1
|
Ghosal K, Bhattacharyya SK, Mishra V, Zuilhof H. Click Chemistry for Biofunctional Polymers: From Observing to Steering Cell Behavior. Chem Rev 2024; 124:13216-13300. [PMID: 39621547 PMCID: PMC11638903 DOI: 10.1021/acs.chemrev.4c00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Click chemistry has become one of the most powerful construction tools in the field of organic chemistry, materials science, and polymer science, as it offers hassle-free platforms for the high-yielding synthesis of novel materials and easy functionalization strategies. The absence of harsh reaction conditions or complicated workup procedures allowed the rapid development of novel biofunctional polymeric materials, such as biopolymers, tailor-made polymer surfaces, stimulus-responsive polymers, etc. In this review, we discuss various types of click reactions─including azide-alkyne cycloadditions, nucleophilic and radical thiol click reactions, a range of cycloadditions (Diels-Alder, tetrazole, nitrile oxide, etc.), sulfur fluoride exchange (SuFEx) click reaction, and oxime-hydrazone click reactions─and their use for the formation and study of biofunctional polymers. Following that, we discuss state-of-the-art biological applications of "click"-biofunctionalized polymers, including both passive applications (e.g., biosensing and bioimaging) and "active" ones that aim to direct changes in biosystems, e.g., for drug delivery, antiviral action, and tissue engineering. In conclusion, we have outlined future directions and existing challenges of click-based polymers for medicinal chemistry and clinical applications.
Collapse
Affiliation(s)
- Krishanu Ghosal
- Research
& Development Laboratory, Shalimar Paints
Limited, Nashik, Maharashtra 422403, India
| | | | - Vivek Mishra
- Amity
Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201313, India
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, Netherlands
- College
of Biological and Chemical Sciences, Jiaxing
University, Jiaxing 314001, China
| |
Collapse
|
2
|
Li S, Duan Y, Zhu W, Cheng S, Hu W. Sensing Interfaces Engineering for Organic Thin Film Transistors-Based Biosensors: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412379. [PMID: 39252633 DOI: 10.1002/adma.202412379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Organic thin film transistors (OTFTs) enable rapid and label-free high-sensitivity detection of target analytes due to their low cost, large-area processing, biocompatibility, and inherent signal amplification. At the same time, the freedom of synthesis, tailorability, and functionalization of organic semiconductor materials and their ability to be combined with flexible substrates make them one of the ideal platforms for biosensing. However, OTFTs-based biosensors still face significant challenges, such as unexpected surface adsorption, disordered conformation, inhomogeneous graft density, and flexibility of probe molecules that biological sensing probes would face during immobilization. In this review, efficient immobilization strategies based on OTFTs biological sensing probes developed in the last 5 years are highlighted. First, the biosensors are classified according to their sensing interface. Second, a comprehensive discussion of the types of biological sensing probes is presented. Third, three commonly used methods for immobilizing biological sensing probes and their challenges are briefly described. Finally, the applications of OTFTs-based biosensors for liquid phase detection are summarized. This review provides a comprehensive and timely review of optimization in sensing interface engineering so that efficient immobilization of biological sensing probes with sensing interfaces will contribute to the development of high-performance OTFTs-based biosensors.
Collapse
Affiliation(s)
- Siyu Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yuchen Duan
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Weigang Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Shanshan Cheng
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
3
|
Montero-Jimenez M, Lugli-Arroyo J, Fenoy GE, Piccinini E, Knoll W, Marmisollé WA, Azzaroni O. Transduction of Amine-Phosphate Supramolecular Interactions and Biosensing of Acetylcholine through PEDOT-Polyamine Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61419-61427. [PMID: 37851945 DOI: 10.1021/acsami.3c09286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Organic electrochemical transistors (OECTs) are important devices for the development of flexible and wearable sensors due to their flexibility, low power consumption, sensitivity, selectivity, ease of fabrication, and compatibility with other flexible materials. These features enable the creation of comfortable, versatile, and efficient portable devices that can monitor and detect a wide range of parameters for various applications. Herein, we present OECTs based on PEDOT-polyamine thin films for the selective monitoring of phosphate-containing compounds. Our findings reveal that supramolecular single phosphate-amino interaction induces higher changes in the OECT response compared to ATP-amino interactions, even at submillimolar concentrations. The steric character of binding anions plays a crucial role in OECT sensing, resulting in a smaller shift in maximum transconductance voltage and threshold voltage for bulkier binding species. The OECT response reflects not only the polymer/solution interface but also events within the conducting polymer film, where ion transport and concentration are affected by the ion size. Additionally, the investigation of enzyme immobilization reveals the influence of phosphate species on the assembly behavior of acetylcholinesterase (AchE) on PEDOT-PAH OECTs, with increasing phosphate concentrations leading to reduced enzyme anchoring. These findings contribute to the understanding of the mechanisms of OECT sensing and highlight the importance of careful design and optimization of the biosensor interface construction for diverse sensing applications.
