1
|
Li K, Tong YJ, Liu Q, Peng S, Gong X, Wang D, Gong Z. Site-recognition boosted the sensing performance of terbium-based organic frameworks for UO 22+ detection. Chem Commun (Camb) 2024; 60:6913-6916. [PMID: 38881424 DOI: 10.1039/d4cc01758g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
A unique fluorescent sensing probe for UO22+ detection was fabricated with terbium-based metal organic frameworks via introducing specific recognition sites (denoted as Tb-TDPAT). The newly formed Tb-TDPAT presented remarkable detection sensitivity and selectivity towards UO22+, surpassing the need for complex post-modification methods.
Collapse
Affiliation(s)
- Kexuan Li
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yuan-Jun Tong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, Sichuan, China.
| | - Qian Liu
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Shiyu Peng
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, Sichuan, China.
| | - Xinying Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, Sichuan, China.
| | - Dongmei Wang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, Sichuan, China.
| | - Zhengjun Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, Sichuan, China.
| |
Collapse
|
2
|
Mondal S, Tedy AM, Chand S, Sahoo R, Manna AK, Das MC. Mechanistical Insights into the Ultrasensitive Detection of Radioactive and Chemotoxic UO 22+ Ions by a Porous Anionic Co-Metal-Organic Framework. Inorg Chem 2024; 63:10403-10413. [PMID: 38761138 DOI: 10.1021/acs.inorgchem.4c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Development of a simple, cost-efficient, and portable UO22+ sensory probe with high selectivity and sensitivity is highly desirable in the context of monitoring radioactive contaminants. Herein, we report a luminescent Co-based metal-organic framework (MOF), {[Me2NH2]0.5[Co(DATRz)0.5(NH2BDC)]·xG}n (1), equipped with abundant amino functionalities for the selective detection of uranyl cations. The ionic structure consists of two types of channels decorated with plentiful Lewis basic amino moieties, which trigger a stronger acid-base interaction with the diffused cationic units and thus can selectively quench the fluorescence intensity in the presence of other interfering ions. Furthermore, the limit of detection for selective UO22+ sensing was achieved to be as low as 0.13 μM (30.94 ppb) with rapid responsiveness and multiple recyclabilities, demonstrating its excellent efficacy. Density functional theory (DFT) calculations further unraveled the preferred binding sites of the UO22+ ions in the tubular channel of the MOF structure. Orbital hybridization between NH2BDC/DATRz and UO22+ together with its significantly large electron-accepting ability is identified as responsible for the luminescence quenching. More importantly, the prepared 1@PVDF {poly(vinylidene difluoride)} mixed-matrix membrane (MMM) displayed good fluorescence activity comparable to 1, which is of great significance for their practical employment as MOF-based luminosensors in real-world sensing application.
Collapse
Affiliation(s)
- Supriya Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| | - Annette Mariya Tedy
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, AP 517619, India
| | - Santanu Chand
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| | - Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| | - Arun K Manna
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, AP 517619, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| |
Collapse
|
3
|
Zhang X, Zhang Y, Li X, Yu J, Chi W, Wang Z, Zheng H, Sun Z, Zhu Y, Jiao C. A stable Mn(II) coordination polymer demonstrating proton conductivity and quantitative sensing of oxytetracycline in aquaculture. Dalton Trans 2024; 53:5034-5042. [PMID: 38374728 DOI: 10.1039/d3dt03882c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The construction and investigation of dual-functional coordination polymers (CPs) with proton conduction and luminescence sensing is of great significance in clean energy and agricultural monitoring fields. In this work, an Mn-based coordination polymer (Mn-CP), namely, [Mn0.5(HL)] (H2L = HOOCC6H4C6H4CH2PO(OH)OCH3), was hydrothermally synthesized. Mn-CP has a one-dimensional (1D) chain structure, in which uncoordinated -COOH groups can serve as potential sites for fluorescence sensing. Moreover, Mn-CP shows good water and pH stabilities, offering the feasibility for proton conduction and sensing applications. Mn-CP displays comparatively high proton conductivity of 1.07 × 10-4 S cm-1 at 368 K and 95% relative humidity (RH), which is promising for proton conduction materials. Moreover, it can serve as a repeatable, highly selective, and visualized fluorescence sensor for detecting oxytetracycline (OTC). More importantly, Mn-CP reveals an amazing quantitative sensing of OTC in actual samples such as seawater, aquaculture freshwater, soil infiltration solutions, and tap water. This work proves the excellent application potential of dual-functional CPs in the field of clean energy and environmental protection, especially for the fluorescence detection of antibiotics in aquaculture systems.
