1
|
Patrojanasophon P, Singpanna K, Rojanarata T, Opanasopit P, Ngawhirunpat T, Pengnam S, Pornpitchanarong C. Folate receptor-targeted thiol-maleimide clicked chitosan/carboxymethyl cellulose nanoparticles for cisplatin delivery in oral carcinoma. Int J Biol Macromol 2024:138976. [PMID: 39708877 DOI: 10.1016/j.ijbiomac.2024.138976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
This study aimed to develop cisplatin (CDDP)-loaded folic acid (FA)-decorated nanoparticles (NPs) as targeted drug carrier towards overexpressed folate receptors on the oral carcinoma cell line (KB cells). The FA-conjugated thiolated succinyl chitosan (FA-SH-SCS) and maleimide-grafted-carboxymethyl cellulose (CMC-MAL) were synthesized and acquired in the preparation of NPs via thiol-maleimide click reaction. The physicochemical characteristics, drug loading, and drug release of the FA-decorated NPs (FA-NPs) were examined. Also, the in vitro biocompatibility, cellular uptake, and cell death mechanism were investigated. Relatively spherical NPs with negative charge were obtained with a size of approximately 200 nm. The formation of FA-NPs through click reaction was confirmed by the pH change and Ellman's assay. The release of CDDP from the FA-NPs was influenced by the acidic tumor environment condition. The FA-NPs were non-toxic to the normal cells. Furthermore, FA-NPs improved the cellular uptake of CDDP in oral carcinoma cells through specific recognition of folate receptors by FA-NPs. The delivery of CDDP by FA-NPs to the KB cell induced the apoptotic cell death pathway. Therefore, FA-NPs presented the potential to be effective nanocarriers for CDDP delivery in the treatment of oral cancer via active targeting approach.
Collapse
Affiliation(s)
- Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Kanokwan Singpanna
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Supusson Pengnam
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
2
|
Azarmgin S, Torabinejad B, Kalantarzadeh R, Garcia H, Velazquez CA, Lopez G, Vazquez M, Rosales G, Heidari BS, Davachi SM. Polyurethanes and Their Biomedical Applications. ACS Biomater Sci Eng 2024; 10:6828-6859. [PMID: 39436687 DOI: 10.1021/acsbiomaterials.4c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The tunable mechanical properties of polyurethanes (PUs), due to their extensive structural diversity and biocompatibility, have made them promising materials for biomedical applications. Scientists can address PUs' issues with platelet absorption and thrombus formation owing to their modifiable surface. In recent years, PUs have been extensively utilized in biomedical applications because of their chemical stability, biocompatibility, and minimal cytotoxicity. Moreover, addressing challenges related to degradation and recycling has led to a growing focus on the development of biobased polyurethanes as a current focal point. PUs are widely implemented in cardiovascular fields and as implantable materials for internal organs due to their favorable biocompatibility and physicochemical properties. Additionally, they show great potential in bone tissue engineering as injectable grafts or implantable scaffolds. This paper reviews the synthesis methods, physicochemical properties, and degradation pathways of PUs and summarizes recent progress in applying different types of polyurethanes in various biomedical applications, from wound repair to hip replacement. Finally, we discuss the challenges and future directions for the translation of novel polyurethane materials into biomedical applications.