Collapse
Affiliation(s)
- Marjorie Montero-Jimenez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1904DPI, Argentina
| | - Juan Lugli-Arroyo
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1904DPI, Argentina
| | - Gonzalo E Fenoy
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1904DPI, Argentina
| | - Esteban Piccinini
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1904DPI, Argentina
| | - Wolfgang Knoll
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1904DPI, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1904DPI, Argentina
| |
Collapse
|
4
|
Dai Y, Wai S, Li P, Shan N, Cao Z, Li Y, Wang Y, Liu Y, Liu W, Tang K, Liu Y, Hua M, Li S, Li N, Chatterji S, Fry HC, Lee S, Zhang C, Weires M, Sutyak S, Shi J, Zhu C, Xu J, Gu X, Tian B, Wang S. Soft hydrogel semiconductors with augmented biointeractive functions. Science 2024; 386:431-439. [PMID: 39446940 DOI: 10.1126/science.adp9314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024]
Abstract
Hydrogels, known for their mechanical and chemical similarity to biological tissues, are widely used in biotechnologies, whereas semiconductors provide advanced electronic and optoelectronic functionalities such as signal amplification, sensing, and photomodulation. Combining semiconducting properties with hydrogel designs can enhance biointeractive functions and intimacy at biointerfaces, but this is challenging owing to the low hydrophilicity of polymer semiconductors. We developed a solvent affinity-induced assembly method that incorporates water-insoluble polymer semiconductors into double-network hydrogels. These semiconductors exhibited tissue-level moduli as soft as 81 kilopascals, stretchability of 150% strain, and charge-carrier mobility up to 1.4 square centimeters per volt per second. When they are interfaced with biological tissues, their tissue-level modulus enables alleviated immune reactions. The hydrogel's high porosity enhances molecular interactions at semiconductor-biofluid interfaces, resulting in photomodulation with higher response and volumetric biosensing with higher sensitivity.
Collapse
Affiliation(s)
- Yahao Dai
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Shinya Wai
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Pengju Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Naisong Shan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Zhiqiang Cao
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Yang Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Yunfei Wang
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, University of Southern Mississippi, Hattiesburg, MS 39406, USA
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Youdi Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Wei Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Kan Tang
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Muchuan Hua
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Songsong Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nan Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Shivani Chatterji
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sean Lee
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Cheng Zhang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Max Weires
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Sean Sutyak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jiuyun Shi
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jie Xu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Sihong Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Nanoscience and Technology Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA
- CZ Biohub Chicago, LLC, Chicago, IL 60642, USA
| |
Collapse
|
5
|
Buchmann S, Stoop P, Roekevisch K, Jain S, Kroon R, Müller C, Hamedi MM, Zeglio E, Herland A. In Situ Functionalization of Polar Polythiophene-Based Organic Electrochemical Transistor to Interface In Vitro Models. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54292-54303. [PMID: 39327895 PMCID: PMC11472309 DOI: 10.1021/acsami.4c09197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Organic mixed ionic-electronic conductors are promising materials for interfacing and monitoring biological systems, with the aim of overcoming current challenges based on the mismatch between biological materials and convectional inorganic conductors. The conjugated polymer/polyelectrolyte complex poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT/PSS) is, up to date, the most widely used polymer for in vitro or in vivo measurements in the field of organic bioelectronics. However, PEDOT/PSS organic electrochemical transistors (OECTs) are limited by depletion mode operation and lack chemical groups that enable synthetic modifications for biointerfacing. Recently introduced thiophene-based polymers with oligoether side chains can operate in accumulation mode, and their chemical structure can be tuned during synthesis, for example, by the introduction of hydroxylated side chains. Here, we introduce a new thiophene-based conjugated polymer, p(g42T-T)-8% OH, where 8% of the glycol side chains are functionalized with a hydroxyl group. We report for the first time the compatibility of conjugated polymers containing ethylene glycol side chains in direct contact with cells. The additional hydroxyl group allows covalent modification of the surface of polymer films, enabling fine-tuning of the surface interaction properties of p(g42T-T)-8% OH with biological materials, either hindering or promoting cell adhesion. We further use p(g42T-T)-8% OH to fabricate the OECTs and demonstrate for the first time the monitoring of epithelial barrier formation of Caco-2 cells in vitro using accumulation mode OECTs. The conjugated polymer p(g42T-T)-8% OH allows organic-electronic-based materials to be easily modified and optimized to interface and monitor biological systems.
