10.43 mA W-1 ), fast response time (6 ms), and long-term stability. Additionally, by virtue of efficient Z-scheme charge transfer and unique light-trapping nanostructure, the SnS2 /BiVO4 heterostructure also displays a remarkable photocatalytic hydrogen production rate of 54.3 µmol cm-2 h-1 in Na2 SO3 electrolyte. Furthermore, the synergistic effect between photo-activation and bias voltage further improves the PEC hydrogen production rate of 360 µmol cm-2 h-1 at 0.8 V, which is an order of magnitude above the BiVO4 . The results provide useful inspiration for designing direct Z-scheme heterostructures with special nanostructured morphology to signally promote the performance of PEC devices.
Collapse
Affiliation(s)
- Nan Ma
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, School of Physics, Northwest University, Xi'an, 710069, China
| | - Chunhui Lu
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, School of Physics, Northwest University, Xi'an, 710069, China
| | - Yuqi Liu
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, School of Physics, Northwest University, Xi'an, 710069, China
| | - Taotao Han
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, School of Physics, Northwest University, Xi'an, 710069, China
| | - Wen Dong
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, School of Physics, Northwest University, Xi'an, 710069, China
| | - Dan Wu
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, School of Physics, Northwest University, Xi'an, 710069, China
| | - Xinlong Xu
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, School of Physics, Northwest University, Xi'an, 710069, China
| |
Collapse
|
12
|
Wang D, Xu Y, Zhang H, Zhang Y. An A 2 B 2 O 7 -Type High-Entropy Oxide for Efficient Photoelectrochemical Photodetector with Excellent Long-Term Stability. SMALL METHODS 2023:e2300888. [PMID: 37821398 DOI: 10.1002/smtd.202300888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/20/2023] [Indexed: 10/13/2023]
Abstract
Optoelectronics with excellent long-term stability is meaningful for practical applications. Herein, for the first time, an A2 B2 O7 type high-entropy oxide of (La0.2 Ce0.2 Nd0.2 Gd0.2 Bi0.2 )2 Ti2 O7 (ATO) is synthesized and applied for photoelectrochemical photodetection. The lattice distortion, highly dispersed metal composition, and exposed active sites of ATO are beneficial for the fast separation and transmission of photogenerated electron/hole pairs, endowing ATO-based devices with good photodetection performance. Both the density functional theory calculations and the nondegenerate transient absorption spectroscopy demonstrate the good optoelectronic properties of ATO. The systematic experimental studies reveal the tunable photodetection capability of ATO-based photodetector (PD) in the visible region. A photocurrent of 772.00 nA cm-2 and a responsivity of 4.02 µA W-1 can be achieved as the PD in 1.0 m KOH with the bias potential of 0.6 V. Importantly, the robust and reproducible ON/OFF signals of the PD can be verified and there is only ≈5.00% attenuation in photocurrent even after 6 months, revealing the great potential of high- entropy oxides for practical applications.
Collapse
Affiliation(s)
- Dan Wang
- Lab of Optoelectronic Technology for Low Dimensional Nanomaterials, School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Yiguo Xu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Ye Zhang
- Lab of Optoelectronic Technology for Low Dimensional Nanomaterials, School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
13
|
Xu X, Lu C, Wang Y, Bai X, Liu Z, Zhang Y, Hua D. Two dimensional NbSe 2/Nb 2O 5 metal-semiconductor heterostructure-based photoelectrochemical photodetector with fast response and high flexibility. NANOSCALE HORIZONS 2023. [PMID: 37326422 DOI: 10.1039/d3nh00172e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two dimensional (2D) metal-semiconductor heterostructures are promising for high-performance optoelectronic devices due to fast carrier separation and transportation. Considering the superior metallic characteristics accompanied by high electrical conductivity in NbSe2, surface oxidation provides a facile way to form NbSe2/Nb2O5 metal-semiconductor heterostructures. Herein, size-dependent NbSe2/Nb2O5 nanosheets were achieved by a liquid phase exfoliation method and a gradient centrifugation strategy. These NbSe2/Nb2O5 heterostructure-based photodetectors show high responsivity with 23.21 μA W-1, fast response time of millisecond magnitude, and wide band detection ability in the UV-Vis region. It is noticeable that the photocurrent density is sensitive to the surface oxygen layer due to the oxygen-sensitized photoconduction mechanism. The flexible testing of the NbSe2/Nb2O5 heterostructure-based PEC-type photodetectors exhibits high photodetection performance even after bending and twisting. Beyond that, the solid-state PEC-type NbSe2/Nb2O5 photodetector also achieves relatively stable photodetection and high stability. This work promotes the application of 2D NbSe2/Nb2O5 metal-semiconductor heterostructures in flexible optoelectronic devices.
Collapse
Affiliation(s)
- Xiang Xu
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Chunhui Lu
- Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| | - Ying Wang
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Xing Bai
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Zenghui Liu
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Ying Zhang
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Dengxin Hua
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China.
| |
Collapse
|