Collapse
Affiliation(s)
- Sepideh Azarmgin
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
- Applied Science Nano Research Group, ASNARKA, Tehran 1619948753, Iran
| | - Bahman Torabinejad
- Applied Science Nano Research Group, ASNARKA, Tehran 1619948753, Iran
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Material and Energy Research Center, Karaj 3177983634, Iran
| | - Rooja Kalantarzadeh
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Material and Energy Research Center, Karaj 3177983634, Iran
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Heriberto Garcia
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Carlo Alberto Velazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Gino Lopez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Marisol Vazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Gabriel Rosales
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Behzad Shiroud Heidari
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| |
Collapse
|
3
|
Santos JAV, Silva D, Marques MPM, Batista de Carvalho LAE. Platinum-based chemotherapy: trends in organic nanodelivery systems. NANOSCALE 2024; 16:14640-14686. [PMID: 39037425 DOI: 10.1039/d4nr01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite the investment in platinum drugs research, cisplatin, carboplatin and oxaliplatin are still the only Pt-based compounds used as first line treatments for several cancers, with a few other compounds being approved for administration in some Asian countries. However, due to the severe and worldwide impact of oncological diseases, there is an urge for improved chemotherapeutic approaches. Furthermore, the pharmaceutical application of platinum complexes is hindered by their inherent toxicity and acquired resistance. Nanodelivery systems rose as a key strategy to overcome these challenges, with recognized versatility and ability towards improving the safety, bioavailability and efficacy of the available drugs. Among the known nanocarriers, organic systems have been widely applied, taking advantage of their potential as drug vehicles. Researchers have mainly focused on the development of lipidic and polymeric carriers, including supramolecular structures, with an overall improvement of encapsulated platinum complexes. Herein, an overview of recent trends and strategies is presented, with the main focus on the encapsulation of platinum compounds into organic nanocarriers, showcasing the evolution in the design and development of these promising systems. This comprehensive review highlights formulation methods as well as characterization procedures, providing insights that may be helpful for the development of novel platinum nanocarriers aiming at future pharmaceutical applications.
Collapse
Affiliation(s)
- João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniela Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
4
|
Du K, Li X, Feng F. Polymer-Drug Conjugates Codeliver a Temozolomide Intermediate and Nitric Oxide for Enhanced Chemotherapy against Glioblastoma Multiforme. ACS APPLIED BIO MATERIALS 2024; 7:1810-1819. [PMID: 38403964 DOI: 10.1021/acsabm.3c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Polymer-drug conjugates (PDCs) provide possibilities for the development of multiresponsive drug delivery and release platforms utilized in cancer therapy. The delivery of Temozolomide (TMZ, a DNA methylation agent) by PDCs has been developed to improve TMZ stability under physiological conditions for the treatment of glioblastoma multiforme (GBM); however, with inefficient chemotherapeutic efficacy. In this work, we synthesized an amphiphilic triblock copolymer (P1-SNO) with four pendant functionalities, including (1) a TMZ intermediate (named MTIC) as a prodrug moiety, (2) a disulfide bond as a redox-responsive trigger to cage MTIC, (3) S-nitrosothiol as a light/heat-responsive donor of nitric oxide (NO), and (4) a poly(ethylene glycol) chain to enable self-assembly in aqueous media. P1-SNO was demonstrated to liberate MTIC in the presence of reduced glutathione and release gaseous NO upon exposure to light or heat. The in vitro results revealed a synergistic effect of released MTIC and NO on both TMZ-sensitive and TMZ-resistant GBM cells. The environment-responsive PDC system for codelivery of MTIC and NO is promising to overcome the efficacy issue in TMZ-based cancer therapy.
Collapse
Affiliation(s)
- Ke Du
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao Li
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Regeneration, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, Hunan, China
| | - Fude Feng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Santra S, Das S, Dey S, Sengupta A, Giri B, Molla MR. Degradable Polymer-Based Nanoassemblies for Precise Targeting and Drug Delivery to Breast Cancer Cells without Affecting Normal Healthy Cells. Biomacromolecules 2024; 25:1724-1737. [PMID: 38421316 DOI: 10.1021/acs.biomac.3c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Stimuli-responsive amphiphilic polymers are known to be precursors to forming promising nanoarchitectonics with tunable properties for application in biomedical sciences. Currently, self-immolative polymers are widely recognized as an emerging class of responsive materials with excellent degradability, which is one of the crucial criteria for designing a robust drug delivery vehicle. Here, we design an amphiphilic polyurethane endowed with a redox-responsive self-immolative linker and a pH-responsive tertiary amine on the backbone, which forms entropy-driven nanoscale supramolecular assemblies (average hydrodynamic diameter ∼110 nm) and is programmed to disassemble in a redox environment (GSH) due to the degradation of the polymer in a self-immolative fashion. The nanoassembly shows efficient drug sequestration and release in a controlled manner in response to glutathione (10 mM). The tertiary amine residing on the surface of the nanoassembly becomes protonated in the tumor microenvironment (pH ∼ 6.4-6.8) and generates positively charged nanoassembly (ζ-potential = +36 mV), which enhances the cancer cell-selective cellular uptake. The biological evaluation of the drug-loaded nanoassembly revealed triple-negative breast cancer (MDAMB-231) selective internalization and cell death while shielding normal cells (RBCs or PBMCs) from off-targeting toxicity. We envision that polyurethane with a redox-responsive self-immolative linker might open up new opportunities for a completely degradable polyurethane-based nanocarrier for drug delivery and diagnosis applications.