Collapse
Affiliation(s)
- Xu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yana Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Xin Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Jiahui Yu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Weijia Chi
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Zikang Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Hanwen Zheng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Zhengang Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yanyu Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Chengqi Jiao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
4
|
Xiong J, Chen Y, Li S, Tan X, Wang L, Chen J, Luo Q, Gao Q, Tong X, Luo F. Dual-Color Visual Ratiometric Fluorescence Sensing for H 2O and D 2O Mixtures Using a Hexanuclear Ln(III) Cluster-Based Metal-Organic Framework. Inorg Chem 2024; 63:4269-4278. [PMID: 38373873 DOI: 10.1021/acs.inorgchem.3c04398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
High-purity heavy water (D2O) is a strategic material owing to its important application in the fields of nuclear energy and scientific research. D2O always tends to get contaminated by H2O owing to its strong hygroscopicity. Herein, a bimetallic hexanuclear Ln(III) cluster-based metal-organic framework (Eu0.5Tb0.5-TZB-MOF) has been synthesized for fluorescence sensing of the D2O-H2O binary mixtures. Eu0.5Tb0.5-TZB-MOF can be used to immediately differentiate D2O or H2O via fluorescent color responses that are obvious to the naked eye and allow for quantitative ratiometric analysis using simple spectrophotometry. Fluorescence titration experiments demonstrate that both trace H2O in D2O and trace D2O in H2O can be quantitatively detected. Mechanistic studies demonstrate that the weaker vibrational quenching of the O-D oscillator compared to the O-H oscillator, in addition to the terbium-to-europium energy transfer, triggered the fluorescence signal response.
Collapse
Affiliation(s)
- Jianbo Xiong
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Yao Chen
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Shunqing Li
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Xiaojuan Tan
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Li Wang
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Jie Chen
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Qiaolin Luo
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Qiang Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Xiaolan Tong
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Feng Luo
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| |
Collapse
|
5
|
Deng Y, Jiang S, Yan Z, Chu Y, Wu W, Xiao H. Fluorescent Eu-MOF@nanocellulose-based nanopaper for rapid and sensitive detection of uranium (Ⅵ). Anal Chim Acta 2024; 1292:342211. [PMID: 38309843 DOI: 10.1016/j.aca.2024.342211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Radioactive uranium leaks into natural water bodies mainly in the form of uranyl ions (UO22+), posing ecological and human health risks. Fluorescent europium-based metal-organic frameworks (Eu-MOFs) have been demonstrated to be effective fluorescent sensors for UO22+, but the large size, powder state and poor dispersity limit their further application. In this work, fluorescent Eu-MOFs were in-situ grown on TEMPO-oxidized cellulose nanofibers (TOCNFs), which is the first time that spherical Eu-MOF crystals with sizes below 10 nm were prepared. Fluorescence spectral analysis revealed a nine-fold increase in the fluorescence intensity of TOCNF@Eu-MOF compared to Eu-MOF. The nanocomposites achieved rapid and sensitive fluorescence quenching to UO22+ through the "antenna effect" and unsaturated Lewis basic sites on the ligands binding with UO22+. Moreover, TOCNF@Eu-MOF demonstrated excellent selectivity and anti-interference for UO22+ detection. For the nanopaper-based sensor made from TOCNF@Eu-MOF, the Stern-Volmer quenching constant (KSV) was calculated as 8.21 × 104 M-1, and the lowest limit of detection (LOD) was 6.6 × 10-7 M, significantly lower than the 1.32 × 10-6 M of Eu-MOFs. In addition, the nanopaper exhibited good fluorescence stability and cyclic detection performance, enabling the rapid and convenient detection of UO22+ in the aqueous phase within 30 s by simple dipping.
