1
|
Gao XJ, Ciura K, Ma Y, Mikolajczyk A, Jagiello K, Wan Y, Gao Y, Zheng J, Zhong S, Puzyn T, Gao X. Toward the Integration of Machine Learning and Molecular Modeling for Designing Drug Delivery Nanocarriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407793. [PMID: 39252670 DOI: 10.1002/adma.202407793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/15/2024] [Indexed: 09/11/2024]
Abstract
The pioneering work on liposomes in the 1960s and subsequent research in controlled drug release systems significantly advances the development of nanocarriers (NCs) for drug delivery. This field is evolved to include a diverse array of nanocarriers such as liposomes, polymeric nanoparticles, dendrimers, and more, each tailored to specific therapeutic applications. Despite significant achievements, the clinical translation of nanocarriers is limited, primarily due to the low efficiency of drug delivery and an incomplete understanding of nanocarrier interactions with biological systems. Addressing these challenges requires interdisciplinary collaboration and a deep understanding of the nano-bio interface. To enhance nanocarrier design, scientists employ both physics-based and data-driven models. Physics-based models provide detailed insights into chemical reactions and interactions at atomic and molecular scales, while data-driven models leverage machine learning to analyze large datasets and uncover hidden mechanisms. The integration of these models presents challenges such as harmonizing different modeling approaches and ensuring model validation and generalization across biological systems. However, this integration is crucial for developing effective and targeted nanocarrier systems. By integrating these approaches with enhanced data infrastructure, explainable AI, computational advances, and machine learning potentials, researchers can develop innovative nanomedicine solutions, ultimately improving therapeutic outcomes.
Collapse
Affiliation(s)
- Xuejiao J Gao
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Krzesimir Ciura
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
- Department of Physical Chemistry, Medical University of Gdansk, Al. Gen. Hallera 107, Gdansk, 80-416, Poland
| | - Yuanjie Ma
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Alicja Mikolajczyk
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Karolina Jagiello
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Yuxin Wan
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Yurou Gao
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Shengliang Zhong
- Jiangxi Province Key Laboratory of Porous Functional Materials, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Tomasz Puzyn
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| |
Collapse
|
2
|
Kumar Silori G, Chien SC, Lin LC, Ho KC. Four-State Electrochromism in Tris(4-aminophenyl)amine- terephthalaldehyde-based Covalent Organic Framework. Angew Chem Int Ed Engl 2024:e202416046. [PMID: 39250327 DOI: 10.1002/anie.202416046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/11/2024]
Abstract
Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation, catalysis, drug delivery systems, sensing, and organic electronics. In view of their application-oriented quest, the field of electrochromism marked a significant stride with the reporting of the first electrochromic COF in 2019 [J. Am. Chem. Soc. 2019, 141, 19831-19838]. Since then, new and novel COF structures with electrochromic features (denoted as ecCOFs) have been searched continuously. Yet, only a handful of ecCOFs have been constructed to date. A closer look at these reports suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three-state electrochromism [Angew. Chem. 2021, 133, 12606-1261]. Herein, we report four-state electrochromism in tris(4-aminophenyl)amine-terephthalaldehyde (TAPA-PDA)-based COF constructed through the metal-catalyst free Schiff base approach. The four-state (orange, pear, green, and cyan) electrochromism demonstrated by the TAPA-PDA ecCOF opens several futuristic avenues for ecCOF's end use in flip-flop logic gates, intelligent windows, decorative displays, and energy-saving devices.
Collapse
Affiliation(s)
- Gaurav Kumar Silori
- Department of Chemical Engineering, National Taiwan University, 10617, Taipei, Taiwan
| | - Szu-Chia Chien
- Department of Chemical and Materials Engineering, National Central University, 320317, Taoyuan, Taiwan
| | - Li-Chiang Lin
- Department of Chemical Engineering, National Taiwan University, 10617, Taipei, Taiwan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 43210, Columbus, Ohio, United States
| | - Kuo-Chuan Ho
- Department of Chemical Engineering, National Taiwan University, 10617, Taipei, Taiwan
- Institute of Polymer Science and Engineering, National Taiwan University, 10617, Taipei, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, 10617, Taipei, Taiwan
| |
Collapse
|
3
|
Zhang T, Tian E, Xiong Y, Shen X, Li Z, Yan X, Yang Y, Zhou Z, Wang Y, Wang P. Development of a RNA-protein complex based smart drug delivery system for 9-hydroxycamptothecin. Int J Biol Macromol 2024; 276:133871. [PMID: 39009257 DOI: 10.1016/j.ijbiomac.2024.133871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Camptothecin (CPT) is a monoterpenoid indole alkaloid with a wide spectrum of anticancer activity. However, its application is hindered by poor solubility, lack of targeting specificity, and severe side effects. Structural derivatization of CPT and the development of suitable drug delivery systems are potential strategies for addressing these issues. In this study, we discovered that the protein Cytochrome P450 Family 1 Subfamily A Member 1 (CYP1A1) from Homo sapiens catalyzes CPT to yield 9-hydroxycamptothecin (9-HCPT), which exhibits increased water solubility and cytotoxicity. We then created a RNA-protein complex based drug delivery system with enzyme and pH responsiveness and improved the targeting and stability of the nanomedicine through protein module assembly. The subcellular localization of nanoparticles can be visualized using fluorescent RNA probes. Our results not only identified the protein CYP1A1 responsible for the structural derivatization of CPT to synthesize 9-HCPT but also offered potential strategies for enhancing the utilization of silk-based drug delivery systems in tumor therapy.