Collapse
Affiliation(s)
- Subrata Santra
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Shreya Das
- Department of Life Science & Biotechnology, Jadavpur University, 188, Raja S. C. M Road, Kolkata 700032, India
| | - Sananda Dey
- Department of Physiology, University of Gour Banga, Malda 732103, India
| | - Arunima Sengupta
- Department of Life Science & Biotechnology, Jadavpur University, 188, Raja S. C. M Road, Kolkata 700032, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda 732103, India
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
6
|
Yoon J, Kim BS. Coordinative Double Hydrophilic All-Polyether Micelles for pH-Responsive Delivery of Cisplatin. Biomacromolecules 2024; 25:1861-1870. [PMID: 38344950 DOI: 10.1021/acs.biomac.3c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Despite its widespread use in the treatment of numerous cancers, the use of cisplatin still raises concerns about its high toxicity and limited selectivity. Consequently, the necessity arises for the development of an effective drug delivery system. Here, we present an effective approach that introduces a double hydrophilic block copolyether for the controlled delivery of cisplatin. Specifically, poly(ethylene glycol)-block-poly(glycidoxy acetic acid) (mPEG-b-PGA) was synthesized via anionic ring-opening polymerization using the oxazoline-based epoxide monomer 4,4-dimethyl-2-oxazoline glycidyl ether, followed by subsequent acidic deprotection. The coordinative metal-ligand interaction between cisplatin and the carboxylate group within the PGA block facilitated the formation of micelles from the double hydrophilic mPEG-b-PGA copolyether. Cisplatin-loaded polymeric micelles had a high loading capacity, controlled pH-responsive release kinetics, and high cell viability. Furthermore, in vitro biological assays revealed cellular apoptosis induced by the cisplatin-loaded micelles. This study thus successfully demonstrates the potential use of double hydrophilic block copolyethers as a versatile platform for biomedical applications.
Collapse
Affiliation(s)
- Jiwoo Yoon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Song W, Muhammad S, Dang S, Ou X, Fang X, Zhang Y, Huang L, Guo B, Du X. The state-of-art polyurethane nanoparticles for drug delivery applications. Front Chem 2024; 12:1378324. [PMID: 38476653 PMCID: PMC10929011 DOI: 10.3389/fchem.2024.1378324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Nowadays, polyurethanes (PUs) stand out as a promising option for drug delivery owing to their versatile properties. PUs have garnered significant attention in the biomedical sector and are extensively employed in diverse forms, including bulk devices, coatings, particles, and micelles. PUs are crucial in delivering various therapeutic agents such as antibiotics, anti-cancer medications, dermal treatments, and intravaginal rings. Effective drug release management is essential to ensure the intended therapeutic impact of PUs. Commercially available PU-based drug delivery products exemplify the adaptability of PUs in drug delivery, enabling researchers to tailor the polymer properties for specific drug release patterns. This review primarily focuses on the preparation of PU nanoparticles and their physiochemical properties for drug delivery applications, emphasizing how the formation of PUs affects the efficiency of drug delivery systems. Additionally, cutting-edge applications in drug delivery using PU nanoparticle systems, micelles, targeted, activatable, and fluorescence imaging-guided drug delivery applications are explored. Finally, the role of artificial intelligence and machine learning in drug design and delivery is discussed. The review concludes by addressing the challenges and providing perspectives on the future of PUs in drug delivery, aiming to inspire the design of more innovative solutions in this field.