Collapse
Affiliation(s)
- Yuqing Deng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China; School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing, 210094, China
| | - Shan Jiang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zifei Yan
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Youlu Chu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
6
|
Li L, Zhang LL, Zou J, Zou J, Duan LY, Gao Y, Peng G, Huang X, Lu L. Dual-emissive europium doped UiO-66-based ratiometric light-up biosensor for highly sensitive detection of histidinemia biomarker. Anal Chim Acta 2024; 1290:342202. [PMID: 38246745 DOI: 10.1016/j.aca.2024.342202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/04/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Lanthanide metal-organic frameworks (Ln-MOFs) are a kind of emerging crystalline porous materials with high fluorescence and easy-to-tunable properties, making them ideal for sensing applications. However, current Ln-MOFs based fluorescent probes are primarily single-emissive or fluorescence-quenched, which greatly limited the detection performances such as sensitivity, accuracy and repeatability, thereby hindering their applications in efficient target monitoring and related disease diagnosis. To address these issues, the reasonable design of Ln-MOFs equipped with dual fluorescence emissions and light-up mode is urgently needed for a high-performance biosensor. RESULTS A dual-emissive europium doped UiO-66 (Eu@UiO-66-NH2-PMA)-based ratiometric fluorescent biosensing platform was constructed for highly sensitive and selective detection of the histidinemia biomarker-histidine (His). Eu@UiO-66-NH2-PMA (pyromellitic acid abbreviated as PMA) was synthesized utilizing a post-synthetic modification method via coordination interactions between the free -COOH of UiO-66-NH2-PMA and Eu3+, which exhibited characteristic peaks of broad ligand emission and sharp Eu3+ emissions simultaneously. Considering that Cu2+ had the excellent fluorescence quenching ability toward Eu3+ and superior affinity with His, it was deliberately introduced into the Eu@UiO-66-NH2-PMA, acting as active sites for target His responsiveness. The Eu@UiO-66-NH2-PMA/Cu2+/His ternary competition system demonstrated a low detection limit of 74 nM, excellent selectivity and good anti-interference capability that allowed for sensitive analysis of His levels in milk and human serum samples. SIGNIFICANCE Attributing to the superior luminescent properties, good stability and self-calibration capability of Eu@UiO-66-NH2-PMA, the developed ratiometric light-up sensing platform enabled sensitive, selective and credible analysis of His in complex practical samples, which might provide an available tool for food nutrition guideline and diagnostic applications of His related diseases.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lin-Lin Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jin Zou
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiamin Zou
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lu-Ying Duan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yansha Gao
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guanwei Peng
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xigen Huang
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Limin Lu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
7
|
Tong YJ, Yu LD, Gong X, Wu L, Chen Y, Wang D, Ye YX, Zhu F, Gong Z, Xu J, Ouyang G. On-Site Ratiometric Analysis of UO 22+ with High Selectivity. Anal Chem 2024. [PMID: 38330425 DOI: 10.1021/acs.analchem.3c05151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Uranyl ions (UO22+) are recognized as important indicators for monitoring sudden nuclear accidents. However, the interferences coexisting in the complicated environmental matrices impart serious constraints on the reliability of current on-site monitoring methods. Herein, a novel ratiometric method for the highly sensitive and selective detection of UO22+ is reported based on a [Eu(diaminoterephthalic acid)] (Eu-DATP) metal-organic framework. Benefiting from the unique chemical structure of Eu-DATP, energy transfer from DATP to UO22+ was enabled, resulting in the up-regulated fluorescence of UO22+ and the simultaneous down-regulated fluorescence of Eu3+. The limit of detection reached as low as 2.7 nM, which was almost 2 orders of magnitude below the restricted limit in drinking water set by the United States Environmental Protection Agency (130 nM). The Eu-DATP probe showed excellent specificity to UO22+ over numerous interfering species, as the intrinsic emissions of UO22+ were triggered. This unprecedentedly high selectivity is especially beneficial for monitoring UO22+ in complicated environmental matrices with no need for tedious sample pretreatment, such as filtration and digestion. Then, by facilely equipping a Eu-DATP-based sampler on a drone, remotely controlled sampling and on-site analysis in real water samples were realized. The concentrations of UO22+ were determined to be from 16.5 to 23.5 nM in the river water of the Guangzhou downtown area, which was consistent with the results determined by the gold-standard inductively coupled plasma mass spectrometry. This study presents a reliable and convenient method for the on-site analysis of UO22+.
Collapse
Affiliation(s)
- Yuan-Jun Tong
- School of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Lu-Dan Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemsistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Xinying Gong
- School of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Lihua Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemsistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Yuxin Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemsistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Dongmei Wang
- School of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yu-Xin Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemsistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemsistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Zhengjun Gong
- School of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemsistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemsistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| |
Collapse
|
8
|
Peng L, Guo H, Wu N, Wang M, Hao Y, Ren B, Hui Y, Ren H, Yang W. A dual-functional fluorescence probe CDs@ZIF-90 for highly specific detection of Al 3+ and Hg 2+ in environmental water samples. Anal Chim Acta 2024; 1288:342171. [PMID: 38220302 DOI: 10.1016/j.aca.2023.342171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
In recent years, the escalating water pollution has resulted in serious harm to human health and ecological environment due to the excessive discharge of toxic metal ions such as Al3+ and Hg2+. Therefore, it is crucial to develop a simple, efficient, and rapid detection method for monitoring the levels of the metal ions in water environment to ensure public health and ecological safety. In this study, carbon dots (CDs) containing heteroatom Si were successfully synthesized by the solvothermal method. Subsequently, a novel dual-functional fluorescent sensor (CDs@ZIF-90) was constructed by integrating CDs with zeolitic imidazolate framework-90 (ZIF-90). The fluorescent composite CDs@ZIF-90 showed outstanding optical properties and excellent structural and luminescence stability in aqueous medium. Particularly, its fluorescence at 453 nm can be remarkably enhanced by Al3+ and quenched upon exposure to Hg2+. As a result, the CDs@ZIF-90 was applied in sensitive and selective determination of Al3+ and Hg2+ ions with wide linear ranges (1-200 μM and 0.05-240 μM) and low detection limits (0.81 μM and 19.6 nM). Moreover, a convenient and rapid fluorescence test strip was also successfully prepared for visual detection of Al3+ and Hg2+ ions. This work is the first try to use the CDs@ZIF-90 fluorescence sensing material for highly sensitive and selective determination of Al3+ and Hg2+ based on "turn-on" and "turn-off" dual modes, respectively and it provides a new idea for monitoring quality of drinking water and environmental water. It is of great significance for human health and environmental protection.