Collapse
Affiliation(s)
- Sebastian Buchmann
- Division
of Nanobiotechnology, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm 177 65, Sweden
- AIMES—Center
for the Advancement of Integrated Medical and Engineering Sciences
at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm 171 65, Sweden
- Department
of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Pepijn Stoop
- Division
of Nanobiotechnology, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm 177 65, Sweden
- AIMES—Center
for the Advancement of Integrated Medical and Engineering Sciences
at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm 171 65, Sweden
- Department
of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Kim Roekevisch
- Division
of Nanobiotechnology, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm 177 65, Sweden
- AIMES—Center
for the Advancement of Integrated Medical and Engineering Sciences
at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm 171 65, Sweden
- Department
of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Saumey Jain
- Division
of Nanobiotechnology, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm 177 65, Sweden
- Division
of Micro and Nano Systems, Department of Intelligent Systems, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Renee Kroon
- Department
of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping 602
21, Sweden
| | - Christian Müller
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| | - Mahiar M. Hamedi
- Division
of Fibre Technology, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
- Digital
Futures, Stockholm 100 44, Sweden
| | - Erica Zeglio
- AIMES—Center
for the Advancement of Integrated Medical and Engineering Sciences
at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm 171 65, Sweden
- Department
of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
- Digital
Futures, Stockholm 100 44, Sweden
- Wallenberg
Initiative Materials Science for Sustainability, Department of Materials
and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Anna Herland
- Division
of Nanobiotechnology, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm 177 65, Sweden
- AIMES—Center
for the Advancement of Integrated Medical and Engineering Sciences
at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm 171 65, Sweden
- Department
of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
6
|
Liu H, Song J, Zhao Z, Zhao S, Tian Z, Yan F. Organic Electrochemical Transistors for Biomarker Detections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305347. [PMID: 38263718 PMCID: PMC11251571 DOI: 10.1002/advs.202305347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Indexed: 01/25/2024]
Abstract
The improvement of living standards and the advancement of medical technology have led to an increased focus on health among individuals. Detections of biomarkers are feasible approaches to obtaining information about health status, disease progression, and response to treatment of an individual. In recent years, organic electrochemical transistors (OECTs) have demonstrated high electrical performances and effectiveness in detecting various types of biomarkers. This review provides an overview of the working principles of OECTs and their performance in detecting multiple types of biomarkers, with a focus on the recent advances and representative applications of OECTs in wearable and implantable biomarker detections, and provides a perspective for the future development of OECT-based biomarker sensors.
Collapse
Affiliation(s)
- Hong Liu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Jiajun Song
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zeyu Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Sanqing Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zhiyuan Tian
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Feng Yan
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
- Research Institute of Intelligent Wearable SystemsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| |
Collapse
|
7
|
Manoharan AK, Batcha MIK, Mahalingam S, Raj B, Kim J. Recent Advances in Two-Dimensional Nanomaterials for Healthcare Monitoring. ACS Sens 2024; 9:1706-1734. [PMID: 38563358 DOI: 10.1021/acssensors.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The development of advanced technologies for the fabrication of functional nanomaterials, nanostructures, and devices has facilitated the development of biosensors for analyses. Two-dimensional (2D) nanomaterials, with unique hierarchical structures, a high surface area, and the ability to be functionalized for target detection at the surface, exhibit high potential for biosensing applications. The electronic properties, mechanical flexibility, and optical, electrochemical, and physical properties of 2D nanomaterials can be easily modulated, enabling the construction of biosensing platforms for the detection of various analytes with targeted recognition, sensitivity, and selectivity. This review provides an overview of the recent advances in 2D nanomaterials and nanostructures used for biosensor and wearable-sensor development for healthcare and health-monitoring applications. Finally, the advantages of 2D-nanomaterial-based devices and several challenges in their optimal operation have been discussed to facilitate the development of smart high-performance biosensors in the future.