Collapse
Affiliation(s)
- Wencong Song
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Saz Muhammad
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Shanxing Dang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Xingyan Ou
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Xingzi Fang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Lihe Huang
- Center for Educational Technology, Yulin Normal University, Yulin, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - XueLian Du
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Bahmani E, Banihashem S, Shirinzad S, Bybordi S, Shikhi-Abadi PG, Jazi FS, Irani M. Incorporation of doxorubicin and CoFe 2O 4 nanoparticles into the cellulose acetate phthalate / polyvinyl alcohol (core)/ polyurethane (shell) nanofibers against A549 human lung cancer during chemotherapy/hyperthermia combined method. Int J Pharm 2024; 649:123618. [PMID: 37977290 DOI: 10.1016/j.ijpharm.2023.123618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Cellulose acetate phthalate (CAP)/polyvinyl alcohol (PVA)/polyurethane (PU) nanofibers were synthesized by simple and coaxial electrospinning (ES) processes. Doxorubicin (DOX) and the CoFe2O4 nanoparticles were loaded into the nanofibers. The performance of the prepared nanofibers was investigated for the sustained release of DOX against A541 lung cancer cells under chemotherapy/external magnetic field (EMF) and alternating magnetic field (AMF, hyperthermia treatment) combined methods in both the in vitro and in vivo conditions. The sustained release of DOX from core-shell nanofibers containing 5 wt% cobalt ferrite was obtained within 300, 600 h, at pH of 5.5 and 7.4 without AMF and 168, 360 h, under an alternating magnetic field (AMF). More than 98.3 ± 0.2 % of A549 cancer cells were killed in the presence of core-shell nanofibers containing 100 μg DOX and 5 % cobalt ferrite nanoparticles in the presence of AMF. The flowcytometric results indicated that only 19.1 and 8.85 % cancer cells remained alive under EMF and AMF, respectively. The in vivo results revealed in stopping the growth of tumor volume and decrease in the relative tumor volume up to 0.5 were obtained using magnetic core-shell nanofibers containing 100 μg DOX and 5 % cobalt ferrite nanoparticles in the presence of EMF and AMF, respectively.
Collapse
Affiliation(s)
- Ehsan Bahmani
- Department of Chemical Engineering, Payam Noor University, Tehran, Iran
| | | | - Sara Shirinzad
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sara Bybordi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | - Mohammad Irani
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
9
|
Dutta B, Shelar SB, Nirmalraj A, Gupta S, Barick KC, Gupta J, Hassan PA. Smart Magnetic Nanocarriers for Codelivery of Nitric Oxide and Doxorubicin for Enhanced Apoptosis in Cancer Cells. ACS OMEGA 2023; 8:44545-44557. [PMID: 38046289 PMCID: PMC10688159 DOI: 10.1021/acsomega.3c03734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Extremely short half-life therapeutic molecule nitric oxide (NO) plays significant roles in the functioning of various physiological and pathological processes in the human body, whereas doxorubicin hydrochloride (DOX) is a clinically important anticancer drug widely used in cancer chemotherapy. Thus, the intracellular delivery of these therapeutic molecules is tremendously important to achieve their full potential. Herein, we report a novel approach for the development of highly water-dispersible magnetic nanocarriers for codelivery of NO and DOX. Primarily, bifunctional magnetic nanoparticles enriched with carboxyl and thiol groups were prepared by introducing cysteine onto the surface of citrate-functionalized Fe3O4 nanoparticles. DOX was electrostatically conjugated onto the surface of bifunctional nanoparticles via carboxyl moieties, whereas the thiol group was further nitrosated to provide NO-releasing molecules. The developed magnetic nanocarrier exhibited good aqueous colloidal stability, protein resistance behavior, and high encapsulation efficacy for NO (65.5%) and DOX (85%), as well as sustained release characteristics. Moreover, they showed superior cytotoxicity toward cancer (A549 and MCF-7) cells via apoptosis induction over normal (WI26VA4) cells. Specifically, we have developed magnetic nanocarriers having the capability of dual delivery of NO and DOX, which holds great potential for combinatorial cancer treatment.