Collapse
Affiliation(s)
- Tong Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ernuo Tian
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmacy, East China University of Science and Technology, Shanghai 200037, China
| | - Ying Xiong
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Shen
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenhua Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200037, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
4
|
Li Y, Liu W, Jiang X, Liu H, Wang S, Zhang G, Luo X, Zhao Y. A dual-signal triple-readout optical sensing platform for α-glucosidase and β-glucosidase activity monitoring and inhibitor screening based on luminescent covalent organic framework. Anal Chim Acta 2024; 1316:342836. [PMID: 38969426 DOI: 10.1016/j.aca.2024.342836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND As promising biomarkers of diabetes, α-glucosidase (α-Glu) and β-glucosidase (β-Glu) play a crucial role in the diagnosis and management of diseases. However, there is a scarcity of techniques available for simultaneously and sensitively detecting both enzymes. What's more, most of the approaches for detecting α-Glu and β-Glu rely on a single-mode readout, which can be affected by multiple factors leading to inaccurate results. Hence, the simultaneous detection of the activity levels of both enzymes in a single sample utilizing multiple-readout sensing approaches is highly attractive. RESULTS In this work, we constructed a facile sensing platform for the simultaneous determination of α-Glu and β-Glu by utilizing a luminescent covalent organic framework (COF) as a fluorescent indicator. The enzymatic hydrolysis product common to both enzymes, p-nitrophenol (PNP), was found to affect the fluorometric signal through an inner filter effect on COF, enhance the colorimetric response by intensifying the absorption peak at 400 nm, and induce changes in RGB values when analyzed using a smartphone-based color recognition application. By combining fluorometric/colorimetric measurements with smartphone-assisted RGB mode, we achieved sensitive and accurate quantification of α-Glu and β-Glu. The limits of detection for α-Glu were determined to be 0.8, 1.22, and 1.85 U/L, respectively. Similarly, the limits of detection for β-Glu were 0.16, 0.42, and 0.53 U/L, respectively. SIGNIFICANCE Application of the proposed sensing platform to clinical serum samples revealed significant differences in the two enzymes between healthy people and diabetic patients. Additionally, the proposed sensing method was successfully applied for the screening of α-Glu inhibitors and β-Glu inhibitors, demonstrating its viability and prospective applications in the clinical management of diabetes as well as the discovery of antidiabetic medications.
Collapse
Affiliation(s)
- Yue Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Weiping Liu
- Department of Clinical Laboratory, Zigong First People's Hospital, Zigong, 643000, Sichuan, China
| | - Xinxin Jiang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Hongmei Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Sikai Wang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
5
|
Ding LG, Ji X, Liu YY, Shi M, Li JD, Liu F, Zhang YY, Yu J, Wu JQ. Covalent Organic Framework-Based Theranostic Platforms for Restricting H1N1 Influenza Virus Infection. Int J Nanomedicine 2024; 19:7399-7414. [PMID: 39071500 PMCID: PMC11278156 DOI: 10.2147/ijn.s461866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024] Open
Abstract
Background Influenza A (H1N1) virus is a highly contagious respiratory disease that causes severe illness and death. Vaccines and antiviral drugs are limited by viral variation and drug resistance, so developing efficient integrated theranostic options appears significant in anti-influenza virus infection. Methods In this study, we designed and fabricated covalent organic framework (COF) based theranostic platforms (T705@DATA-COF-Pro), which was composed of an RNA polymerase inhibitor (favipiravir, T705), the carboxyl-enriched COF (DATA-COF) nano-carrier and Cy3-labeled single DNA (ssDNA) probe. Results The multi-porosity COF core provided an excellent micro-environment and smooth delivery for T705. The ssDNA probe coating bound to the nucleic acids of H1N1 selectively, thus controlling drug release and allowing fluorescence imaging. The combination of COF and probe triggered the synergism, promoting drug further therapeutic outcomes. With the aid of T705@DATA-COF-Pro platforms, the H1N1-infected mouse models lightly achieved diagnosis and significantly prolonged survival. Conclusion This research underscores the distinctive benefits and immense potential of COF materials in nano-preparations for virus infection, offering novel avenues for the detection and treatment of H1N1 virus infection.