Collapse
Affiliation(s)
- Arun Kumar Manoharan
- Department of Electrical, Electronics and Communication Engineering, School of Technology, Gandhi Institute of Technology and Management (GITAM), Bengaluru 561203, Karnataka, India
| | - Mohamed Ismail Kamal Batcha
- Department of Electronics and Communication Engineering, Agni College of Technology, Chennai 600130, Tamil Nadu, India
| | - Shanmugam Mahalingam
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Balwinder Raj
- Department of Electronics and Communication Engineering, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab 144011, India
| | - Junghwan Kim
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
8
|
Hasler R, Fenoy GE, Götz A, Montes-García V, Valentini C, Qiu Z, Kleber C, Samorì P, Müllen K, Knoll W. "Clickable" graphene nanoribbons for biosensor interfaces. NANOSCALE HORIZONS 2024; 9:598-608. [PMID: 38385442 PMCID: PMC10962640 DOI: 10.1039/d3nh00590a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
We report on the synthesis of "clickable" graphene nanoribbons (GNRs) and their application as a versatile interface for electrochemical biosensors. GNRs are successfully deposited on gold-coated working electrodes and serve as a platform for the covalent anchoring of a bioreceptor (i.e., a DNA aptamer), enabling selective and sensitive detection of Interleukin 6 (IL6). Moreover, when applied as the intermediate linker on reduced graphene oxide (rGO)-based field-effect transistors (FETs), the GNRs provide improved robustness compared to conventional aromatic bi-functional linker molecules. GNRs enable an orthogonal and covalent attachment of a recognition unit with a considerably higher probe density than previously established methods. Interestingly, we demonstrate that GNRs introduce photoluminescence (PL) when applied to rGO-based FETs, paving the way toward the simultaneous optical and electronic probing of the attached biointerface.
Collapse
Affiliation(s)
- Roger Hasler
- AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria.
| | - Gonzalo E Fenoy
- AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1904DPI, Argentina
| | - Alicia Götz
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Verónica Montes-García
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Cataldo Valentini
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, 8 allée Gaspard Monge, 67000 Strasbourg, France
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Zijie Qiu
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Christoph Kleber
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria.
| | - Paolo Samorì
- Université de Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria.
| |
Collapse
|
9
|
Azzaroni O, Piccinini E, Fenoy G, Marmisollé W, Ariga K. Field-effect transistors engineered via solution-based layer-by-layer nanoarchitectonics. NANOTECHNOLOGY 2023; 34:472001. [PMID: 37567153 DOI: 10.1088/1361-6528/acef26] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
The layer-by-layer (LbL) technique has been proven to be one of the most versatile approaches in order to fabricate functional nanofilms. The use of simple and inexpensive procedures as well as the possibility to incorporate a very wide range of materials through different interactions have driven its application in a wide range of fields. On the other hand, field-effect transistors (FETs) are certainly among the most important elements in electronics. The ability to modulate the flowing current between a source and a drain electrode via the voltage applied to the gate electrode endow these devices to switch or amplify electronic signals, being vital in all of our everyday electronic devices. In this topical review, we highlight different research efforts to engineer field-effect transistors using the LbL assembly approach. We firstly discuss on the engineering of the channel material of transistors via the LbL technique. Next, the deposition of dielectric materials through this approach is reviewed, allowing the development of high-performance electronic components. Finally, the application of the LbL approach to fabricate FETs-based biosensing devices is also discussed, as well as the improvement of the transistor's interfacial sensitivity by the engineering of the semiconductor with polyelectrolyte multilayers.
Collapse
Affiliation(s)
- Omar Azzaroni
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Esteban Piccinini
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Gonzalo Fenoy
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0825, Japan
| |
Collapse
|