Collapse
Affiliation(s)
- Bijaideep Dutta
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sandeep B. Shelar
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
| | - Ananya Nirmalraj
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
- Department
of Chemistry, Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed-to-be University), Vile Parle (W), Mumbai 400056, India
| | - Sonali Gupta
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Kanhu C. Barick
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Jagriti Gupta
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
| | - Puthusserickal A. Hassan
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
10
|
Barman R, Mukherjee A, Nag A, Rajdev P, Ghosh S. Hierarchical assembly of foldable polymers and applications in organic optoelectronics and antibacterial or antiviral materials. Chem Commun (Camb) 2023; 59:13951-13961. [PMID: 37937399 DOI: 10.1039/d3cc04855a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Aggregation of amphiphilic polymers in block-selective solvents produces different nanostructures, which have been studied extensively for wide-ranging applications. Nevertheless, such immiscibility-driven aggregation does not endow them with the desired structural precision, predictability or surface functional group exposure, which significantly impact their functional applications. More recently, biomimetic folded structures of synthetic macromolecules (mostly oligomers) have come to the fore, but such studies have been limited to probe the secondary structures. In this article, we have collated hierarchical structures of foldamers, especially highlighting our recent contribution to the field of chain-folding regulated assembly of segmented polyurethanes (PUs) and their functional applications. A series of such PUs have been discussed, which contain a segmented hydrocarbon backbone and alternately placed pendant solvophilic groups. In either water or highly non-polar solvents (TCE, MCH), depending on the nature of the pendant group, they exhibit folded structures stabilized by intra-chain H-bonding. Hierarchical assembly of such folded chains by inter-chain H-bonding and/or π-stacking leads to the formation of well-defined nanostructures with functional applications ranging from organic optoelectronics to biomaterials. For example, a segmented PU with appended naphthalene-diimide (NDI) chromophores showed a pleated structure in MCH, which helped in organization of the NDI chromophores within π-stacking distance. Such folded polymer chains eventually produced nanotubular structures with excellent electron mobility. They also showed efficient intercalation of the pyrene (Py) donor by NDI-Py charge-transfer interaction and in this case the mixed nanotubular structure exhibited prominent room-temperature ferroelectricity. On the other hand, having cationic functionalities as the pendant groups such chain-folding regulated assembly produced unilamellar polymersomes with excellent antibacterial activity with very low minimum inhibitory concentrations (<10 μg mL-1). Replacing the pendant amine functionality with sulphate groups made these polyurethanes highly potent antiviral materials. In the absence of the alternating connectivity of the solvophobic and solvophilic segments or rigid hydrocarbon backbone, such folding propensity is destroyed, leading to structural collapse. While significant efforts have been made in correlating primary structures of wide-ranging polymers with their functional applications, this article demonstrates the direct correlation between the secondary structures of polymers and their functional properties.
Collapse
Affiliation(s)
- Ranajit Barman
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Anurag Mukherjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Atish Nag
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Priya Rajdev
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
11
|
Qin M, Zhang C, Li Y. Circular RNAs in gynecologic cancers: mechanisms and implications for chemotherapy resistance. Front Pharmacol 2023; 14:1194719. [PMID: 37361215 PMCID: PMC10285541 DOI: 10.3389/fphar.2023.1194719] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Chemotherapy resistance remains a major challenge in the treatment of gynecologic malignancies. Increasing evidence suggests that circular RNAs (circRNAs) play a significant role in conferring chemoresistance in these cancers. In this review, we summarize the current understanding of the mechanisms by which circRNAs regulate chemotherapy sensitivity and resistance in gynecologic malignancies. We also discuss the potential clinical implications of these findings and highlight areas for future research. CircRNAs are a novel class of RNA molecules that are characterized by their unique circular structure, which confers increased stability and resistance to degradation by exonucleases. Recent studies have shown that circRNAs can act as miRNA sponges, sequestering miRNAs and preventing them from binding to their target mRNAs. This can lead to upregulation of genes involved in drug resistance pathways, ultimately resulting in decreased sensitivity to chemotherapy. We discuss several specific examples of circRNAs that have been implicated in chemoresistance in gynecologic cancers, including cervical cancer, ovarian cancer, and endometrial cancer. We also highlight the potential clinical applications of circRNA-based biomarkers for predicting chemotherapy response and guiding treatment decisions. Overall, this review provides a comprehensive overview of the current state of knowledge regarding the role of circRNAs in chemotherapy resistance in gynecologic malignancies. By elucidating the underlying mechanisms by which circRNAs regulate drug sensitivity, this work has important implications for improving patient outcomes and developing more effective therapeutic strategies for these challenging cancers.
Collapse
|
12
|
Maji TK. Editorial for Forum on Applied Supramolecular Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25079-25081. [PMID: 37259285 DOI: 10.1021/acsami.3c05952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|