Collapse
Affiliation(s)
- Luo-Gang Ding
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People’s Republic of China
| | - Xiang Ji
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People’s Republic of China
| | - Yue-Yue Liu
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, 250100, People’s Republic of China
| | - Min Shi
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People’s Republic of China
| | - Jian-Da Li
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People’s Republic of China
| | - Fei Liu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People’s Republic of China
| | - Yu-Yu Zhang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People’s Republic of China
| | - Jiang Yu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People’s Republic of China
| | - Jia-Qiang Wu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People’s Republic of China
| |
Collapse
|
6
|
Younas R, Jubeen F, Bano N, Andreescu S, Zhang H, Hayat A. Covalent organic frameworks (COFs) as carrier for improved drug delivery and biosensing applications. Biotechnol Bioeng 2024; 121:2017-2049. [PMID: 38665008 DOI: 10.1002/bit.28718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
Porous organic frameworks (POFs) represent a significant subclass of nanoporous materials in the field of materials science, offering exceptional characteristics for advanced applications. Covalent organic frameworks (COFs), as a novel and intriguing type of porous material, have garnered considerable attention due to their unique design capabilities, diverse nature, and wide-ranging applications. The unique structural features of COFs, such as high surface area, tuneable pore size, and chemical stability, render them highly attractive for various applications, including targeted and controlled drug release, as well as improving the sensitivity and selectivity of electrochemical biosensors. Therefore, it is crucial to comprehend the methods employed in creating COFs with specific properties that can be effectively utilized in biomedical applications. To address this indispensable fact, this review paper commences with a concise summary of the different methods and classifications utilized in synthesizing COFs. Second, it highlights the recent advancements in COFs for drug delivery, including drug carriers as well as the classification of drug delivery systems and biosensing, encompassing drugs, biomacromolecules, small biomolecules and the detection of biomarkers. While exploring the potential of COFs in the biomedical field, it is important to acknowledge the limitations that researchers may encounter, which could impact the practicality of their applications. Third, this paper concludes with a thought-provoking discussion that thoroughly addresses the challenges and opportunities associated with leveraging COFs for biomedical applications. This review paper aims to contribute to the scientific community's understanding of the immense potential of COFs in improving drug delivery systems and enhancing the performance of biosensors in biomedical applications.
Collapse
Affiliation(s)
- Rida Younas
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
- Department of Chemistry, Govt College Women University, Faisalabad, Pakistan
| | - Farhat Jubeen
- Department of Chemistry, Govt College Women University, Faisalabad, Pakistan
| | - Nargis Bano
- Department of Physics and Astronomy College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, USA
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
| | - Akhtar Hayat
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Punjab, Pakistan
| |
Collapse
|
7
|
Zhang W, Xiang S, Han Y, Wang H, Deng Y, Bian P, Bando Y, Golberg D, Weng Q. Phospholipid-inspired alkoxylation induces crystallization and cellular uptake of luminescent COF nanocarriers. Biomaterials 2024; 306:122503. [PMID: 38359508 DOI: 10.1016/j.biomaterials.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The porous nature and structural variability of covalent organic frameworks (COFs) make them preferred for drug loading and delivery applications. However, most COF materials suffer from poor luminescent properties and inefficiency for cell uptake. Herein, we experimentally demonstrate the crucial role of long alkoxy chains in the synthesis of crystalline COF nanostructures with high cellular uptake efficiency. After luminescence integration through band engineering, the semiconducting COF exhibits an optical bandgap of 2.05 eV, an emission wavelength of 632 nm, a high quantum yield of 37 %, and excellent fluorescence stability (100 % at 3 h). Such excellent optical properties of the designed COF nanocarriers enable quantitative evaluations of cellular uptake and visual tracking of drug delivery. It was demonstrated that the cellular uptake efficiency was enhanced by orders of magnitude for the COF after the introduction of long n-octyloxy chains, which firstly delivered the anticancer camptothecin (CPT) to cell lysosomes, and then underwent "endo/lysosomal escape" to induce cell apoptosis. In vivo assay evidenced a significant enhancement in the therapeutic effect with a 96 % inhibition of tumor growth after 14 days of treatment. This progress sheds light on designing cutting-edge drug delivery nanosystems based on COF materials with integrated diagnostic and therapeutic functions.
Collapse
Affiliation(s)
- Wei Zhang
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha, 410082, PR China
| | - Shuo Xiang
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha, 410082, PR China
| | - Yuxin Han
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha, 410082, PR China
| | - Haiyan Wang
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha, 410082, PR China
| | - Yuxian Deng
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha, 410082, PR China
| | - Panpan Bian
- Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, PR China.
| | - Yoshio Bando
- Australian Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, New South Wales, 2500, Australia; Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Dmitri Golberg
- Centre for Materials Science and School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, 4000, QLD, Australia; Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki, 305, Japan
| | - Qunhong Weng
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha, 410082, PR China.
| |
Collapse
|