Collapse
Affiliation(s)
- Liping Peng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China.
| | - Ning Wu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Mingyue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Yanrui Hao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Borong Ren
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Yingfei Hui
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Henglong Ren
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China.
| |
Collapse
|
9
|
Seal N, Mondal PP, Palakkal AS, Pillai RS, Neogi S. Site-Memory-Triggered Reversible Acronym Encryption in a Nitrogen-Rich Pore-Partitioned MOF for Ultrasensitive Monitoring of Roxarsone and Dichloran over Multiple Platform. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54397-54408. [PMID: 37965697 DOI: 10.1021/acsami.3c11197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Stimuli-responsive emission color modulation in fluorescent metal-organic frameworks (MOFs) promises luminescence-ink-based security application, while task-specific functionality-engineered pores can aid fast-responsive, discriminative, and ultralow detection of harmful organo-aromatics in the aqueous phase. Considering practical applicability, a self-calibrated fluoro-switch between encrypted and decrypted states is best suited for antiforgery measures, whereas image-based monitoring of organo-toxins by repetitive and handy methods over multiple platforms endorses in-field sensory potential. Herein, we constructed a mixed-ligand based chemically stable and bilayered-pillar MOF from -NH2-hooked pyridyl linker and tricarboxylate ligand that embraces negatively charged [Cd3(μ2-OH)(COO)6] node and shows pore-space-partitioning by nitrogen-rich flanked organic struts. Owing to the presence of a self-calibrating triazolylamine moiety-grafted auxiliary linker, this anionic MOF delineates reversible and multicyclic fluoro-swapping between protonated-encrypted and deprotonated-decrypted domains in the alternative presence of acid and base. Such pH-triggered, site-specific luminescence variation is utilized to construct highly regenerative anticounterfeiting labels for vivid acronym encryption. The intense fluorescence signature of the material is further harnessed in extremely selective and quick responsive sensing of harmful feed additive roxarsone (ROX) and dichloran (DCNA) pesticide in highly recyclable fashion with significant quenching and nanomolar limits of detection (ROX: 52 ppb; DCNA: 26.8 ppb). Notably, the ultrasensitive fluoro-detection of both these organo-toxins is successfully demonstrated via a handy paper-strip method as well as on the vegetable surface for real-time monitoring. Comprehensive density functional theory studies validate the electron transfer mechanism through redistribution of molecular orbital energy levels by each of the targeted analytes in this electron-rich framework besides evidencing MOF-analyte supramolecular interactions.
Collapse
Affiliation(s)
- Nilanjan Seal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India
| | - Partha Pratim Mondal
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India
| | - Athulya S Palakkal
- Department of Chemistry, School of Basic Sciences, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Renjith S Pillai
- Analytical and Spectroscopy Division, ASCG/PCM, Vikram Sarabhai Space Centre, Indian Space Research Organization, Thiruvananthapuram, Kerala 695022, India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India
| |
Collapse
|
10
|
Mei D, Yan B. Rapid Detection and Selective Extraction of Au(III) from Electronic Waste Using an Oxime Functionalized MOF-on-MOF Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304811. [PMID: 37507821 DOI: 10.1002/smll.202304811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Gold is not only a precious resource for many industries but also a global contaminant as a result of the discharge of gold-containing waste. Designing appropriate materials for the detection and extraction of gold is of great significance for the economy and environment. However, most reports only focus on sensing or adsorption for gold because of the difficulty of combining two functions in a single material. Herein, an oxime-functionalized MOF-on-MOF heterostructure (MOF-808@ZIF-90-XE) for the simultaneous detection and recovery of Au3+ is first demonstrated. The constructed hybrid material exhibits good stability, ultra-fast response time (3.6 s) as well as excellent sensitivity for the detection of Au3+ . Experimental characterizations and theoretical calculations suggest that dynamic quenching and competitive adsorption may be possible sensing mechanisms. In addition, MOF-808@ZIF-90-XE shows outstanding selectivity and admirable adsorption capacity (1575 mg g-1 ) for the capture of Au3+ owing to high surface area and abundant active adsorption sites. This paper provides a new strategy by designing a hybrid MOF-on-MOF heterostructure for the detection and extraction of gold.
Collapse
Affiliation(s)
- Douchao Mei
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| |
Collapse
|